Integrated analysis of gut metabolome, microbiome, and exfoliome data in an equine model of intestinal injury.
Abstract: The equine gastrointestinal (GI) microbiome has been described in the context of various diseases. The observed changes, however, have not been linked to host function and therefore it remains unclear how specific changes in the microbiome alter cellular and molecular pathways within the GI tract. Further, non-invasive techniques to examine the host gene expression profile of the GI mucosa have been described in horses but not evaluated in response to interventions. Therefore, the objectives of our study were to (1) profile gene expression and metabolomic changes in an equine model of non-steroidal anti-inflammatory drug (NSAID)-induced intestinal inflammation and (2) apply computational data integration methods to examine host-microbiota interactions. Methods: Twenty horses were randomly assigned to 1 of 2 groups (n = 10): control (placebo paste) or NSAID (phenylbutazone 4.4 mg/kg orally once daily for 9 days). Fecal samples were collected on days 0 and 10 and analyzed with respect to microbiota (16S rDNA gene sequencing), metabolomic (untargeted metabolites), and host exfoliated cell transcriptomic (exfoliome) changes. Data were analyzed and integrated using a variety of computational techniques, and underlying regulatory mechanisms were inferred from features that were commonly identified by all computational approaches. Results: Phenylbutazone induced alterations in the microbiota, metabolome, and host transcriptome. Data integration identified correlation of specific bacterial genera with expression of several genes and metabolites that were linked to oxidative stress. Concomitant microbiota and metabolite changes resulted in the initiation of endoplasmic reticulum stress and unfolded protein response within the intestinal mucosa. Conclusions: Results of integrative analysis identified an important role for oxidative stress, and subsequent cell signaling responses, in a large animal model of GI inflammation. The computational approaches for combining non-invasive platforms for unbiased assessment of host GI responses (e.g., exfoliomics) with metabolomic and microbiota changes have broad application for the field of gastroenterology. Video Abstract.
© 2024. The Author(s).
Publication Date: 2024-04-15 PubMed ID: 38622632PubMed Central: 6314516DOI: 10.1186/s40168-024-01785-1Google Scholar: Lookup The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
- Journal Article
Summary
This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.
This research investigates how changes in the gastrointestinal (GI) microbiome in horses affect the cellular and molecular activities within the GI tract, specifically in the context of intestinal inflammation induced by non-steroidal anti-inflammatory drugs (NSAIDs). The study found that NSAIDs cause alterations in the microbiome, metabolome, and host gene expression, and these changes are linked to oxidative stress and subsequent cell signalling responses.
Objective and Methods of the Study
- The main goal of this research was to study how gene expression and metabolomic changes are affected in horses by consumption of NSAIDs, and how this impacts the host-microbiota interactions.
- Twenty horses were randomly assigned to either a control group receiving a placebo or a second group receiving the NSAID named phenylbutazone. There were 10 horses in each group.
- The NSAID was orally administered once daily at a dose of 4.4 mg/kg for 9 days.
- Fecal samples were collected on the first and tenth days, and assessed for microbiota, metabolomic, and host exfoliated cell transcriptomic (exfoliome) changes.
- The Big Data collected from these samples were analyzed and integrated using various computational techniques. The regulatory mechanisms behind the NSAID-induced changes were inferred from features commonly identified by all computational methods.
Results of the Study
- The results showed that phenylbutazone, the NSAID used in the study, caused significant transformations in the microbiota, metabolome, and host transcriptome of the horses.
- A thorough data integration revealed relationships between specific bacterial genera with the expression of genes and metabolites associated with oxidative stress.
- This simultaneous change in microbiota and metabolites led to endoplasmic reticulum stress and unfolded protein response within the horse’s intestinal mucosa, which are typical cellular responses to dysfunction or damage.
Conclusions and Implications
- Overall, through integrated analysis, the study revealed that oxidative stress and subsequent cellular signaling responses play a critical role in GI inflammation in a large animal model like horses.
- The computational techniques used for data integration in this study, which combines exfoliomics, metabolomics, and microbiota changes, are proposed to have broad application in the field of gastroenterology.
- This work will undoubtedly enhance our understanding of gastrointestinal diseases and help improve therapeutic strategies.
Cite This Article
APA
Whitfield-Cargile CM, Chung HC, Coleman MC, Cohen ND, Chamoun-Emanuelli AM, Ivanov I, Goldsby JS, Davidson LA, Gaynanova I, Ni Y, Chapkin RS.
(2024).
Integrated analysis of gut metabolome, microbiome, and exfoliome data in an equine model of intestinal injury.
Microbiome, 12(1), 74.
https://doi.org/10.1186/s40168-024-01785-1 Publication
Researcher Affiliations
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA. wcana@uga.edu.
- Department of Statistics, College of Arts & Sciences, Texas A&M University, College Station, TX, USA.
- Mathematics & Statistics Department, College of Science, University of North Carolina Charlotte, Charlotte, NC, USA.
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA.
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA.
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA.
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA.
- Program in Integrative Nutrition & Complex Diseases, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA.
- Program in Integrative Nutrition & Complex Diseases, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA.
- Department of Statistics, College of Arts & Sciences, Texas A&M University, College Station, TX, USA.
- Department of Statistics, College of Arts & Sciences, Texas A&M University, College Station, TX, USA.
- Program in Integrative Nutrition & Complex Diseases, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA.
Grant Funding
- P30-ES029067 / NIH HHS
- R35-CA197707 / NIH HHS
References
This article includes 91 references
- Argenzio RA, Southworth M, Stevens CE. Sites of organic acid production and absorption in the equine gastrointestinal tract. Am J Physiol. 1974;226(5):1043u201350.
- Glinsky MJ, Smith RM, Spires HR, Davis CL. Measurement of volatile fatty acid production rates in the cecum of the pony. J Anim Sci. 1976;42(6):1465u201370.
- Durack J, Lynch SV. The gut microbiome: relationships with disease and opportunities for therapy. J Exp Med. 2019;216(1):20u201340. https://doi.org/10.1084/jem.20180448 .
- Barko PC, McMichael MA, Swanson KS, Williams DA. The gastrointestinal microbiome: a review. J Vet Intern Med. 2018;32(1):9u201325. https://doi.org/10.1111/jvim.14875 .
- Whitfield-Cargile CM, Cohen ND, He K, Ivanov I, Goldsby JS, Chamoun-Emanuelli A, et al. The non-invasive exfoliated transcriptome (exfoliome) reflects the tissue-level transcriptome in a mouse model of NSAID enteropathy. Sci Rep. 2017;7(1):14687. https://doi.org/10.1038/s41598-017-13999-5 .
- Yoon G, Davidson LA, Goldsby JS, Mullens DA, Ivanov I, Donovan SM, et al. Exfoliated epithelial cell transcriptome reflects both small and large intestinal cell signatures in piglets. Am J Physiol Gastrointest Liver Physiol. 2021;321(1):41u201351. https://doi.org/10.1152/ajpgi.00017.2021 .
- Lampe JW, Kim E, Levy L, Davidson LA, Goldsby JS, Miles FL, et al. Colonic mucosal and exfoliome transcriptomic profiling and fecal microbiome response to a flaxseed lignan extract intervention in humans. Am J Clin Nutr. 2019;110(2):377u201390. https://doi.org/10.1093/ajcn/nqy325 .
- He K, Donovan SM, Ivanov IV, Goldsby JS, Davidson LA, Chapkin RS. Assessing the multivariate relationship between the human infant intestinal exfoliated cell transcriptome (exfoliome) and microbiome in response to diet. Microorganisms. 2020;8(12). https://doi.org/10.3390/microorganisms8122032 .
- Coleman MC, Whitfield-Cargile C, Cohen ND, Goldsby JL, Davidson L, Chamoun-Emanuelli AM, et al. Non-invasive evaluation of the equine gastrointestinal mucosal transcriptome. PLoS ONE. 2020;15(3):e0229797. https://doi.org/10.1371/journal.pone.0229797 .
- Graham DY, Opekun AR, Willingham FF, Qureshi WA. Visible small-intestinal mucosal injury in chronic NSAID users. Clin Gastroenterol Hepatol. 2005;3(1):55u20139. https://doi.org/10.1016/s1542-3565(04)00603-2 .
- Koga H, Aoyagi K, Matsumoto T, Iida M, Fujishima M. Experimental enteropathy in athymic and euthymic rats: synergistic role of lipopolysaccharide and indomethacin. Am J Physiol. 1999;276(3):G576u201382. https://doi.org/10.1152/ajpgi.1999.276.3.G576 .
- Beck PL, Xavier R, Lu N, Nanda NN, Dinauer M, Podolsky DK, et al. Mechanisms of NSAID-induced gastrointestinal injury defined using mutant mice. Gastroenterology. 2000;119(3):699u2013705. https://doi.org/10.1053/gast.2000.16497 .
- Uejima M, Kinouchi T, Kataoka K, Hiraoka I, Ohnishi Y. Role of intestinal bacteria in ileal ulcer formation in rats treated with a nonsteroidal antiinflammatory drug. Microbiol Immunol. 1996;40(8):553u201360. https://doi.org/10.1111/j.1348-0421.1996.tb01108.x .
- Tachecu00ed I, Kvetina J, Bures J, Osterreicher J, Kunes M, Pejchal J, et al. Wireless capsule endoscopy in enteropathy induced by nonsteroidal anti-inflammatory drugs in pigs. Dig Dis Sci. 2010;55(9):2471u20137. https://doi.org/10.1007/s10620-009-1066-z .
- Maseda D, Ricciotti E. NSAID-gut microbiota interactions. Front Pharmacol. 2020;11:1153. https://doi.org/10.3389/fphar.2020.01153 .
- Whitfield-Cargile CM, Cohen ND, Chapkin RS, Weeks BR, Davidson LA, Goldsby JS, et al. The microbiota-derived metabolite indole decreases mucosal inflammation and injury in a murine model of NSAID enteropathy. Gut Microbes. 2016;7(3):246u201361. https://doi.org/10.1080/19490976.2016.1156827 .
- Richardson LM, Whitfield-Cargile CM, Cohen ND, Chamoun-Emanuelli AM, Dockery HJ. Effect of selective versus nonselective cyclooxygenase inhibitors on gastric ulceration scores and intestinal inflammation in horses. Vet Surg. 2018;47(6):784u201391. https://doi.org/10.1111/vsu.12941 .
- Whitfield-Cargile CM, Coleman MC, Cohen ND, Chamoun-Emanuelli AM, DeSolis CN, Tetrault T, et al. Effects of phenylbutazone alone or in combination with a nutritional therapeutic on gastric ulcers, intestinal permeability, and fecal microbiota in horses. J Vet Intern Med. 2021;35(2):1121u201330. https://doi.org/10.1111/jvim.16093 .
- Whitfield-Cargile CM, Chamoun-Emanuelli AM, Cohen ND, Richardson LM, Ajami NJ, Dockery HJ. Differential effects of selective and non-selective cyclooxygenase inhibitors on fecal microbiota in adult horses. PLoS ONE. 2018;13(8):e0202527-e. https://doi.org/10.1371/journal.pone.0202527 .
- National Animal Health Monitoring System (NAHMS) part I: baseline reference of 1998 equine health and management, N280.898. United States Department of Agriculture; 1998.u00a0 http://www.aphis.usda.gov/vs/ceah/cahm .
- Konietschke F, Schwab K, Pauly M. Small sample sizes: a big data problem in high-dimensional data analysis. Stat Methods Med Res. 2021;30(3):687u2013701. https://doi.org/10.1177/0962280220970228 .
- Hu HH, MacAllister CG, Payton ME, Erkert RS. Evaluation of the analgesic effects of phenylbutazone administered at a high or low dosage in horses with chronic lameness. J Am Vet Med Assoc. 2005;226(3):414u20137.
- Orsini JA, Ryan WG, Carithers DS, Boston RC. Evaluation of oral administration of firocoxib for the management of musculoskeletal pain and lameness associated with osteoarthritis in horses. Am J Vet Res. 2012;73(5):664u201371. https://doi.org/10.2460/ajvr.73.5.664 .
- Toutain PL, Autefage A, Legrand C, Alvinerie M. Plasma concentrations and therapeutic efficacy of phenylbutazone and flunixin meglumine in the horse: pharmacokinetic/pharmacodynamic modelling. J Vet Pharmacol Ther. 1994;17(6):459u201369.
- Sykes BW, Hewetson M, Hepburn RJ, Luthersson N, Tamzali Y. European College of Equine Internal Medicine consensus statementu2014equine gastric ulcer syndrome in adult horses. J Vet Intern Med. 2015;29(5):1288u201399. https://doi.org/10.1111/jvim.13578 .
- Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram E. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem. 2009;81(16):6656u201367. https://doi.org/10.1021/ac901536h .
- Suhre K, Shin SY, Petersen AK, Mohney RP, Meredith D, Wu00e4gele B, et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature. 2011;477(7362):54u201360. https://doi.org/10.1038/nature10354 .
- Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335u20136. https://doi.org/10.1038/nmeth.f.303 .
- McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8(4):e61217. https://doi.org/10.1371/journal.pone.0061217 .
- Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581u20133. https://doi.org/10.1038/nmeth.3869 .
- Kalbfleisch TS, Rice ES, DePriest MS, Walenz BP, Hestand MS, Vermeesch JR, et al. Improved reference genome for the domestic horse increases assembly contiguity and composition. Commun Biol. 2018;1(1):197. https://doi.org/10.1038/s42003-018-0199-z .
- Cui H, Li R, Zhong W. Model-free feature screening for ultrahigh dimensional discriminant analysis. J Am Stat Assoc. 2015;110(510):630u201341. https://doi.org/10.1080/01621459.2014.920256 .
- Gaynanova I, Booth JG, Wells MT. Simultaneous sparse estimation of canonical vectors in the p u226b N setting. J Am Stat Assoc. 2016;111(514):696u2013706. https://doi.org/10.1080/01621459.2015.1034318 .
- Zhang Y, Gaynanova I. Joint association and classification analysis of multi-view data. arXiv preprint arXiv:181108511. 2018.
- Kru00e4mer A, Green J, Pollard J Jr, Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2014;30(4):523u201330. https://doi.org/10.1093/bioinformatics/btt703 .
- Whitehead RH, Robinson PS. Establishment of conditionally immortalized epithelial cell lines from the intestinal tissue of adult normal and transgenic mice. Am J Physiol Gastrointest Liver Physiol. 2009;296(3):G455u201360. https://doi.org/10.1152/ajpgi.90381.2008 .
- Senichkin VV, Prokhorova EA, Zhivotovsky B, Kopeina GS. Simple and efficient protocol for subcellular fractionation of normal and apoptotic cells. Cells. 2021;10(4). https://doi.org/10.3390/cells10040852 .
- Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671u20135. https://doi.org/10.1038/nmeth.2089 .
- Rainey FA. Pseudobutyrivibrio u2020 . In Bergey's Manual of Systematics of Archaea and Bacteria (eds M.E. Trujillo, S. Dedysh, P. DeVos, B. Hedlund, P. Ku00e4mpfer, F.A. Rainey and W.B. Whitman). 2015. https://doi.org/10.1002/9781118960608.gbm00651 .
- Chong WC, Shastri MD, Eri R. Endoplasmic reticulum stress and oxidative stress: a vicious nexus implicated in bowel disease pathophysiology. Int J Mol Sci. 2017;18(4):771. https://doi.org/10.3390/ijms18040771 .
- Fu A, Cohen-Kaplan V, Avni N, Livneh I, Ciechanover A. p62-containing, proteolytically active nuclear condensates, increase the efficiency of the ubiquitinu2013proteasome system. Proc Natl Acad Sci. 2021;118(33):e2107321118. https://doi.org/10.1073/pnas.2107321118 .
- Kiesler P, Fuss IJ, Strober W. Experimental models of inflammatory bowel diseases. Cell Mol Gastroenterol Hepatol. 2015;1(2):154u201370. https://doi.org/10.1016/j.jcmgh.2015.01.006 .
- Goyal N, Rana A, Ahlawat A, Bijjem KR, Kumar P. Animal models of inflammatory bowel disease: a review. Inflammopharmacology. 2014;22(4):219u201333. https://doi.org/10.1007/s10787-014-0207-y .
- Muu00f1oz-Miralles J, Trindade BC, Castro-Cu00f3rdova P, Bergin IL, Kirk LA, Gil F, et al. Indomethacin increases severity of Clostridium difficile infection in mouse model. Future Microbiol. 2018;13(11):1271u201381. https://doi.org/10.2217/fmb-2017-0311 .
- Berg DJ, Zhang J, Weinstock JV, Ismail HF, Earle KA, Alila H, et al. Rapid development of colitis in NSAID-treated IL-10-deficient mice. Gastroenterology. 2002;123(5):1527u201342. https://doi.org/10.1053/gast.2002.1231527 .
- Villanacci V, Casella G, Bassotti G. The spectrum of drug-related colitides: important entities, though frequently overlooked. Dig Liver Dis. 2011;43(7):523u20138. https://doi.org/10.1016/j.dld.2010.12.016 .
- Allison MC, Howatson AG, Torrance CJ, Lee FD, Russell RI. Gastrointestinal damage associated with the use of nonsteroidal antiinflammatory drugs. N Engl J Med. 1992;327(11):749u201354. https://doi.org/10.1056/NEJM199209103271101 .
- Gibson GR, Whitacre EB, Ricotti CA. Colitis induced by nonsteroidal anti-inflammatory drugs. Report of four cases and review of the literature. Arch Intern Med. 1992;152(3):625u201332.
- Blackler RW, De Palma G, Manko A, Da Silva GJ, Flannigan KL, Bercik P, et al. Deciphering the pathogenesis of NSAID enteropathy using proton pump inhibitors and a hydrogen sulfide-releasing NSAID. Am J Physiol Gastrointest Liver Physiol. 2015;308(12):G994-1003. https://doi.org/10.1152/ajpgi.00066.2015 .
- Ziegler A, Gonzalez L, Blikslager A. Large animal models: the key to translational discovery in digestive disease research. Cell Mol Gastroenterol Hepatol. 2016;2(6):716u201324. https://doi.org/10.1016/j.jcmgh.2016.09.003 .
- Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: a current perspective. Biochem Pharmacol. 2020;180:114147. https://doi.org/10.1016/j.bcp.2020.114147 .
- Somasundaram S, Rafi S, Hayllar J, Sigthorsson G, Jacob M, Price AB, et al. Mitochondrial damage: a possible mechanism of the u201ctopicalu201d phase of NSAID induced injury to the rat intestine. Gut. 1997;41(3):344u201353. https://doi.org/10.1136/gut.41.3.344 .
- Miura T, Muraoka S, Fujimoto Y. Phenylbutazone radicals inactivate creatine kinase. Free Radic Res. 2001;34(2):167u201375. https://doi.org/10.1080/10715760100300151 .
- Martu00ednezAranzales JR, Cu00e2ndido de Andrade BS, Silveira Alves GE. Orally administered phenylbutazone causes oxidative stress in the equine gastric mucosa. J Vet Pharmacol Ther. 2015;38(3):257u201364. https://doi.org/10.1111/jvp.12168 .
- Hwang I, Uddin MJ, Pak ES, Kang H, Jin EJ, Jo S, et al. The impaired redox balance in peroxisomes of catalase knockout mice accelerates nonalcoholic fatty liver disease through endoplasmic reticulum stress. Free Radic Biol Med. 2020;148:22u201332. https://doi.org/10.1016/j.freeradbiomed.2019.12.025 .
- Nordgren M, Fransen M. Peroxisomal metabolism and oxidative stress. Biochimie. 2014;98:56u201362. https://doi.org/10.1016/j.biochi.2013.07.026 .
- Galati G, Tafazoli S, Sabzevari O, Chan TS, Ou2019Brien PJ. Idiosyncratic NSAID drug induced oxidative stress. Chem Biol Interact. 2002;142(1u20132):25u201341. https://doi.org/10.1016/s0009-2797(02)00052-2 .
- Duve CD, Baudhuin P. Peroxisomes (microbodies and related particles). Physiol Rev. 1966;46(2):323u201357. https://doi.org/10.1152/physrev.1966.46.2.323 .
- Ivashchenko O, Van Veldhoven PP, Brees C, Ho YS, Terlecky SR, Fransen M. Intraperoxisomal redox balance in mammalian cells: oxidative stress and interorganellar cross-talk. Mol Biol Cell. 2011;22(9):1440u201351. https://doi.org/10.1091/mbc.E10-11-0919 .
- Legakis JE, Koepke JI, Jedeszko C, Barlaskar F, Terlecky LJ, Edwards HJ, et al. Peroxisome senescence in human fibroblasts. Mol Biol Cell. 2002;13(12):4243u201355. https://doi.org/10.1091/mbc.e02-06-0322 .
- Honsho M, Abe Y, Fujiki Y. Plasmalogen biosynthesis is spatiotemporally regulated by sensing plasmalogens in the inner leaflet of plasma membranes. Sci Rep. 2017;7(1):43936. https://doi.org/10.1038/srep43936 .
- Wanders RJA, Vaz FM, Ferdinandusse S, Kemp S, Ebberink MS, Waterham HR. Laboratory diagnosis of peroxisomal disorders in the -omics era and the continued importance of biomarkers and biochemical studies. J Inborn Errors Metab Screen. 2018;6:2326409818810285. https://doi.org/10.1177/2326409818810285 .
- Kou J, Kovacs GG, Hu00f6ftberger R, Kulik W, Brodde A, Forss-Petter S, et al. Peroxisomal alterations in Alzheimeru2019s disease. Acta Neuropathol. 2011;122(3):271u201383. https://doi.org/10.1007/s00401-011-0836-9 .
- Heymans HS, Schutgens RB, Tan R, van den Bosch H, Borst P. Severe plasmalogen deficiency in tissues of infants without peroxisomes (Zellweger syndrome). Nature. 1983;306(5938):69u201370. https://doi.org/10.1038/306069a0 .
- Faucheron JL, Parc R. Non-steroidal anti-inflammatory drug-induced colitis. Int J Colorectal Dis. 1996;11(2):99u2013101. https://doi.org/10.1007/bf00342469 .
- Boveris A, Oshino N, Chance B. The cellular production of hydrogen peroxide. Biochem J. 1972;128(3):617u201330. https://doi.org/10.1042/bj1280617 .
- Wanders RJA, Waterham HR, Ferdinandusse S. Metabolic interplay between peroxisomes and other subcellular organelles including mitochondria and the endoplasmic reticulum. Front Cell Dev Biol. 2016;3. https://doi.org/10.3389/fcell.2015.00083 .
- Tsutsumi S, Gotoh T, Tomisato W, Mima S, Hoshino T, Hwang HJ, et al. Endoplasmic reticulum stress response is involved in nonsteroidal anti-inflammatory drug-induced apoptosis. Cell Death Differ. 2004;11(9):1009u201316. https://doi.org/10.1038/sj.cdd.4401436 .
- Okamura M, Takano Y, Hiramatsu N, Hayakawa K, Yao J, Paton AW, et al. Suppression of cytokine responses by indomethacin in podocytes: a mechanism through induction of unfolded protein response. Am J Physiol Renal Physiol. 2008;295(5):F1495u2013503. https://doi.org/10.1152/ajprenal.00602.2007 .
- Tanaka KI, Tomisato W, Hoshino T, Ishihara T, Namba T, Aburaya M, et al. Involvement of intracellular Ca2+ levels in nonsteroidal anti-inflammatory drug-induced apoptosis*. J Biol Chem. 2005;280(35):31059u201367. https://doi.org/10.1074/jbc.M502956200 .
- Shen T, Li S, Cai LD, Liu JL, Wang CY, Gan WJ, et al. Erbin exerts a protective effect against inflammatory bowel disease by suppressing autophagic cell death. Oncotarget. 2018;9(15):12035u201349. https://doi.org/10.18632/oncotarget.23925 .
- Zhang J, Kim J, Alexander A, Cai S, Tripathi DN, Dere R, et al. A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nat Cell Biol. 2013;15(10):1186u201396. https://doi.org/10.1038/ncb2822 .
- Jo DS, Park SJ, Kim AK, Park NY, Kim JB, Bae JE, et al. Loss of HSPA9 induces peroxisomal degradation by increasing pexophagy. Autophagy. 2020;16(11):1989u20132003. https://doi.org/10.1080/15548627.2020.1712812 .
- Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635u20138. https://doi.org/10.1126/science.1110591 .
- Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL, Crawford RW, et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature. 2010;467(7314):426u20139. https://doi.org/10.1038/nature09415 .
- Kopeu010dnu00fd J, Zorec M, Mru00e1zek J, Kobayashi Y, Marinu0161ek-Logar R. Butyrivibrio hungatei sp. nov. and Pseudobutyrivibrio xylanivorans sp. nov., butyrate-producing bacteria from the rumen. Int J Syst Evol Microbiol. 2003;53(Pt 1):201u20139. https://doi.org/10.1099/ijs.0.02345-0 .
- Rosignoli P, Fabiani R, De Bartolomeo A, Spinozzi F, Agea E, Pelli MA, et al. Protective activity of butyrate on hydrogen peroxide-induced DNA damage in isolated human colonocytes and HT29 tumour cells. Carcinogenesis. 2001;22(10):1675u201380. https://doi.org/10.1093/carcin/22.10.1675 .
- Hamer HM, Jonkers DM, Bast A, Vanhoutvin SA, Fischer MA, Kodde A, et al. Butyrate modulates oxidative stress in the colonic mucosa of healthy humans. Clin Nutr. 2009;28(1):88u201393. https://doi.org/10.1016/j.clnu.2008.11.002 .
- Weng H, Endo K, Li J, Kito N, Iwai N. Induction of peroxisomes by butyrate-producing probiotics. PLoS ONE. 2015;10(2):e0117851. https://doi.org/10.1371/journal.pone.0117851 .
- Crowther JS. Sarcina ventriculi in human faeces. J Med Microbiol. 1971;4(3):343u201350. https://doi.org/10.1099/00222615-4-3-343 .
- Costa MC, Silva G, Ramos RV, Staempfli HR, Arroyo LG, Kim P, et al. Characterization and comparison of the bacterial microbiota in different gastrointestinal tract compartments in horses. Vet J. 2015;205(1):74u201380. https://doi.org/10.1016/j.tvjl.2015.03.018 .
- Dumitru A, Aliuu015f C, Nica AE, Antoniac I, Gheorghiu021bu0103 D, Gru0103dinaru S. Fatal outcome of gastric perforation due to infection with Sarcina spp. A case report. IDCases. 2020;19:e00711. https://doi.org/10.1016/j.idcr.2020.e00711 .
- Edwards GT, Woodger NG, Barlow AM, Bell SJ, Harwood DG, Otter A, et al. Sarcina-like bacteria associated with bloat in young lambs and calves. Vet Rec. 2008;163(13):391u20133. https://doi.org/10.1136/vr.163.13.391 .
- Hudson N, Hawkey CJ. Non-steroidal anti-inflammatory drug-associated upper gastrointestinal ulceration and complications. Eur J Gastroenterol Hepatol. 1993;5(6):412u20139.
- Perkins GA, den Bakker HC, Burton AJ, Erb HN, McDonough SP, McDonough PL, et al. Equine stomachs harbor an abundant and diverse mucosal microbiota. Appl Environ Microbiol. 2012;78(8):2522u201332. https://doi.org/10.1128/AEM.06252-11 .
- Fan J, Fan Y. High dimensional classification using features annealed independence rules. Ann Stat. 2008;36(6):2605u201337. https://doi.org/10.1214/07-aos504 .
- Nikolaus S, Schulte B, Al-Massad N, Thieme F, Schulte DM, Bethge J, et al. Increased tryptophan metabolism is associated with activity of inflammatory bowel diseases. Gastroenterology. 2017;153(6):1504-16.e2. https://doi.org/10.1053/j.gastro.2017.08.028 .
- Bosch S, Struys EA, van Gaal N, Bakkali A, Jansen EW, Diederen K, et al. Fecal amino acid analysis can discriminate de novo treatment-nau00efve pediatric inflammatory bowel disease from controls. J Pediatr Gastroenterol Nutr. 2018;66(5):773u20138. https://doi.org/10.1097/mpg.0000000000001812 .
- Salem SE, Maddox TW, Berg A, Antczak P, Ketley JM, Williams NJ, et al. Variation in faecal microbiota in a group of horses managed at pasture over a 12-month period. Sci Rep. 2018;8(1):8510. https://doi.org/10.1038/s41598-018-26930-3 .
- Johnson JS, Spakowicz DJ, Hong BY, Petersen LM, Demkowicz P, Chen L, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun. 2019;10(1):5029. https://doi.org/10.1038/s41467-019-13036-1 .
- Hetz C, Papa FR. The unfolded protein response and cell fate control. Mol Cell. 2018;69(2):169u201381. https://doi.org/10.1016/j.molcel.2017.06.017 .