Genes2024; 15(2); 202; doi: 10.3390/genes15020202

Cross-Species Comparison of the Pan-RAF Inhibitor LY3009120’s Anti-Tumor Effects in Equine, Canine, and Human Malignant Melanoma Cell Lines.

Abstract: Malignant melanomas (MMs) are the abnormal proliferation of melanocytes and are one of the lethal skin cancers in humans, equines, and canines. Accordingly, MMs in companion animals can serve as naturally occurring animal models, completing conventional cancer models. The common constitutive activation of the MAPK and PI3K pathways in MMs has been described in all three species. Targeting the related pathways is considered a potential option in comparative oncologic approaches. Herein, we present a cross-species comparative analysis exposing a set of ten melanoma cell lines (one human, three equine, and six canine) derived from primary tumors or metastasis to a pan-RAF and RAF dimer inhibitor (LY3009120). Cellular response (proliferation, biomass, metabolism, early and late apoptosis/necrosis, and morphology) and the presence of pathogenic single-nucleotide variants (SNVs) within the mutational hotspot genes exon 11 and 15, exon 2 and 3, exon 2, and exon 11 were analyzed. This study showed that equine malignant melanoma (EMM) cells (MelDuWi) harbor the p.Q61H mutation, while canine malignant melanoma (CMM) cells (cRGO1 and cRGO1.2) carry p.G13R. Except for EMM metastasis cells eRGO6 (wild type of the above-mentioned hotspot genes), all melanoma cell lines exhibited a decrease in dose dependence after 48 and 72 h of exposure to LY3009120, independent of the mutation hotspot landscape. Furthermore, LY3009120 caused significant early apoptosis and late apoptosis/necrosis in all melanoma cell lines except for eRGO6. The anti-tumor effects of LY3009120 were observed in nine melanoma cell lines, indicating the potential feasibility of experimental trials with LY3009120. The present study reveals that the irradiation-resistant canine metastasis cells (cRGO1.2) harboring the p.G13R mutation are significantly LY3009120-sensitive, while the equine metastases-derived eRGO6 cells show significant resistance to LY3009120, which make them both valuable tools for studying resistance mechanisms in comparative oncology.
Publication Date: 2024-02-03 PubMed ID: 38397192PubMed Central: PMC10887541DOI: 10.3390/genes15020202Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

This research article examines the anti-tumor effects of a drug called LY3009120 on malignant melanomas, a type of deadly skin cancer, in humans, horses, and dogs. The study involved exposure to the drug in a variety of melanoma cell lines, and analysed both cell response and presence of specific genetic mutations. While most cell lines showed responses to the drug, including decreased proliferation and increased apoptosis, some displayed resistance, making them useful for future study on resistance in oncology.

Research Context and Methods

  • The research aims to understand the anti-tumor effects of the pan-RAF and RAF dimer inhibitor LY3009120 on malignant melanomas, a type of lethal skin cancer commonly found in humans, horses, and dogs.
  • The cancer cells for the study were extracted from primary tumors or metastasis sites. The collection constituted of one human, three equine, and six canine melanoma cell lines.
  • The study then involved exposing these melanoma cell lines to LY3009120 and analysing changes in various cellular responses, such as proliferation, biomass, metabolism, and morphology, along with early and late apoptosis or necrosis.
  • The presence of specific single-nucleotide variants (SNVs) or genetic mutations within hotspot genes were also studied.

Research Findings

  • The study identified the presence of p.Q61H mutations in equine malignant melanoma cells (MelDuWi) and p.G13R mutations in canine malignant melanoma cells (cRGO1 and cRGO1.2).
  • Except for one set of cells from equine metastasis (eRGO6), which had a wild type of the hotspot genes, all melanoma cell lines showed a decrease in proliferation and an increase in early or late apoptosis/necrosis after 48 and 72 hours of exposure to LY3009120.
  • The research, therefore, highlights that the effects of LY3009120 were largely consistent across species and were not primarily influenced by the presence or absence of hotspot gene mutations.
  • Importantly, the study revealed that irradiation-resistant canine metastasis cells (cRGO1.2) harboring the p.G13R mutation were significantly sensitive to LY3009120, whereas the equine metastasis-derived eRGO6 cells were resistant to it, providing crucial information for future research focused on understanding resistance mechanisms in cancer therapy.

Implications of the Study

  • The findings suggest that LY3009120 could have potential as a cancer treatment across species, with the drug effectively triggering apoptosis and reducing proliferation in nine out of ten melanoma cell lines, regardless of the presence of specific mutations.
  • The study also creates avenues for future research in comparative oncology by identifying two cell lines with significant resistance or sensitivity to LY3009120, aiding in further investigations into resistance mechanisms in cancer treatment.

Cite This Article

APA
Gao Y, Packeiser EM, Wendt S, Sekora A, Cavalleri JV, Pratscher B, Alammar M, Hu00fchns M, Brenig B, Junghanss C, Nolte I, Murua Escobar H. (2024). Cross-Species Comparison of the Pan-RAF Inhibitor LY3009120’s Anti-Tumor Effects in Equine, Canine, and Human Malignant Melanoma Cell Lines. Genes (Basel), 15(2), 202. https://doi.org/10.3390/genes15020202

Publication

ISSN: 2073-4425
NlmUniqueID: 101551097
Country: Switzerland
Language: English
Volume: 15
Issue: 2
PII: 202

Researcher Affiliations

Gao, Yu
  • Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany.
  • Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany.
Packeiser, Eva-Maria
  • Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany.
Wendt, Sophia
  • Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany.
Sekora, Anett
  • Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany.
Cavalleri, Jessika-Maximiliane V
  • Clinical Unit of Equine Internal Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
Pratscher, Barbara
  • Clinical Unit of Equine Internal Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
  • Clinical Unit of Small Animal Internal Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
Alammar, Moosheer
  • Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany.
Hu00fchns, Maja
  • Institute of Pathology, University Medicine of Rostock, Strempelstrasse, 18055 Rostock, Germany.
Brenig, Bertram
  • Institute of Veterinary Medicine, Division of Molecular Biology of Livestock and Molecular Diagnostics, Georg-August-University of Gu00f6ttingen, 37077 Gu00f6ttingen, Germany.
Junghanss, Christian
  • Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany.
Nolte, Ingo
  • Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany.
Murua Escobar, Hugo
  • Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany.

MeSH Terms

  • Humans
  • Animals
  • Dogs
  • Horses
  • Melanoma / drug therapy
  • Melanoma / genetics
  • Antineoplastic Agents / pharmacology
  • Phosphatidylinositol 3-Kinases / metabolism
  • Proto-Oncogene Proteins p21(ras)
  • Proto-Oncogene Proteins B-raf / genetics
  • Proto-Oncogene Proteins B-raf / metabolism
  • Protein Kinase Inhibitors / pharmacology
  • Skin Neoplasms
  • Cell Line, Tumor
  • Necrosis
  • Phenylurea Compounds
  • Pyrimidines

Grant Funding

  • No.202006170058 / The China Scholarship Council (CSC)

Conflict of Interest Statement

The authors declare no conflicts of interest.

References

This article includes 51 references
  1. Lee J.H., Choi J.W., Kim Y.S. Frequencies of BRAF and NRAS mutations are different in histological types and sites of origin of cutaneous melanoma: A meta-analysis. Br. J. Dermatol. 2011;164:776u2013784. doi: 10.1111/j.1365-2133.2010.10185.x.
  2. Hayward N.K., Wilmott J.S., Waddell N., Johansson P.A., Field M.A., Nones K., Patch A.-M., Kakavand H., Alexandrov L.B., Burke H., et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545:175u2013180. doi: 10.1038/nature22071.
    doi: 10.1038/nature22071pubmed: 28467829google scholar: lookup
  3. Druml T., Brem G., Horna M., Ricard A., Grilz-Seger G. DPF3, A Putative Candidate Gene For Melanoma Etiopathogenesis in Gray Horses. J. Equine Vet. Sci. 2022;108:103797. doi: 10.1016/j.jevs.2021.103797.
    doi: 10.1016/j.jevs.2021.103797pubmed: 34801788google scholar: lookup
  4. Fowles J.S., Denton C.L., Gustafson D.L. Comparative analysis of MAPK and PI3K/AKT pathway activation and inhibition in human and canine melanoma. Vet. Comp. Oncol. 2015;13:288u2013304. doi: 10.1111/vco.12044.
    doi: 10.1111/vco.12044pubmed: 23745794google scholar: lookup
  5. Conrad D., Kehl A., Beitzinger C., Metzler T., Steiger K., Pfarr N., Fischer K., Klopfleisch R., Aupperle-Lellbach H. Molecular Genetic Investigation of Digital Melanoma in Dogs. Vet. Sci. 2022;9:56. doi: 10.3390/vetsci9020056.
    doi: 10.3390/vetsci9020056pmc: PMC8874500pubmed: 35202309google scholar: lookup
  6. Simpson R.M., Bastian B.C., Michael H.T., Webster J.D., Prasad M.L., Conway C.M., Prieto V.M., Gary J.M., Goldschmidt M.H., Esplin D.G., et al. Sporadic naturally occurring melanoma in dogs as a preclinical model for human melanoma. Pigment. Cell Melanoma Res. 2014;27:37u201347. doi: 10.1111/pcmr.12185.
    doi: 10.1111/pcmr.12185pmc: PMC4066658pubmed: 24128326google scholar: lookup
  7. Wong K., van der Weyden L., Schott C.R., Foote A., Constantino-Casas F., Smith S., Dobson J.M., Murchison E.P., Wu H., Yeh I., et al. Cross-species genomic landscape comparison of human mucosal melanoma with canine oral and equine melanoma. Nat. Commun. 2019;10:353. doi: 10.1038/s41467-018-08081-1.
    doi: 10.1038/s41467-018-08081-1pmc: PMC6341101pubmed: 30664638google scholar: lookup
  8. Hendricks W.P.D., Zismann V., Sivaprakasam K., Legendre C., Poorman K., Tembe W., Perdigones N., Kiefer J., Liang W., DeLuca V., et al. Somatic inactivating PTPRJ mutations and dysregulated pathways identified in canine malignant melanoma by integrated comparative genomic analysis. PLoS Genet. 2018;14:e1007589. doi: 10.1371/journal.pgen.1007589.
  9. Jiang L., Campagne C., Sundstru00f6m E., Sousa P., Imran S., Seltenhammer M., Pielberg G., Olsson M.J., Egidy G., Andersson L., et al. Constitutive activation of the ERK pathway in melanoma and skin melanocytes in Grey horses. BMC Cancer. 2014;14:857. doi: 10.1186/1471-2407-14-857.
    doi: 10.1186/1471-2407-14-857pmc: PMC4254013pubmed: 25413220google scholar: lookup
  10. Prouteau A., Andru00e9 C. Canine Melanomas as Models for Human Melanomas: Clinical, Histological, and Genetic Comparison. Genes. 2019;10:501. doi: 10.3390/genes10070501.
    doi: 10.3390/genes10070501pmc: PMC6678806pubmed: 31262050google scholar: lookup
  11. van der Weyden L., Brenn T., Patton E.E., Wood G.A., Adams D.J. Spontaneously occurring melanoma in animals and their relevance to human melanoma. J. Pathol. 2020;252:4u201321. doi: 10.1002/path.5505.
    doi: 10.1002/path.5505pmc: PMC7497193pubmed: 32652526google scholar: lookup
  12. Bax M.J., Brown M.D., Rothberg P.G., Laughlin T.S., Scott G.A. Pigmented epithelioid melanocytoma (animal-type melanoma): An institutional experience. J. Am. Acad. Dermatol. 2017;77:328u2013332. doi: 10.1016/j.jaad.2017.01.029.
    doi: 10.1016/j.jaad.2017.01.029pubmed: 28416343google scholar: lookup
  13. Yi Z., Gao Y., Yu F., Zhu Y., Liu H., Li J., Escobar H.M. Interventions for treatment of cutaneous melanoma in horses: A structured literature review. Vet. Res. Commun. 2023;47:347u2013360. doi: 10.1007/s11259-022-10023-8.
    doi: 10.1007/s11259-022-10023-8pubmed: 36329228google scholar: lookup
  14. Luke J.J., Flaherty K.T., Ribas A., Long G.V. Targeted agents and immunotherapies: Optimizing outcomes in melanoma. Nat. Rev. Clin. Oncol. 2017;14:463u2013482. doi: 10.1038/nrclinonc.2017.43.
    doi: 10.1038/nrclinonc.2017.43pubmed: 28374786google scholar: lookup
  15. Guo W., Wang H., Li C. Signal pathways of melanoma and targeted therapy. Signal Transduct. Target. Ther. 2021;6:424. doi: 10.1038/s41392-021-00827-6.
    doi: 10.1038/s41392-021-00827-6pmc: PMC8685279pubmed: 34924562google scholar: lookup
  16. Coelho Y.N.B., Soldi L.R., da Silva P.H.R., Mesquita C.M., Paranhos L.R., dos Santos T.R., Silva M.J.B. Tyrosine kinase inhibitors as an alternative treatment in canine mast cell tumor. Front. Vet. Sci. 2023;10:1188795. doi: 10.3389/fvets.2023.1188795.
    doi: 10.3389/fvets.2023.1188795pmc: PMC10285312pubmed: 37360406google scholar: lookup
  17. Pimenta J., Prada J., Cotovio M. Equine Melanocytic Tumors: A Narrative Review. Animals. 2023;13:247. doi: 10.3390/ani13020247.
    doi: 10.3390/ani13020247pmc: PMC9855132pubmed: 36670786google scholar: lookup
  18. Bauquier J., Tudor E., Bailey S. Effect of the p38 MAPK inhibitor doramapimod on the systemic inflammatory response to intravenous lipopolysaccharide in horses. J. Vet. Intern. Med. 2020;34:2109u20132116. doi: 10.1111/jvim.15847.
    doi: 10.1111/jvim.15847pmc: PMC7517855pubmed: 32700419google scholar: lookup
  19. Roskoski R., Jr. Targeting oncogenic Raf protein-serine/threonine kinases in human cancers. Pharmacol. Res. 2018;135:239u2013258. doi: 10.1016/j.phrs.2018.08.013.
    doi: 10.1016/j.phrs.2018.08.013pubmed: 30118796google scholar: lookup
  20. Peng S.-B., Henry J.R., Kaufman M.D., Lu W.-P., Smith B.D., Vogeti S., Rutkoski T.J., Wise S., Chun L., Zhang Y., et al. Inhibition of RAF Isoforms and Active Dimers by LY3009120 Leads to Anti-tumor Activities in RAS or BRAF Mutant Cancers. Cancer Cell. 2015;28:384u2013398. doi: 10.1016/j.ccell.2015.08.002.
    doi: 10.1016/j.ccell.2015.08.002pubmed: 26343583google scholar: lookup
  21. Mendiratta G., Stites E. Theoretical analysis reveals a role for RAF conformational autoinhibition in paradoxical activation. Elife. 2023;12:e82739. doi: 10.7554/eLife.82739.
    doi: 10.7554/eLife.82739pmc: PMC10627510pubmed: 37823369google scholar: lookup
  22. Chen S.-H., Gong X., Zhang Y., Van Horn R.D., Yin T., Huber L., Burke T.F., Manro J., Iversen P.W., Wu W., et al. RAF inhibitor LY3009120 sensitizes RAS or BRAF mutant cancer to CDK4/6 inhibition by abemaciclib via superior inhibition of phospho-RB and suppression of cyclin D1. Oncogene. 2018;37:821u2013832. doi: 10.1038/onc.2017.384.
    doi: 10.1038/onc.2017.384pubmed: 29059158google scholar: lookup
  23. Henry J.R., Kaufman M.D., Peng S.B., Ahn Y.M., Caldwell T.M., Vogeti L., Telikepalli H., Lu W.P., Hood M.M., Rutkoski T.J., et al. Discovery of 1-(3,3-dimethylbutyl)-3-(2-fluoro-4-methyl-5-(7-methyl-2-(methylamino)pyrido [2,3-d]pyrimidin-6-yl)phenyl)urea (LY3009120) as a pan-RAF inhibitor with minimal paradoxical activation and activity against BRAF or RAS mutant tumor cells. J. Med. Chem. 2015;58:4165u20134179. doi: 10.1021/acs.jmedchem.5b00067.
    doi: 10.1021/acs.jmedchem.5b00067pubmed: 25965804google scholar: lookup
  24. Chen S.-H., Zhang Y., Van Horn R.D., Yin T., Buchanan S., Yadav V., Mochalkin I., Wong S.S., Yue Y.G., Huber L., et al. Oncogenic BRAF Deletions That Function as Homodimers and Are Sensitive to Inhibition by RAF Dimer Inhibitor LY3009120. Cancer Discov. 2016;6:300u2013315. doi: 10.1158/2159-8290.CD-15-0896.
    doi: 10.1158/2159-8290.CD-15-0896pubmed: 26732095google scholar: lookup
  25. Vakana E., Pratt S., Blosser W., Dowless M., Simpson N., Yuan X.-J., Jaken S., Manro J., Stephens J., Zhang Y., et al. LY3009120, a panRAF inhibitor, has significant anti-tumor activity in BRAF and KRAS mutant preclinical models of colorectal cancer. Oncotarget. 2017;8:9251u20139266. doi: 10.18632/oncotarget.14002.
    doi: 10.18632/oncotarget.14002pmc: PMC5354729pubmed: 27999210google scholar: lookup
  26. Schmidt F., Brodesser D., Reifinger M., Forte S., Semp P., Eberspu00e4cher-Schweda M.C., Wolschek M., Brandt S., Kleiter M., Pratscher B. Canine oral primary melanoma cells exhibit shift to mesenchymal phenotype and phagocytic behaviour. Vet. Comp. Oncol. 2019;17:211u2013220. doi: 10.1111/vco.12464.
    doi: 10.1111/vco.12464pubmed: 30719836google scholar: lookup
  27. Weber L.A., Meiu00dfner J., Delarocque J., Kalbitz J., Feige K., Kietzmann M., Michaelis A., Paschke R., Michael J., Pratscher B., et al. Betulinic acid shows anticancer activity against equine melanoma cells and permeates isolated equine skin in vitro. BMC Vet. Res. 2020;16:44. doi: 10.1186/s12917-020-2262-5.
    doi: 10.1186/s12917-020-2262-5pmc: PMC7003431pubmed: 32024502google scholar: lookup
  28. Semp P.-G., Brandt S., Burgener I., Kleiter M., Pratscher B. Characterization of radio-sensitivity of canine oral malignant melanoma cell lines and their secretion of cytokines. Veterinary and Comparative Oncology; Proceedings of the ESVONC Annual Congress, 2021, PP 017; virtual. 28u201329 May 2021; 2021.
  29. Oh J.H., Cho J.Y. Comparative oncology: Overcoming human cancer through companion animal studies. Exp. Mol. Med. 2023;55:725u2013734. doi: 10.1038/s12276-023-00977-3.
    doi: 10.1038/s12276-023-00977-3pmc: PMC10167357pubmed: 37009802google scholar: lookup
  30. Hatzivassiliou G., Song K., Yen I., Brandhuber B.J., Anderson D.J., Alvarado R., Ludlam M.J.C., Stokoe D., Gloor S.L., Vigers G., et al. RAF inhibitors prime wild type RAF to activate the MAPK pathway and enhance growth. Nature. 2010;464:431u2013435. doi: 10.1038/nature08833.
    doi: 10.1038/nature08833pubmed: 20130576google scholar: lookup
  31. Jin T., Lavoie H., Sahmi M., David M., Hilt C., Hammell A., Therrien M. RAF inhibitors promote RAS-RAF interaction by allosterically disrupting RAF autoinhibition. Nat. Commun. 2017;8:1211. doi: 10.1038/s41467-017-01274-0.
    doi: 10.1038/s41467-017-01274-0pmc: PMC5662619pubmed: 29084939google scholar: lookup
  32. Mullard A. The KRAS crowd targets its next cancer mutations. Nat. Rev. Drug Discov. 2023;22:167u2013171. doi: 10.1038/d41573-023-00015-x.
    doi: 10.1038/d41573-023-00015-xpubmed: 36690752google scholar: lookup
  33. Wang T., Yu H., Hughes N.W., Liu B., Kendirli A., Klein K., Chen W.W., Lander E.S., Sabatini D.M. Gene Essentiality Profiling Reveals Gene Networks and Synthetic Lethal Interactions with Oncogenic Ras. Cell. 2017;168:890u2013903.e15. doi: 10.1016/j.cell.2017.01.013.
    doi: 10.1016/j.cell.2017.01.013pmc: PMC5445660pubmed: 28162770google scholar: lookup
  34. Zhang Z., Richmond A., Yan C. Immunomodulatory Properties of PI3K/AKT/mTOR and MAPK/MEK/ERK Inhibition Augment Response to Immune Checkpoint Blockade in Melanoma and Triple-Negative Breast Cancer. Int. J. Mol. Sci. 2022;23:7353. doi: 10.3390/ijms23137353.
    doi: 10.3390/ijms23137353pmc: PMC9266842pubmed: 35806358google scholar: lookup
  35. Lastraioli E., Ruffinatti F.A., Bagni G., Visentin L., di Costanzo F., Munaron L., Arcangeli A. The Transcriptional Landscape of BRAF Wild Type Metastatic Melanoma: A Pilot Study. Int. J. Mol. Sci. 2022;23:6898. doi: 10.3390/ijms23136898.
    doi: 10.3390/ijms23136898pmc: PMC9266837pubmed: 35805902google scholar: lookup
  36. Ruiz E.M., Alhassan S.A., Errami Y., Elmageed Z.Y.A., Fang J.S., Wang G., Brooks M.A., Abi-Rached J.A., Kandil E., Zerfaoui M. A Predictive Model of Adaptive Resistance to BRAF/MEK Inhibitors in Melanoma. Int. J. Mol. Sci. 2023;24:8407. doi: 10.3390/ijms24098407.
    doi: 10.3390/ijms24098407pmc: PMC10178962pubmed: 37176114google scholar: lookup
  37. Bergholz J.S., Zhao J.J. How Compensatory Mechanisms and Adaptive Rewiring Have Shaped Our Understanding of Therapeutic Resistance in Cancer. Cancer Res. 2021;81:6074u20136077. doi: 10.1158/0008-5472.CAN-21-3605.
  38. Paraiso K.H.T., Fedorenko I.V., Cantini L.P., Munko A.C., Hall M., Sondak V.K., Messina J.L., Flaherty K.T., Smalley K.S.M. Recovery of phospho-ERK activity allows melanoma cells to escape from BRAF inhibitor therapy. Br. J. Cancer. 2010;102:1724u20131730. doi: 10.1038/sj.bjc.6605714.
    doi: 10.1038/sj.bjc.6605714pmc: PMC2883709pubmed: 20531415google scholar: lookup
  39. Atefi M., Titz B., Avramis E., Ng C., Wong D.J., Lassen A., Cerniglia M., Escuin-Ordinas H., Foulad D., Comin-Anduix B., et al. Combination of pan-RAF and MEK inhibitors in NRAS mutant melanoma. Mol. Cancer. 2015;14:27. doi: 10.1186/s12943-015-0293-5.
    doi: 10.1186/s12943-015-0293-5pmc: PMC4320814pubmed: 25645078google scholar: lookup
  40. Fischer G.M., Vashisht Gopal Y.N., McQuade J.L., Peng W., DeBerardinis R.J., Davies M.A. Metabolic strategies of melanoma cells: Mechanisms, interactions with the tumor microenvironment, and therapeutic implications. Pigment. Cell Melanoma Res. 2018;31:11u201330. doi: 10.1111/pcmr.12661.
    doi: 10.1111/pcmr.12661pmc: PMC5742019pubmed: 29049843google scholar: lookup
  41. Mayers J.R., Torrence M.E., Danai L.V., Papagiannakopoulos T., Davidson S.M., Bauer M.R., Lau A.N., Ji B.W., Dixit P.D., Hosios A.M., et al. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science. 2016;353:1161u20131165. doi: 10.1126/science.aaf5171.
    doi: 10.1126/science.aaf5171pmc: PMC5245791pubmed: 27609895google scholar: lookup
  42. Amendola C.R., Mahaffey J.P., Parker S.J., Ahearn I.M., Chen W.-C., Zhou M., Court H., Shi J., Mendoza S.L., Morten M.J., et al. KRAS4A directly regulates hexokinase 1. Nature. 2019;576:482u2013486. doi: 10.1038/s41586-019-1832-9.
    doi: 10.1038/s41586-019-1832-9pmc: PMC6923592pubmed: 31827279google scholar: lookup
  43. Hunter J.C., Manandhar A., Carrasco M.A., Gurbani D., Gondi S., Westover K.D. Biochemical and Structural Analysis of Common Cancer-Associated KRAS Mutations. Mol. Cancer Res. 2015;13:1325u20131335. doi: 10.1158/1541-7786.MCR-15-0203.
    doi: 10.1158/1541-7786.MCR-15-0203pubmed: 26037647google scholar: lookup
  44. Wei B.R., Michael H.T., Halsey C.H.C., Peer C.J., Adhikari A., Dwyer J.E., Hoover S.B., El Meskini R., Kozlov S., Ohler Z.W., et al. Synergistic targeted inhibition of MEK and dual PI3K/mTOR diminishes viability and inhibits tumor growth of canine melanoma underscoring its utility as a preclinical model for human mucosal melanoma. Pigment Cell Melanoma Res. 2016;29:643u2013655. doi: 10.1111/pcmr.12512.
    doi: 10.1111/pcmr.12512pmc: PMC5132162pubmed: 27463366google scholar: lookup
  45. Mayr B., Schaffner G., Reifinger M., Zwetkoff S., Prodinger B. N-ras mutations in canine malignant melanomas. Vet J. 2003;165:169u2013171. doi: 10.1016/S1090-0233(02)00245-9.
    doi: 10.1016/S1090-0233(02)00245-9pubmed: 12573607google scholar: lookup
  46. Murua Escobar H., Gu00fcnther K., Richter A., Soller J.T., Winkler S., Nolte I., Bullerdiek J. Absence of ras-gene hot-spot mutations in canine fibrosarcomas and melanomas. Anticancer Res. 2004;24:3027u20133028.
    pubmed: 15517911
  47. Shelly S., Chien M.B., Yip B., Kent M.S., Theon A.P., McCallan J.L., London C.A. Exon 15 BRAF mutations are uncommon in canine oral malignant melanomas. Mamm Genome. 2005;16:211u2013217. doi: 10.1007/s00335-004-2441-x.
    doi: 10.1007/s00335-004-2441-xpubmed: 15834638google scholar: lookup
  48. Mochizuki H., Kennedy K., Shapiro S.G., Breen M. BRAF Mutations in Canine Cancers. PLoS ONE. 2015;10:e0129534. doi: 10.1371/journal.pone.0129534.
  49. Cancer Genome Atlas Network Genomic Classification of Cutaneous Melanoma. Cell. 2015;161:1681u20131696. doi: 10.1016/j.cell.2015.05.044.
    doi: 10.1016/j.cell.2015.05.044pmc: PMC4580370pubmed: 26091043google scholar: lookup
  50. Larkin J., Chiarion-Sileni V., Gonzalez R., Grob J.J., Rutkowski P., Lao C.D., Cowey C.L., Schadendorf D., Wagstaff J., Dummer R., et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2019;381:1535u20131546. doi: 10.1056/NEJMoa1910836.
    doi: 10.1056/NEJMoa1910836pubmed: 31562797google scholar: lookup
  51. Sundstru00f6m E., Imsland F., Mikko S., Wade C., Sigurdsson S., Pielberg G.R., Golovko A., Curik I., Seltenhammer M.H., Su00f6lkner J., et al. Copy number expansion of the STX17 duplication in melanoma tissue from Grey horses. BMC Genom. 2012;13:365. doi: 10.1186/1471-2164-13-365.
    doi: 10.1186/1471-2164-13-365pmc: PMC3443021pubmed: 22857264google scholar: lookup

Citations

This article has been cited 0 times.