Microbiology spectrum2023; 11(5); e0504822; doi: 10.1128/spectrum.05048-22

Kinetic, genomic, and physiological analysis reveals diversity in the ecological adaptation and metabolic potential of Brachybacterium equifaecis sp. nov. isolated from horse feces.

Abstract: Brachybacterium species have been identified in various ecological niches and belong to the family within the phylum . In this study, we isolated a novel JHP9 strain from horse feces and compared its kinetic, biochemical, and genomic features with those of other strains. Moreover, comparative genomic analysis using publicly available genomes was performed to determine the properties involved in their ecological adaptation and metabolic potential. Novel species delineation was determined phylogenetically through 16S rRNA gene similarity (up to 97.9%), average nucleotide identity (79.5-82.5%), average amino acid identity (66.7-75.8%), and DNA-DNA hybridization (23.7-27.9) using closely related strains. This study also presents the first report of the kinetic properties of species. Most of the strains displayed high oxygen ( =1.6-24.2 µM) and glucose ( =0.73-1.22 µM) affinities, which may manifest niche adaptations. Various carbohydrate metabolisms under aerobic and anaerobic conditions, antibiotic resistance, mobile genetic elements, carbohydrate-active enzymes, lactic acid production, and the clustered regularly interspaced short palindromic repeats-Cas and bacteriophage exclusion systems were observed in the genotypic and/or phenotypic properties of species, suggesting their genome flexibility, defense mechanisms, and adaptability. Our study contributes to the knowledge of the kinetic, physiological, and genomic properties of species, including the novel JHP9 strain, which advocates for their tolerant and thriving nature in various environments, leading to their ecological adaptation. IMPORTANCE Basic physiological and genomic properties of most of the isolates have been studied; however, the ability of this bacterium to adapt to diverse environments, which may demonstrate its role in niche differentiation, is to be identified yet. Therefore, here, we explored cellular kinetics, metabolic diversity, and ecological adaptation/defensive properties of the novel strain through physiological and comparative genomic analysis. In addition, we presented the first report examining kinetics, indicating that all strains of , including the novel one, have high oxygen and glucose affinity. Furthermore, the comparative genomic analysis also revealed that the novel bacterium contains versatile genomic properties, which provide the novel bacterium with significant competitive advantages. Thus, in-depth genotypic and phenotypic analysis with kinetic properties at the species level of this genus is beneficial in clarifying its differential characteristics, conferring the ability to inhabit diverse ecological niches.
Publication Date: 2023-09-14 PubMed ID: 37707449PubMed Central: PMC10581053DOI: 10.1128/spectrum.05048-22Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

The research article deals with the identification and study of a new strain of bacterium, Brachybacterium equifaecis sp. nov., found in horse feces, understanding its ecological adaptations, genetic features, and metabolic potential. The study also provides the debut reporting of kinetic properties of Brachybacterium species, with insights into their adaptability and defensive mechanisms.

Introduction

  • The research focuses on a newly isolated strain of Brachybacterium (JHP9) found in horse feces. Brachybacterium species have been found in several ecological niches but their adaptability to inhabit different environments is less explored.
  • The objective is to understand the bacterium’s kinetic, biochemical, genomic characteristics, and compare them with other Brachybacterium strains. Also, the ambition is to discover properties that help in their eco-adaptation and metabolic potential via genomic analysis.

Methodology

  • The study distinguishes the novel species through 16S rRNA gene similarity and other genetic benchmarks such as average nucleotide identity, average amino acid identity, and DNA-DNA hybridization with related strains.
  • A comparative genomic examination involving publicly available Brachybacterium genomes was carried out to understand their ecological adaptation and metabolic potential.

Findings

  • The novel species JHP9 and others revealed high oxygen and glucose affinities, indicating potential niche adaptations.
  • The researchers identified various properties through genotypic and/or phenotypic analysis that provided insights into their adaptability. These included different carbohydrate metabolic pathways under both aerobic and anaerobic conditions, resistance to antibiotics, presence of mobile genetic elements, and carbohydrate-active enzymes. Plus, attributes such as lactic acid production and defense mechanisms like the Clustered Regularly Interspaced Short Palindromic Repeats-Cas and bacteriophage exclusion systems were also noted.
  • These findings suggest significant genome flexibility in Brachybacterium species that equip them with defense mechanisms and adaptability, supporting their survival and growth in diverse environments.

Conclusion

  • The research enhances understanding about novel Brachybacterium equifaecis sp. nov. strain (JHP9) and the kinetic, physiological, and genomic properties of Brachybacterium species in general.
  • The newly discovered strain, along with the others, exhibit high affinities towards oxygen and glucose potentially aiding their environmental adaptation. Diverse genomic properties further provide these bacteria with competitive advantages.
  • Comprehensive genotypic and phenotypic analysis, along with kinetic properties at the species level, support the differential characteristics of Brachybacterium species that allow them to inhabit varied eco niches. Hence, this study provides a solid foundation for further ecological and microbiological analysis.

Cite This Article

APA
Farooq A, Lee M, Han S, Jung GY, Kim SJ, Jung MY. (2023). Kinetic, genomic, and physiological analysis reveals diversity in the ecological adaptation and metabolic potential of Brachybacterium equifaecis sp. nov. isolated from horse feces. Microbiol Spectr, 11(5), e0504822. https://doi.org/10.1128/spectrum.05048-22

Publication

ISSN: 2165-0497
NlmUniqueID: 101634614
Country: United States
Language: English
Volume: 11
Issue: 5
Pages: e0504822
PII: e05048-22

Researcher Affiliations

Farooq, Adeel
  • Research Institute for Basic Sciences (RIBS), Jeju National University , Jeju, South Korea.
Lee, Myunglip
  • Department of Marine Life Science, Jeju National University , Jeju, South Korea.
Han, Saem
  • Interdisciplinary Graduate Programme in Advance Convergence Technology and Science, Jeju National University , Jeju, South Korea.
Jung, Gi-Yong
  • Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources , Daejeon, South Korea.
  • Department of Biological Sciences and Biotechnology, Chungbuk National University , Cheongju, South Korea.
Kim, So-Jeong
  • Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources , Daejeon, South Korea.
Jung, Man-Young
  • Interdisciplinary Graduate Programme in Advance Convergence Technology and Science, Jeju National University , Jeju, South Korea.
  • Department of Science Education, Jeju National University , Jeju, South Korea.
  • Jeju Microbiome Center, Jeju National University , Jeju, South Korea.

Conflict of Interest Statement

The authors declare no conflict of interest.

References

This article includes 97 references
  1. Louca S, Mazel F, Doebeli M, Parfrey LW. 2019. A census-based estimate of earthu2019s bacterial and archaeal diversity. PLoS Biol 17:e3000106. doi:10.1371/journal.pbio.3000106
  2. Kauter A, Epping L, Semmler T, Antao E-M, Kannapin D, Stoeckle SD, Gehlen H, Lu00fcbke-Becker A, Gu00fcnther S, Wieler LH, Walther B. 2019. The gut microbiome of horses: current research on equine enteral microbiota and future perspectives. Anim Microbiome 1:14. doi:10.1186/s42523-019-0013-3
    doi: 10.1186/s42523-019-0013-3pmc: PMC7807895pubmed: 33499951google scholar: lookup
  3. Wunderlich G, Bull M, Ross T, Rose M, Chapman B. 2023. Understanding the microbial fibre degrading communities & processes in the equine gut. Anim Microbiome 5:3. doi:10.1186/s42523-022-00224-6
    doi: 10.1186/s42523-022-00224-6pmc: PMC9837927pubmed: 36635784google scholar: lookup
  4. Liu Y, Zhai L, Yao S, Cao Y, Cao Y, Zhang X, Su J, Ge Y, Zhao R, Cheng C. 2015. Brachybacterium hainanense sp. nov., isolated from noni (Morinda citrifolia L.) branch. Int J Syst Evol Microbiol 65:4196u20134201. doi:10.1099/ijsem.0.000559
    doi: 10.1099/ijsem.0.000559pubmed: 26311250google scholar: lookup
  5. Chang DH, Rhee MS, Kim BC. 2016. Dermabacter vaginalis sp. nov., isolated from human vaginal fluid. Int J Syst Evol Microbiol 66:1881u20131886. doi:10.1099/ijsem.0.000960
    doi: 10.1099/ijsem.0.000960pubmed: 26867728google scholar: lookup
  6. Park YK, Lee KM, Lee WK, Cho MJ, Lee HS, Cho YG, Lee YC, Lee WK, Seong WK, Hwang KJ. 2016. Dermabacter jinjuensis sp. nov., a novel species of the genus Dermabacter isolated from a clinical specimen. Int J Syst Evol Microbiol 66:2573u20132577. doi:10.1099/ijsem.0.001092
    doi: 10.1099/ijsem.0.001092pubmed: 27088668google scholar: lookup
  7. Tak EJ, Kim PS, Hyun D-W, Kim HS, Lee J-Y, Kang W, Sung H, Shin N-R, Kim M-S, Whon TW, Bae J-W. 2018. Phenotypic and genomic properties of Brachybacterium vulturis sp. nov. and Brachybacterium avium sp. nov. Front. Microbiol 9. doi:10.3389/fmicb.2018.01809
    doi: 10.3389/fmicb.2018.01809pmc: PMC6090031pubmed: 30131788google scholar: lookup
  8. Mekhalif F, Tidjani Alou M, Zgheib R, Lo CI, Fournier PE, Raoult D, Lagier JC. 2019. Brachybacterium massiliense sp. nov., a new bacterium isolated from stool from a healthy senegalese child. New Microbes New Infect 31:100588. doi:10.1016/j.nmni.2019.100588
    doi: 10.1016/j.nmni.2019.100588pmc: PMC6710231pubmed: 31463068google scholar: lookup
  9. Tamai K, Akashi Y, Yoshimoto Y, Yaguchi Y, Takeuchi Y, Shiigai M, Igarashi J, Hirose Y, Suzuki H, Ohkusu K. 2018. First case of a bloodstream infection caused by the genus Brachybacterium. J Infect Chemother 24:998u20131003. doi:10.1016/j.jiac.2018.06.005
    doi: 10.1016/j.jiac.2018.06.005pubmed: 30007866google scholar: lookup
  10. van Elsas JD, Semenov AV, Costa R, Trevors JT. 2011. Survival of Escherichia coli in the environment: fundamental and public health aspects. ISME J 5:173u2013183. doi:10.1038/ismej.2010.80
    doi: 10.1038/ismej.2010.80pmc: PMC3105702pubmed: 20574458google scholar: lookup
  11. Hibbing ME, Fuqua C, Parsek MR, Peterson SB. 2010. Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15u201325. doi:10.1038/nrmicro2259
    doi: 10.1038/nrmicro2259pmc: PMC2879262pubmed: 19946288google scholar: lookup
  12. Chou JH, Lin KY, Lin MC, Sheu SY, Wei YH, Arun AB, Young CC, Chen WM. 2007. Brachybacterium phenoliresistens sp. nov., isolated from oil-contaminated coastal sand. Int J Syst Evol Microbiol 57:2674u20132679. doi:10.1099/ijs.0.65019-0
    doi: 10.1099/ijs.0.65019-0pubmed: 17978239google scholar: lookup
  13. Hlaing PPT, Junqueira ACM, Uchida A, Purbojati RW, Houghton JNI, Chu00e9nard C, Wong A, Clare ME, Kushwaha KK, Putra A, Kee C, Gaultier NE, Premkrishnan BNV, Heinle CE, Lim SBY, Vettah VK, Drautz-Moses DI, Schuster SC. 2019. Complete genome sequence of Brachybacterium sp. Strain SGAir0954, isolated from Singapore air. Microbiol Resour Announc 8:e00619-19. doi:10.1128/MRA.00619-19
    doi: 10.1128/MRA.00619-19pmc: PMC6687925pubmed: 31395638google scholar: lookup
  14. Ming H, Cheng LJ, Yi BF, Xia TT, Niu MM, Zhao ZY, Liu BB, Nie GX, Cui CX. 2021. Brachybacterium subflavum sp. nov., a novel actinobacterium isolated from the foregut of grass carp. Int J Syst Evol Microbiol 71. doi:10.1099/ijsem.0.004839
    doi: 10.1099/ijsem.0.004839pubmed: 34170217google scholar: lookup
  15. Jung M-Y, Sedlacek CJ, Kits KD, Mueller AJ, Rhee S-K, Hink L, Nicol GW, Bayer B, Lehtovirta-Morley L, Wright C, de la Torre JR, Herbold CW, Pjevac P, Daims H, Wagner M. 2022. Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. ISME J 16:272u2013283. doi:10.1038/s41396-021-01064-z
    doi: 10.1038/s41396-021-01064-zpmc: PMC8692354pubmed: 34316016google scholar: lookup
  16. Ciufo S, Kannan S, Sharma S, Badretdin A, Clark K, Turner S, Brover S, Schoch CL, Kimchi A, DiCuccio M. 2018. Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int J Syst Evol Microbiol 68:2386u20132392.
    pmc: PMC6978984pubmed: 29792589
  17. Meier-Kolthoff JP, Auch AF, Klenk HP, Gu00f6ker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60. doi:10.1186/1471-2105-14-60
    doi: 10.1186/1471-2105-14-60pmc: PMC3665452pubmed: 23432962google scholar: lookup
  18. Konstantinidis KT, Tiedje JM. 2005. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258u20136264. doi:10.1128/JB.187.18.6258-6264.2005
  19. Medlar AJ, Tu00f6ru00f6nen P, Holm L. 2018. AAI-profiler: fast proteome-wide exploratory analysis reveals taxonomic identity, misclassification and contamination. Nucleic Acids Res 46:W479u2013W485. doi:10.1093/nar/gky359
    doi: 10.1093/nar/gky359pmc: PMC6030964pubmed: 29762724google scholar: lookup
  20. Gvozdyak OR, Nogina TM, Schumann P. 1992. Taxonomic study of the genus Brachybacterium: Brachybacterium nesterenkovii sp. nov. Int J Syst Bacteriol 42:74u201378. doi:10.1099/00207713-42-1-74
    doi: 10.1099/00207713-42-1-74pubmed: 1736971google scholar: lookup
  21. Leyn SA, Maezato Y, Romine MF, Rodionov DA. 2017. Genomic reconstruction of carbohydrate utilization capacities in microbial-mat derived consortia. Front Microbiol 8:1304. doi:10.3389/fmicb.2017.01304
    doi: 10.3389/fmicb.2017.01304pmc: PMC5507952pubmed: 28751880google scholar: lookup
  22. Stolper DA, Revsbech NP, Canfield DE. 2010. Aerobic growth at nanomolar oxygen concentrations. Proc Natl Acad Sci U S A 107:18755u201318760. doi:10.1073/pnas.1013435107
    doi: 10.1073/pnas.1013435107pmc: PMC2973883pubmed: 20974919google scholar: lookup
  23. Bodelier PLE, Laanbroek HJ. 1997. Oxygen uptake kinetics of Pseudomonas chlororaphis grown in glucose- or glutamate-limited continuous cultures. Arch Microbiol 167:392u2013395. doi:10.1007/s002030050460
    doi: 10.1007/s002030050460google scholar: lookup
  24. Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA. 2009. Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria. Nature 461:976u2013979. doi:10.1038/nature08465
    doi: 10.1038/nature08465pubmed: 19794413google scholar: lookup
  25. Cox RP, Marling N. 1992. High-affinity oxygen uptake by Bifidobacterium bifidum. Antonie Van Leeuwenhoek 62:291u2013297. doi:10.1007/BF00572597
    doi: 10.1007/BF00572597pubmed: 1285646google scholar: lookup
  26. Hardin G. 1960. The competitive exclusion principle. Science 131:1292u20131297. doi:10.1126/science.131.3409.1292
    doi: 10.1126/science.131.3409.1292pubmed: 14399717google scholar: lookup
  27. Abbott DW, van Bueren AL. 2014. Using structure to inform carbohydrate binding module function. Curr Opin Struct Biol 28:32u201340. doi:10.1016/j.sbi.2014.07.004
    doi: 10.1016/j.sbi.2014.07.004pubmed: 25108190google scholar: lookup
  28. Munir RI, Schellenberg J, Henrissat B, Verbeke TJ, Sparling R, Levin DB. 2014. Comparative analysis of carbohydrate active enzymes in clostridium termitidis CT1112 reveals complex carbohydrate degradation ability. PLoS One 9:e104260. doi:10.1371/journal.pone.0104260
  29. Yao T, Chen M-H, Lindemann SR. 2020. Structurally complex carbohydrates maintain diversity in gut-derived microbial consortia under high dilution pressure. FEMS Microbiol Ecol 96:fiaa158. doi:10.1093/femsec/fiaa158
    doi: 10.1093/femsec/fiaa158pubmed: 32815998google scholar: lookup
  30. Singhvi M, Zendo T, Sonomoto K. 2018. Free lactic acid production under acidic conditions by lactic acid bacteria strains: challenges and future prospects. Appl Microbiol Biotechnol 102:5911u20135924. doi:10.1007/s00253-018-9092-4
    doi: 10.1007/s00253-018-9092-4pubmed: 29804138google scholar: lookup
  31. George F, Daniel C, Thomas M, Singer E, Guilbaud A, Tessier FJ, Revol-Junelles AM, Borges F, Folignu00e9 B. 2018. Occurrence and dynamism of lactic acid bacteria in distinct ecological niches: a multifaceted functional health perspective. Front Microbiol 9:2899. doi:10.3389/fmicb.2018.02899
    doi: 10.3389/fmicb.2018.02899pmc: PMC6277688pubmed: 30538693google scholar: lookup
  32. Abedi E, Hashemi SMB. 2020. Lactic acid productionu2013producing microorganisms and substrates sources-state of art. Heliyon 6:e04974. doi:10.1016/j.heliyon.2020.e04974
  33. Montero-Zamora J, Fernu00e1ndez-Fernu00e1ndez S, Redondo-Solano M, Mazu00f3n-Villegas B, Mora-Villalobos JA, Barboza N. 2022. Assessment of different lactic acid bacteria isolated from agro-industrial residues: first report of the potential role of Weissella soli for lactic acid production from milk whey. Appl Microbiol 2:626u2013635. doi:10.3390/applmicrobiol2030048
  34. Liu Y, Xie QY, Shi W, Li L, An JY, Zhao YM, Hong K. 2014. Brachybacterium huguangmaarense sp. nov., isolated from lake sediment. Int J Syst Evol Microbiol 64:1673u20131678. doi:10.1099/ijs.0.052464-0
    doi: 10.1099/ijs.0.052464-0pubmed: 24532648google scholar: lookup
  35. Esposti MD. 2020. On the evolution of cytochrome oxidases consuming oxygen. Biochim Biophys Acta Bioenerg 1861:148304. doi:10.1016/j.bbabio.2020.148304
    doi: 10.1016/j.bbabio.2020.148304pubmed: 32890468google scholar: lookup
  36. Rice CW, Hempfling WP. 1978. Oxygen-limited continuous culture and respiratory energy conservation in Escherichia coli. J Bacteriol 134:115u2013124. doi:10.1128/jb.134.1.115-124.1978
    doi: 10.1128/jb.134.1.115-124.1978pmc: PMC222225pubmed: 25879google scholar: lookup
  37. Du2019Mello R, Hill S, Poole RK. 1995. The oxygen affinity of cytochrome bo' in Escherichia coli determined by the deoxygenation of oxyleghemoglobin and oxymyoglobin: km values for oxygen are in the submicromolar range. J Bacteriol 177:867u2013870. doi:10.1128/jb.177.3.867-870.1995
    doi: 10.1128/jb.177.3.867-870.1995pmc: PMC176676pubmed: 7836332google scholar: lookup
  38. Jahreis K, Pimentel-Schmitt EF, Bru00fcckner R, Titgemeyer F. 2008. Ins and outs of glucose transport systems in eubacteria. FEMS Microbiol Rev 32:891u2013907. doi:10.1111/j.1574-6976.2008.00125.x
  39. Button DK. 1991. Biochemical basis for whole-cell uptake kinetics: specific affinity, oligotrophic capacity, and the meaning of the michaelis constant. Appl Environ Microbiol 57:2033u20132038. doi:10.1128/aem.57.7.2033-2038.1991
  40. Ishida Y, Imai I, Miyagaki T, Kadota H. 1982. Growth and uptake kinetics of a facultatively oligotrophic bacterium at low nutrient concentrations. Microb Ecol 8:23u201332. doi:10.1007/BF02011458
    doi: 10.1007/BF02011458pubmed: 24225695google scholar: lookup
  41. Martens-Habbena W, Stahl DA. 2011. Nitrogen metabolism and kinetics of ammonia-oxidizing archaea. Methods Enzymol 496:465u2013487. doi:10.1016/B978-0-12-386489-5.00019-1
  42. Corona F, Martinez JL. 2013. Phenotypic resistance to antibiotics. Antibiotics (Basel) 2:237u2013255. doi:10.3390/antibiotics2020237
    doi: 10.3390/antibiotics2020237pmc: PMC4790337pubmed: 27029301google scholar: lookup
  43. Depardieu F, Podglajen I, Leclercq R, Collatz E, Courvalin P. 2007. Modes and modulations of antibiotic resistance gene expression. Clin Microbiol Rev 20:79u2013114. doi:10.1128/CMR.00015-06
    doi: 10.1128/CMR.00015-06pmc: PMC1797629pubmed: 17223624google scholar: lookup
  44. Hughes D, Andersson DI. 2017. Environmental and genetic modulation of the phenotypic expression of antibiotic resistance. FEMS Microbiol Rev 41:374u2013391. doi:10.1093/femsre/fux004
    doi: 10.1093/femsre/fux004pmc: PMC5435765pubmed: 28333270google scholar: lookup
  45. Murata K, Ozawa K, Kawakami H, Mochizuki K, Ohkusu K. 2020. Brachybacterium paraconglomeratum endophthalmitis postcataract operation. Case Rep Ophthalmol Med 2020:1513069. doi:10.1155/2020/1513069
    doi: 10.1155/2020/1513069pmc: PMC7091523pubmed: 32231828google scholar: lookup
  46. Tian M, He X, Feng Y, Wang W, Chen H, Gong M, Liu D, Clarke JL, van Eerde A. 2021. Pollution by antibiotics and antimicrobial resistance in livestock and poultry manure in China, and countermeasures. Antibiotics (Basel) 10:539. doi:10.3390/antibiotics10050539
    doi: 10.3390/antibiotics10050539pmc: PMC8148549pubmed: 34066587google scholar: lookup
  47. Goldfarb T, Sberro H, Weinstock E, Cohen O, Doron S, Charpak-Amikam Y, Afik S, Ofir G, Sorek R. 2015. BREX is a novel phage resistance system widespread in microbial genomes. EMBO J 34:169u2013183. doi:10.15252/embj.201489455
    doi: 10.15252/embj.201489455pmc: PMC4337064pubmed: 25452498google scholar: lookup
  48. Hille F, Charpentier E. 2016. CRISPR-Cas: biology, mechanisms and relevance. Philos Trans R Soc Lond B Biol Sci 371:20150496. doi:10.1098/rstb.2015.0496
    doi: 10.1098/rstb.2015.0496pmc: PMC5052741pubmed: 27672148google scholar: lookup
  49. Mat Razali N, Cheah BH, Nadarajah K. 2019. Transposable elements adaptive role in genome plasticity, pathogenicity and evolution in fungal phytopathogens. Int J Mol Sci 20:3597. doi:10.3390/ijms20143597
    doi: 10.3390/ijms20143597pmc: PMC6679389pubmed: 31340492google scholar: lookup
  50. Fan C, Wu Y-H, Decker CM, Rohani R, Gesell Salazar M, Ye H, Cui Z, Schmidt F, Huang WE. 2019. Defensive function of transposable elements in bacteria. ACS Synth Biol 8:2141u20132151. doi:10.1021/acssynbio.9b00218
    doi: 10.1021/acssynbio.9b00218pubmed: 31375026google scholar: lookup
  51. Farooq A, Kim J, Raza S, Jang J, Han D, Sadowsky MJ, Unno T. 2021. A hybrid DNA sequencing approach is needed to properly link genotype to phenotype in multi-drug resistant bacteria. Environ Pollut 289:117856. doi:10.1016/j.envpol.2021.117856
    doi: 10.1016/j.envpol.2021.117856pubmed: 34330011google scholar: lookup
  52. Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. 2011. The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta Bioenerg 1807:1398u20131413. doi:10.1016/j.bbabio.2011.06.016
  53. Du2019mello R, Hill S, Poole RK. 1996. The cytochrome bd quinol oxidase in Escherichia coli has an extremely high oxygen affinity and two oxygen-binding haems: implications for regulation of activity in vivo by oxygen inhibition. Microbiology (Reading) 142 (Pt 4):755u2013763. doi:10.1099/00221287-142-4-755
    doi: 10.1099/00221287-142-4-755pubmed: 8936304google scholar: lookup
  54. Bottacini F, Milani C, Turroni F, Su00e1nchez B, Foroni E, Duranti S, Serafini F, Viappiani A, Strati F, Ferrarini A, Delledonne M, Henrissat B, Coutinho P, Fitzgerald GF, Margolles A, van Sinderen D, Ventura M. 2012. Bifidobacterium asteroides PRL2011 genome analysis reveals clues for colonization of the insect gut. PLoS One 7:e44229. doi:10.1371/journal.pone.0044229
  55. Gong X, Garcia-Robledo E, Schramm A, Revsbech NP. 2015. Respiratory kinetics of marine bacteria exposed to decreasing oxygen concentrations. Appl Environ Microbiol 82:1412u20131422. doi:10.1128/AEM.03669-15
    doi: 10.1128/AEM.03669-15pmc: PMC4771329pubmed: 26682857google scholar: lookup
  56. Passalacqua KD, Charbonneau M-E, Ou2019Riordan MXD. 2016. Bacterial metabolism shapes the host-pathogen interface. Microbiol Spectr 4. doi:10.1128/microbiolspec.VMBF-0027-2015
  57. Woodcock DJ, Krusche P, Strachan NJC, Forbes KJ, Cohan FM, Mu00e9ric G, Sheppard SK. 2017. Genomic plasticity and rapid host switching can promote the evolution of generalism: a case study in the zoonotic pathogen Campylobacter. Sci Rep 7:9650. doi:10.1038/s41598-017-09483-9
    doi: 10.1038/s41598-017-09483-9pmc: PMC5575054pubmed: 28851932google scholar: lookup
  58. Hassan L. 2014. Emerging Zoonoses in domesticated livestock of Southeast Asia. 2nd ed. Elsvier, Amsterdam, AM.
  59. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697u2013703. doi:10.1128/jb.173.2.697-703.1991
    doi: 10.1128/jb.173.2.697-703.1991pmc: PMC207061pubmed: 1987160google scholar: lookup
  60. Alzohairy A. 2011. BioEdit: an important software for molecular biology. GERF bull biosci 2:60u201361.
  61. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glu00f6ckner FO. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188u20137196. doi:10.1093/nar/gkm864
    doi: 10.1093/nar/gkm864pmc: PMC2175337pubmed: 17947321google scholar: lookup
  62. Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022u20133027. doi:10.1093/molbev/msab120
    doi: 10.1093/molbev/msab120pmc: PMC8233496pubmed: 33892491google scholar: lookup
  63. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111u2013120. doi:10.1007/BF01731581
    doi: 10.1007/BF01731581pubmed: 7463489google scholar: lookup
  64. Taylor WI, Achanzar D. 1972. Catalase test as an aid to the identification of enterobacteriaceae . Appl Microbiol 24:58u201361. doi:10.1128/am.24.1.58-61.1972
    doi: 10.1128/am.24.1.58-61.1972pmc: PMC380547pubmed: 4560474google scholar: lookup
  65. Tarrand JJ, Gru00f6schel DH. 1982. Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 16:772u2013774. doi:10.1128/jcm.16.4.772-774.1982
    doi: 10.1128/jcm.16.4.772-774.1982pmc: PMC272470pubmed: 7153330google scholar: lookup
  66. Hanson A. 2008. Oxidative-Fermentative test protocol. ASM press, Washington, DC.
  67. Gordon RE, Smith MM. 1953. Rapidly growing, acid fast bacteria. I. species' descriptions of Mycobacterium phlei lehmann and neumann and Mycobacterium smegmatis (trevisan) lehmann and neumann. J Bacteriol 66:41u201348. doi:10.1128/jb.66.1.41-48.1953
    doi: 10.1128/jb.66.1.41-48.1953pmc: PMC357089pubmed: 13069464google scholar: lookup
  68. Holding A, Collee J. 1971. Chapter I routine biochemical tests, p 1u201332. In Methods in microbiology. Elsevier, Amsterdam, AM.
  69. de Fu00e1tima Silva Lopes M, Ribeiro T, Abrantes M, Figueiredo Marques JJ, Tenreiro R, Crespo MTB. 2005. Antimicrobial resistance profiles of dairy and clinical isolates and type strains of enterococci. Int J Food Microbiol 103:191u2013198. doi:10.1016/j.ijfoodmicro.2004.12.025
  70. Cummins CS, Harris H. 1956. The chemical composition of the cell wall in some gram-positive bacteria and its possible value as a taxonomic character. J Gen Microbiol 14:583u2013600. doi:10.1099/00221287-14-3-583
    doi: 10.1099/00221287-14-3-583pubmed: 13346020google scholar: lookup
  71. Sasser M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids, In MIDI technical NOTE 101. MIDI inc, Newark, DE.
  72. Schleifer K, Seidl P, Goodfellow M, Minnikin D. 1985. Chemical methods in bacterial systematics. The Society for Applied Bacteriology, London.
  73. Hiraishi A, Ueda Y, Ishihara J, Mori T. 1996. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457u2013469. doi:10.2323/jgam.42.457
    doi: 10.2323/jgam.42.457google scholar: lookup
  74. Collins MD, Jones D. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45:316u2013354. doi:10.1128/mr.45.2.316-354.1981
    doi: 10.1128/mr.45.2.316-354.1981pmc: PMC281511pubmed: 7022156google scholar: lookup
  75. Lee M, Farooq A, Jung M-Y, Kim S-J. 2022. Draft genome sequence of Brachybacterium sp. JHP9 isolated from horse feces in Jeju Island. Korean J Microbiol 58:102u2013104.
  76. Chen S, Zhou Y, Chen Y, Gu J. 2018. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884u2013i890. doi:10.1093/bioinformatics/bty560
  77. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. 2020. Using spades de novo assembler. Curr Protoc Bioinformatics 70:e102. doi:10.1002/cpbi.102
    doi: 10.1002/cpbi.102pubmed: 32559359google scholar: lookup
  78. Simu00e3o FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210u20133212. doi:10.1093/bioinformatics/btv351
    doi: 10.1093/bioinformatics/btv351pubmed: 26059717google scholar: lookup
  79. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068u20132069. doi:10.1093/bioinformatics/btu153
    doi: 10.1093/bioinformatics/btu153pubmed: 24642063google scholar: lookup
  80. Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, Finn RD, Bateman A. 2021. Pfam: the protein families database in 2021. Nucleic Acids Res 49:D412u2013D419. doi:10.1093/nar/gkaa913
    doi: 10.1093/nar/gkaa913pmc: PMC7779014pubmed: 33125078google scholar: lookup
  81. Park BH, Karpinets TV, Syed MH, Leuze MR, Uberbacher EC. 2010. CAZymes analysis toolkit (CAT): web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database. Glycobiology 20:1574u20131584. doi:10.1093/glycob/cwq106
    doi: 10.1093/glycob/cwq106pubmed: 20696711google scholar: lookup
  82. Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. 2012. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40:W445u2013W451. doi:10.1093/nar/gks479
    doi: 10.1093/nar/gks479pmc: PMC3394287pubmed: 22645317google scholar: lookup
  83. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, Weber T. 2021. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 49:W29u2013W35. doi:10.1093/nar/gkab335
    doi: 10.1093/nar/gkab335pmc: PMC8262755pubmed: 33978755google scholar: lookup
  84. Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ, Tolstoy I, Tyson GH, Zhao S, Hsu C-H, McDermott PF, Tadesse DA, Morales C, Simmons M, Tillman G, Wasilenko J, Folster JP, Klimke W. 2019. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob Agents Chemother 63:e00483-19. doi:10.1128/AAC.00483-19
    doi: 10.1128/AAC.00483-19pmc: PMC6811410pubmed: 31427293google scholar: lookup
  85. Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q. 2005. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 33:D325u2013D328. doi:10.1093/nar/gki008
    doi: 10.1093/nar/gki008pmc: PMC539962pubmed: 15608208google scholar: lookup
  86. Xie Z, Tang H, Hancock J. 2017. ISEScan: automated identification of insertion sequence elements in prokaryotic genomes. Bioinformatics 33:3340u20133347. doi:10.1093/bioinformatics/btx433
    doi: 10.1093/bioinformatics/btx433pubmed: 29077810google scholar: lookup
  87. Sohrab V, Lu00f3pez-Du00edaz C, Di Pietro A, Ma L-J, Ayhan DH. 2021. TEfinder: a bioinformatics pipeline for detecting new transposable element insertion events in next-generation sequencing data. Genes (Basel) 12:224. doi:10.3390/genes12020224
    doi: 10.3390/genes12020224pmc: PMC7914406pubmed: 33557410google scholar: lookup
  88. Collins AJ, Whitaker RJ. 2022. CRISPR comparison toolkit (CCTK): rapid identification, visualization, and analysis of CRISPR array diversity. bioRxiv. doi:10.1101/2022.07.31.502198
    doi: 10.1101/2022.07.31.502198pmc: PMC10457644pubmed: 37459160google scholar: lookup
  89. Akhter S, Aziz RK, Edwards RA. 2012. Phispy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucleic Acids Res 40:e126. doi:10.1093/nar/gks406
    doi: 10.1093/nar/gks406pmc: PMC3439882pubmed: 22584627google scholar: lookup
  90. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. 2017. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353u2013D361. doi:10.1093/nar/gkw1092
    doi: 10.1093/nar/gkw1092pmc: PMC5210567pubmed: 27899662google scholar: lookup
  91. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 9:5114. doi:10.1038/s41467-018-07641-9
    doi: 10.1038/s41467-018-07641-9pmc: PMC6269478pubmed: 30504855google scholar: lookup
  92. Chaudhari NM, Gupta VK, Dutta C. 2016. BPGA- an ultra-fast pan-genome analysis pipeline. Sci Rep 6:24373. doi:10.1038/srep24373
    doi: 10.1038/srep24373pmc: PMC4829868pubmed: 27071527google scholar: lookup
  93. Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460u20132461. doi:10.1093/bioinformatics/btq461
    doi: 10.1093/bioinformatics/btq461pubmed: 20709691google scholar: lookup
  94. Pruitt KD, Tatusova T, Maglott DR. 2005. NCBI reference sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 33:D501u2013D504. doi:10.1093/nar/gki025
    doi: 10.1093/nar/gki025pmc: PMC539979pubmed: 15608248google scholar: lookup
  95. Xu Z, Hao B. 2009. CVTree update: a newly designed phylogenetic study platform using composition vectors and whole genomes. Nucleic Acids Res 37:W174u2013W178. doi:10.1093/nar/gkp278
    doi: 10.1093/nar/gkp278pmc: PMC2703908pubmed: 19398429google scholar: lookup
  96. Letunic I, Bork P. 2021. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49:W293u2013W296. doi:10.1093/nar/gkab301
    doi: 10.1093/nar/gkab301pmc: PMC8265157pubmed: 33885785google scholar: lookup
  97. Jung M-Y, Well R, Min D, Giesemann A, Park S-J, Kim J-G, Kim S-J, Rhee S-K. 2014. Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils. ISME J 8:1115u20131125. doi:10.1038/ismej.2013.205
    doi: 10.1038/ismej.2013.205pmc: PMC3996685pubmed: 24225887google scholar: lookup

Citations

This article has been cited 0 times.