Veterinary research communications2024; doi: 10.1007/s11259-024-10295-2

Isolation of lactic acid bacteria from the reproductive tract of mares as potentially beneficial strains to prevent equine endometritis.

Abstract: Endometritis, the inflammation of the endometrium, is the leading cause of subfertility in mares, and therefore responsible for major economic losses in the horse industry worldwide. It is generally treated with uterine lavages combined with ecbolic agents and local or systemic antibiotics. However, since antibiotic overuse has been associated with antimicrobial resistance in mares with persistent endometritis, new prevention and treatment alternatives are needed. One such alternative could be the use of probiotic lactic acid bacteria (LAB) isolated from the host. Thanks to their species specificity, resident microbiota may restore ecological equilibrium within the host, and therefore, help prevent infections and improve physiological functions. In the present study, 257 bacterial strains were isolated from 77 healthy mares, and 88.76% (n = 228) of them were phenotypically classified as LAB. Within this group, 65.79% were able to inhibit at least one strain from each of the genera that most commonly cause equine endometritis (Streptococcus equi subsp. zooepidemicus, Escherichia coli, and Staphylococcus spp.). Five strains (RCE11, RCE20, RCE91, RCE99, and RCE167) were selected on the basis of their beneficial properties: ability to autoaggregate and adhere to equine epithelial cells, high inhibition of and co-aggregation with all the bacteria isolated from clinical cases of endometritis evaluated, and negative co-inhibition between one another. All five were finally identified as Enterococcus spp., namely E. faecium (two strains), E. hirae (two strains), and E. gallinarum (one strain). Further studies will assess their safety and biotechnological potential for the design of a multi-strain probiotic formula to prevent equine endometritis.
Publication Date: 2024-01-18 PubMed ID: 38233700PubMed Central: 4153636DOI: 10.1007/s11259-024-10295-2Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

This study explores potential treatments for equine endometritis, a common and economically costly condition in mares, by isolating beneficial bacteria from healthy horses. The focus is on lactic acid bacteria, several strains of which were found to inhibit growth of harmful bacteria typically causing endometritis.

Background

  • The research addresses endometritis in mares, which is a prevalent cause of subfertility and results in considerable economic loss in the global horse industry.
  • Current treatments for endometritis, including uterine lavages and antibiotics, face drawbacks due to the rising issue of antibiotic resistance.
  • As an alternative, the researchers suggest the use of probiotic lactic acid bacteria (LAB), which might restore balance within the host organism’s microbial environment and boost physiological functions to prevent infection.

Study Findings

  • The researchers isolated 257 bacterial strains from 77 healthy mares, out of which 228 or 88.76% were phenotypically classified as LAB.
  • Within the LAB group, about 65.79% were found to inhibit the growth of the common endometritis-causing bacteria, including Streptococcus equi subsp. zooepidemicus, Escherichia coli, and Staphylococcus spp.

Most Promising Strains

  • Based on their beneficial properties, five strains (RCE11, RCE20, RCE91, RCE99, and RCE167) were selected. These properties include the ability to autoaggregate, adherence to equine epithelial cells, and high inhibition of and co-aggregation with all the bacteria isolated from clinical cases of endometritis.
  • These selected strains were identified as Enterococcus spp., specifically E. faecium (two strains), E. hirae (two strains), and E. gallinarum (one strain).

Future Research

  • Future studies, as suggested by the researchers, will explore the safety and biotechnological potential of these five strains. The aim is to leverage these findings to develop a multi-strain probiotic formula to prevent equine endometritis.

Cite This Article

APA
Silva JA, Castau00f1ares M, Mouguelar H, Valenciano JA, Pellegrino MS. (2024). Isolation of lactic acid bacteria from the reproductive tract of mares as potentially beneficial strains to prevent equine endometritis. Vet Res Commun. https://doi.org/10.1007/s11259-024-10295-2

Publication

ISSN: 1573-7446
NlmUniqueID: 8100520
Country: Switzerland
Language: English

Researcher Affiliations

Silva, Jessica Alejandra
  • Department of Microbiology and Immunology, Faculty of Cs. Ex. Fco-Qcas y Naturales, National University of Ru00edo Cuarto, Route 36 Km 601, X5804ZAB, Ru00edo Cuarto, Cu00f3rdoba, Argentina.
  • Consejo Nacional de Investigaciones Cientu00edficas y Tecnolu00f3gicas (CONICET), Godoy Cruz 2290, C1425FQB, Ciudad Autu00f3noma de Buenos Aires, Buenos Aires, Argentina.
Castau00f1ares, Mariana
  • Department of Microbiology and Immunology, Faculty of Cs. Ex. Fco-Qcas y Naturales, National University of Ru00edo Cuarto, Route 36 Km 601, X5804ZAB, Ru00edo Cuarto, Cu00f3rdoba, Argentina.
Mouguelar, Horacio
  • Departament of Anatomy, Faculty of Agronomy and Veterinary, National University of Ru00edo Cuarto, Route 36 Km 601, X5804ZAB, Ru00edo Cuarto, Cu00f3rdoba, Argentina.
Valenciano, Javier Aguilar
  • Departament of Animal Production, Faculty of Agronomy and Veterinary, National University of Ru00edo Cuarto, Route 36 Km 601, X5804ZAB, Ru00edo Cuarto, Cu00f3rdoba, Argentina.
Pellegrino, Matu00edas Santiago
  • Department of Microbiology and Immunology, Faculty of Cs. Ex. Fco-Qcas y Naturales, National University of Ru00edo Cuarto, Route 36 Km 601, X5804ZAB, Ru00edo Cuarto, Cu00f3rdoba, Argentina. mpellegrino@exa.unrc.edu.ar.
  • Consejo Nacional de Investigaciones Cientu00edficas y Tecnolu00f3gicas (CONICET), Godoy Cruz 2290, C1425FQB, Ciudad Autu00f3noma de Buenos Aires, Buenos Aires, Argentina. mpellegrino@exa.unrc.edu.ar.

References

This article includes 70 references
  1. Abdulla AA, Abed TA, Saeed AM (2014) Adhesion, autoaggregation and hydrophobicity of six Lactobacillus strains. Br Microbiol Res J 4:381u2013391. https://www.cabdirect.org/cabdirect/abstract/20143058558 .u00a0Accessed 30 Nov 2023
  2. Aryantini NP, Yamasaki E, Kurazono H, Sujaya IN, Urashima T, Fukuda K (2017) In vitro safety assessments and antimicrobial activities of Lactobacillus rhamnosus strains isolated from a fermented mareu2019s milk. Anim Sci J 88:517u2013525. https://doi.org/10.1111/asj.12668
    doi: 10.1111/asj.12668pubmed: 27476815google scholar: lookup
  3. Asif S, Umar T, Umar Z, Jamil H, Feng H, Zhang P, Umer S (2023) MicroRNAs in equine endometritis: a review of pathophysiology and molecular insights for diagnostic and therapeutic strategies. Int Immunopharmacol 124:110949. https://doi.org/10.1016/j.intimp.2023.110949
    doi: 10.1016/j.intimp.2023.110949pubmed: 37725848google scholar: lookup
  4. Barba M, Martu00ednez-Bovu00ed R, Quereda JJ, Mocu00e9 ML, Plaza-Du00e1vila M, Jimu00e9nez-Trigos E et al (2020) Vaginal microbiota is stable throughout the estrous cycle in Arabian mares. Animimals (Basel) 10:2020. https://doi.org/10.3390/ani10112020
    doi: 10.3390/ani10112020google scholar: lookup
  5. Barberis C, Almuzara M, Join-Lambert O, Ramu00edrez MS, Famiglietti A, Vay C (2014) Comparison of the Bruker MALDI-TOF mass spectrometry system and conventional phenotypic methods for identification of Gram-positive rods. PLoS ONE 9:e106303. https://doi.org/10.1371/journal.pone.0106303
    doi: 10.1371/journal.pone.0106303pubmed: 25184254pmc: 4153636google scholar: lookup
  6. Berardo N, Bohl L, Porporatto C, Nader-Macu00edas MEF, Bogni C, Pellegrino M (2020) Intramammary inoculation with lactic acid bacteria at dry-off triggers an immunomodulatory response in dairy cows. Benef Microbes 11:561u2013572. https://doi.org/10.3920/BM2019.0163
    doi: 10.3920/BM2019.0163pubmed: 33032469google scholar: lookup
  7. Berardo N, Giraudo J, Magnano G, Nader-Macias MEF, Bogni C, Pellegrino M (2022) Lactococcus lactis subsp lactis CRL1655 and schleiferilactobacillus perolens CRL1724 inhibit the adherence of common bovine mastitis pathogens to mammary gland cells, without causing histological changes in the mammary gland. J Appl Microbiol 133:733u2013742. https://doi.org/10.1111/jam.15604
    doi: 10.1111/jam.15604pubmed: 35491952google scholar: lookup
  8. Bogni C, Segura M, Giraudo J, Giraudo A, Calzolari A, Nagel R (1998) Avirulence and immunogenicity in mice of a bovine mastitis Staphylococcus aureus mutant. Can Vet Res 62:293u2013298
  9. Botes M, Loos B, Van Reenen CA, Dicks LMT (2008) Adhesion of the probiotic strains Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 to Caco-2 cells under conditions simulating the intestinal tract, and in the presence of antibiotics and anti-inflammatory medicaments. Arch Microbiol 190:573u2013584. https://doi.org/10.1007/s00203-008-0408-0
    doi: 10.1007/s00203-008-0408-0pubmed: 18641972google scholar: lookup
  10. Canisso IF, Stewart J, Coutinho da Silva MA (2016) Endometritis: managing persistent post-breeding endometritis. Vet Clin North Am Equine Pract 32:465u2013480. https://doi.org/10.1016/j.cveq.2016.08.004
    doi: 10.1016/j.cveq.2016.08.004pubmed: 27810036google scholar: lookup
  11. Canisso IF, Segabinazzi LGTM, Fedorka CE (2020) Persistent breeding-induced endometritis in mares - a multifaceted challenge: from clinical aspects to immunopathogenesis and pathobiology. Int J Mol Sci 21:1432. https://doi.org/10.3390/ijms21041432
    doi: 10.3390/ijms21041432pubmed: 32093296pmc: 7073041google scholar: lookup
  12. Carnevale EM, Ginther OJ (1992) Relationships of age to uterine function and reproductive efficiency in mares. Theriogenology 37:1101u20131115. https://doi.org/10.1016/0093-691x(92)90108-4
    doi: 10.1016/0093-691x(92)90108-4pubmed: 16727108google scholar: lookup
  13. Chen C, Song X, Wei W, Zhong H, Dai J, Lan Z et al (2017) The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat Commun 8:875. https://doi.org/10.1038/s41467-017-00901-0
    doi: 10.1038/s41467-017-00901-0pubmed: 29042534pmc: 5645390google scholar: lookup
  14. Christoffersen M, Troedsson M (2017) Inflammation and fertility in the mare. Reprod Domest Anim 52:14u201320. https://doi.org/10.1111/rda.13013
    doi: 10.1111/rda.13013pubmed: 28815848google scholar: lookup
  15. Collado MC, Meriluoto J, Salminen S (2007) Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus. Lett Appl Microbiol 45:454u2013460. https://doi.org/10.1111/j.1472-765X.2007.02212.x
  16. Conesa A, Dieser S, Barberis C, Bonetto C, Lasagno M, Vay C et al (2020) Differentiation of non-aureus staphylococci species isolated from bovine mastitis by PCR-RFLP of groEL and gap genes in comparison to MALDI-TOF mass spectrometry. Microb Pathog 149:104489. https://doi.org/10.1016/j.micpath.2020.104489
    doi: 10.1016/j.micpath.2020.104489pubmed: 32910983google scholar: lookup
  17. Davis HA, Stanton MB, Thungrat K, Boothe DM (2013) Uterine bacterial isolates from mares and their resistance to antimicrobials: 8,296 cases (2003u20132008). J Am Vet Med Assoc 242:977u2013983. https://doi.org/10.2460/javma.242.7.977
    doi: 10.2460/javma.242.7.977pubmed: 23517211google scholar: lookup
  18. de Melo Pereira GV, de Oliveira Coelho B, Magalhu00e3es Ju00fanior AI, Thomaz-Soccol V, Soccol CR (2018) How to select a probiotic? A review and update of methods and criteria. Biotechnol Adv 36:2060u20132076. https://doi.org/10.1016/j.biotechadv.2018.09.003
  19. Du00edaz-Bertrana ML, Deleuze S, Pitti Rios L, Yeste M, Morales Fariu00f1a I, Del Rivera MM (2021) Microbial prevalence and antimicrobial sensitivity in equine endometritis in field conditions. Anim (Basel) 11:1476. https://doi.org/10.3390/ani11051476
    doi: 10.3390/ani11051476google scholar: lookup
  20. Ekmekci H, Aslim B, Ozturk S (2009) Characterization of vaginal lactobacilli coaggregation ability with Escherichia coli. Microbiol Immunol 53:59u201365. https://doi.org/10.1111/j.1348-0421.2009.00115.x
  21. El-Deeb WM, Fayez M, Elsohaby I, Ghoneim I, Al-Marri T, Kandeel M et al (2020) Isolation and characterization of vaginal Lactobacillus spp. in dromedary camels (Camelus dromedarius): in vitro evaluation of probiotic potential of selected isolates. PeerJ 8:e8500. https://doi.org/10.7717/peerj.8500
    doi: 10.7717/peerj.8500pubmed: 32071813pmc: 7007732google scholar: lookup
  22. Espeche MC, Otero MC, Sesma F, Nader-Macu00edas ME (2009) Screening of surface properties and antagonistic substances production by lactic acid bacteria isolated from the mammary gland of healthy and mastitic cows. Vet Microbiol 135:346u2013357. https://doi.org/10.1016/j.vetmic.2008.09.078
    doi: 10.1016/j.vetmic.2008.09.078pubmed: 19041199google scholar: lookup
  23. Ferrer MS, Palomares R (2018) Aerobic uterine isolates and antimicrobial susceptibility in mares with post-partum metritis. Equine Vet J 50:202u2013207. https://doi.org/10.1111/evj.12738
    doi: 10.1111/evj.12738pubmed: 28796905google scholar: lookup
  24. Ferris RA, McCue PM, Borlee GI, Glapa KE, Martin KH, Mangalea MR et al (2017) Model of chronic equine endometritis involving a Pseudomonas aeruginosa biofilm. Infect Immun 85:e00332u2013e00317. https://doi.org/10.1128/IAI.00332-17
    doi: 10.1128/IAI.00332-17pubmed: 28970274pmc: 5695105google scholar: lookup
  25. Fraga M, Perelmuter K, Delucchi L, Cidade E, Zunino P (2008) Vaginal lactic acid bacteria in the mare: evaluation of the probiotic potential of native Lactobacillus spp. and Enterococcus spp. strains. Antonie Leeuwenhoek 93:71u201378. https://doi.org/10.1007/s10482-007-9180-4
    doi: 10.1007/s10482-007-9180-4pubmed: 17588124google scholar: lookup
  26. Frola ID, Pellegrino MS, Espeche MC, Giraudo JA, Nader-Macu00edas ME, Bogni CI (2012) Effects of intramammary inoculation of Lactobacillus perolens CRL1724 in lactating cowsu2019 udders. J Dairy Res 79:84u201392. https://doi.org/10.1017/S0022029911000835
    doi: 10.1017/S0022029911000835pubmed: 22077995google scholar: lookup
  27. Genu00eds S, Cerri RLA, Bach u00c0, Silper BF, Baylu00e3o M (2018) Pre-calving intravaginal administration of lactic acid bacteria reduces metritis prevalence and regulates blood neutrophil gene expression after calving in dairy cattle. Front Vet Sci 5:135. https://doi.org/10.3389/fvets.2018.00135
    doi: 10.3389/fvets.2018.00135pubmed: 29977896pmc: 6021520google scholar: lookup
  28. Ghallab RS, El-Beskawy M, El-Shereif AA, Rashad AMA, Elbehiry MA (2023) Impact of intrauterine infusion of Platelets-Rich plasma on endometritis and reproductive performance of arabian mare. Reprod Domest Anim 58:622u2013629. https://doi.org/10.1111/rda.14329
    doi: 10.1111/rda.14329pubmed: 36807351google scholar: lookup
  29. Heil BA, Paccamonti DL, Sones JL (2019) Role for the mammalian female reproductive tract microbiome in pregnancy outcomes. Physiol Genom 51:390u2013399. https://doi.org/10.1152/physiolgenomics.00045.2019
  30. Hell M, Bernhofer C, Stalzer P, Kern JM, Claassen E (2013) Probiotics in Clostridium difficile infection: reviewing the need for a multistrain probiotic. Benef Microbes 4:39u201351. https://doi.org/10.3920/BM2012.0049
    doi: 10.3920/BM2012.0049pubmed: 23434948google scholar: lookup
  31. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B et al (2014) Expert consensus document: the international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506u2013514. https://doi.org/10.1038/nrgastro.2014.66
    doi: 10.1038/nrgastro.2014.66pubmed: 24912386google scholar: lookup
  32. Hinrichs K, Cummings MR, Sertich PL, Kenney RM (1988) Clinical significance of aerobic bacterial flora of the uterus, vagina, vestibule, and clitoral fossa of clinically normal mares. J Am Vet Med Assoc 193:72u201375
    pubmed: 3417532
  33. Holyoak GR, Lyman CC, Wieneke X, DeSilva U (2018) The equine endometrial microbiome. Clin Theriogenol 10:273u2013278. https://www.cabdirect.org/cabdirect/abstract/20183338548 .u00a0Accessed 30 Nov 2023
  34. Holyoak GR, Premathilake HU, Lyman CC, Sones JL, Gunn A, Wieneke X et al (2022) The healthy equine uterus harbors a distinct core microbiome plus a rich and diverse microbiome that varies with geographical location. Sci Rep 12:14790. https://doi.org/10.1038/s41598-022-18971-6
    doi: 10.1038/s41598-022-18971-6pubmed: 36042332pmc: 9427864google scholar: lookup
  35. Husso A, Jalanka J, Alipour MJ, Huhti P, Kareskoski M, Pessa-Morikawa T et al (2020) The composition of the perinatal intestinal microbiota in horse. Sci Rep 10:441. https://doi.org/10.1038/s41598-019-57003-8
    doi: 10.1038/s41598-019-57003-8pubmed: 31949191pmc: 6965133google scholar: lookup
  36. Hu00fctt P, Shchepetova J, Lu00f5ivukene K, Kullisaar T, Mikelsaar M (2006) Antagonistic activity of probiotic lactobacilli and bifidobacteria against entero- and uropathogens. J Appl Microb 100:1324u20131332. https://doi.org/10.1111/j.1365-2672.2006.02857.x
  37. Katila T (2016) Update on endometritis therapy. Pferdeheilkunde 3:39u201345. https://www.cabdirect.org/cabdirect/abstract/20163022835 . Accessed 30 Nov 2023
  38. Li J, Zhu Y, Mi J, Zhao Y, Holyoak GR, Yi Z et al (2022) Endometrial and vaginal microbiome in donkeys with and without clinical endometritis. Front Microbiol 13:884574. https://doi.org/10.3389/fmicb.2022.884574
    doi: 10.3389/fmicb.2022.884574pubmed: 35979491pmc: 9376452google scholar: lookup
  39. Lisboa FP, Silvestre WP, Castro JO, Martins GV, Segabinazzi LGTM et al (2022) In vitro antimicrobial activity of selected essential oils against endometritis-causing microorganisms in mares. J Equine Vet Sci 110:103840. https://doi.org/10.1016/j.jevs.2021.103840
    doi: 10.1016/j.jevs.2021.103840pubmed: 34923074google scholar: lookup
  40. Maldonado NC, de Ruiz CS, Otero MC, Sesma F, Nader-Macu00edas ME (2012) Lactic acid bacteria isolated from young calves-characterization and potential as probiotics. Res Vet Sci 92:342u2013349. https://doi.org/10.1016/j.rvsc.2011.03.017
    doi: 10.1016/j.rvsc.2011.03.017pubmed: 21497871google scholar: lookup
  41. Maldonado NC, Ficoseco CA, Mansilla FI, Meliu00e1n C, Hu00e9bert EM, Vignolo GM et al (2018) Identification, characterization and selection of autochthonous lactic acid bacteria as probiotic for feedlot cattle. Livest Sci 212:99u2013110. https://doi.org/10.1016/j.livsci.2018.04.003
  42. Mansilla F, Takagi M, Garcia-Castillo V, Aso H, Nader-Macias ME, Vignolo G et al (2020) Modulation of toll-like receptor-mediated innate immunity in bovine intestinal epithelial cells by lactic acid bacteria isolated from feedlot cattle. Benef Microbes 11:269u2013282. https://doi.org/10.3920/BM2019.0189
    doi: 10.3920/BM2019.0189pubmed: 32363914google scholar: lookup
  43. Mansilla FI, Miranda MH, Uezen JD, Maldonado NC, Du2019Urso Villar MA, Merino LA et al (2023) Effect of probiotic lactobacilli supplementation on growth parameters, blood profile, productive performance, and fecal microbiology in feedlot cattle. Res Vet Sci 155:76u201387. https://doi.org/10.1016/j.rvsc.2023.01.003
    doi: 10.1016/j.rvsc.2023.01.003pubmed: 36652843google scholar: lookup
  44. McFarland LV (2021) Efficacy of single-strain probiotics versus multi-strain mixtures: systematic review of strain and disease specificity. Dig Dis Sci 66:694u2013704. https://doi.org/10.1007/s10620-020-06244-z
    doi: 10.1007/s10620-020-06244-zpubmed: 32274669google scholar: lookup
  45. Miranda MH, Aristimuu00f1o Ficoseco C, Nader-Macu00edas MEF (2021) Safety, environmental and technological characterization of beneficial autochthonous lactic bacteria, and their vaginal administration to pregnant cows for the design of homologous multi-strain probiotic formulas. Braz J Microbiol 52:2455u20132473. https://doi.org/10.1007/s42770-021-00608-x
    doi: 10.1007/s42770-021-00608-xpubmed: 34505225pmc: 8578494google scholar: lookup
  46. Miranda MH, Nader-Macu00edas MEF (2020) Advances in the design of a multi-strain homologous probiotic formula for cattle. J Vet Med Animal Sci 3:1022. https://meddocsonline.org/journal-of-veterinary-medicine-and-animal-sciences/adv .u00a0Accessed 30 Nov 2023
  47. Mokoena MP (2017) Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules 22:1255. https://doi.org/10.3390/molecules22081255
    doi: 10.3390/molecules22081255pubmed: 28933759pmc: 6152299google scholar: lookup
  48. Morris LHA, McCue MP, Aurich C (2020) Equine endometritis: a review of challenges and new approaches. Reproduction 160:95u2013110. https://doi.org/10.1530/REP-19-0478
    doi: 10.1530/REP-19-0478google scholar: lookup
  49. Nader-Macu00edas MEF, Juu00e1rez Tomu00e1s MS (2015) Profiles and technological requirements of urogenital probiotics. Adv Drug Deliv Rev 92:84u2013104. https://doi.org/10.1016/j.addr.2015.03.016
    doi: 10.1016/j.addr.2015.03.016pubmed: 25858665google scholar: lookup
  50. Nader-Macu00edas MEF, Bogni C, Sesma FJM, Espeche MC, Pellegrino M, Saavedra L et al (2011) Alternative approaches for the prevention of bovine mastitis. Probiotics, bioactive compounds and vaccines. Bioactives compounds. Nova Science Publishers, Inc, New York, USA, pp 1u201334
  51. Nader-Macu00edas MEF, De Gregorio PR, Silva JA (2021) Probiotic lactobacilli in formulas and hygiene products for the health of the urogenital tract. Pharmacol Res Perspect 9:e00787. https://doi.org/10.1002/prp2.787
    doi: 10.1002/prp2.787pubmed: 34609059pmc: 8491456google scholar: lookup
  52. Ocau00f1a VS, Nader-Macu00edas ME (2002) Vaginal lactobacilli: self- and co-aggregating ability. Br J Biomed Sci 59:183u2013190. https://doi.org/10.1080/09674845.2002.11783657
  53. Omar H, Hambidge M, Firmanes B, Shabandri AM, Wilsher S (2022) Bacteria isolated from equine uteri in the United Arab Emirates: a retrospective study. J Equine Vet Sci 115:104029. https://doi.org/10.1016/j.jevs.2022.104029
    doi: 10.1016/j.jevs.2022.104029pubmed: 35659620google scholar: lookup
  54. Otero MC, Nader-Macu00edas MEF (2007) Lactobacillus adhesion to epithelial cells from bovine vagina. Communicating current research and educational topics and trends in applied microbiology, A. Mu00e9ndez-Vilas (Ed) 20007:749u2013757
  55. Otero MC, Ocau00f1a VS, Elena Nader-Macu00edas M (2004) Bacterial surface characteristics applied to selection of probiotic microorganisms. Methods Mol Biol 268:435u2013440. https://doi.org/10.1385/1-59259-766-1:435
    doi: 10.1385/1-59259-766-1:435pubmed: 15156054google scholar: lookup
  56. Pan M, Hidalgo-Cantabrana C, Goh YJ, Sanozky-Dawes R, Barrangou R (2020) Comparative analysis of Lactobacillus gasseri and Lactobacillus crispatus isolated from human urogenital and gastrointestinal tracts. Front Microbiol 10:3146. https://doi.org/10.3389/fmicb.2019.03146
    doi: 10.3389/fmicb.2019.03146pubmed: 32038579pmc: 6988505google scholar: lookup
  57. Pellegrino M, Berardo N, Giraudo J, Nader-Macu00edas MEF, Bogni C (2017) Bovine mastitis prevention: humoral and cellular response of dairy cows inoculated with lactic acid bacteria at the dry-off period. Benef Microbes 8:589u2013596. https://doi.org/10.3920/BM2016.0194
    doi: 10.3920/BM2016.0194pubmed: 28701082google scholar: lookup
  58. Pellegrino MS, Frola ID, Natanael B, Gobelli D, Nader-Macu00edas MEF, Bogni CI (2019) In vitro characterization of lactic acid bacteria isolated from bovine milk as potential probiotic strains to prevent bovine mastitis. Probiotics Antimicrob Proteins 11:74u201384. https://doi.org/10.1007/s12602-017-9383-6
    doi: 10.1007/s12602-017-9383-6pubmed: 29297159google scholar: lookup
  59. Petersen MR, Rosenbrock A, Osborne M, Bojesen AM (2018) High prevalence of subclinical endometritis in problem maresu2013effect of activation and treatment on fertility. J Equine Vet Sci 66:117. https://doi.org/10.1016/j.jevs.2018.05.162
  60. Pyu00f6ru00e4lu00e4 S, Taponen J, Katila T (2014) Use of antimicrobials in the treatment of reproductive diseases in cattle and horses. Reprod Domest Anim 49:16u201326. https://doi.org/10.1111/rda.12324
    doi: 10.1111/rda.12324pubmed: 25220745google scholar: lookup
  61. Quereda JJ, Garcu00eda-Rosellu00f3 E, Barba M, Mocu00e9 ML, Gomis J, Jimu00e9nez-Trigos E et al (2020) Use of probiotics in intravaginal sponges in sheep: a pilot study. Animals 10:719. https://doi.org/10.3390/ani10040719
    doi: 10.3390/ani10040719pubmed: 32326046pmc: 7222760google scholar: lookup
  62. Rasmussen CD, Petersen MR, Bojesen AM, Pedersen HG, Lehn-Jensen H, Christoffersen M (2015) Equine infectious endometritisu2013clinical and subclinical cases. J Equine Vet Sci 35:95u2013104. https://doi.org/10.1016/j.jevs.2014.12.002
  63. Sandes S, Alvim L, Silva B, Acurcio L, Santos C, Campos M et al (2017) Selection of new lactic acid bacteria strains bearing probiotic features from mucosal microbiota of healthy calves: looking for immunobiotics through in vitro and in vivo approaches for immunoprophylaxis applications. Microbiol Res 200:1u201313. https://doi.org/10.1016/j.micres.2017.03.008
    doi: 10.1016/j.micres.2017.03.008pubmed: 28527759google scholar: lookup
  64. Shi T, Nishiyama K, Nakamata K, Aryantini NP, Mikumo D, Oda Y et al (2012) Isolation of potential probiotic Lactobacillus rhamnosus strains from traditional fermented mare milk produced in Sumbawa Island of Indonesia. Biosci Biotechnol Biochem 76:1897u20131903. https://doi.org/10.1271/bbb.120385
    doi: 10.1271/bbb.120385pubmed: 23047104google scholar: lookup
  65. Silva BC, Sandes SH, Alvim LB, Bomfim MR, Nicoli JR, Neumann E et al (2017) Selection of a candidate probiotic strain of Pediococcus pentosaceus from the faecal microbiota of horses by in vitro testing and health claims in a mouse model of Salmonella infection. J Appl Microbiol 122:225u2013238. https://doi.org/10.1111/jam.13339
    doi: 10.1111/jam.13339pubmed: 27813217google scholar: lookup
  66. Silva JA, Marchesi A, Wiese B, Nader-Macias MEF (2019) Technological characterization of vaginal probiotic lactobacilli: resistance to osmotic stress and strains compatibility. J Appl Microbiol 127:1835u20131847. https://doi.org/10.1111/jam.14442
    doi: 10.1111/jam.14442pubmed: 31509635google scholar: lookup
  67. Silva JA, Marchesi A, Aristimuu00f1o Ficosecco MC, Nader-Macu00edas MEF (2022) Functional and safety characterization of beneficial vaginal lactic acid bacteria for the design of vaginal hygiene products. J Appl Microbiol 133:3041u20133058. https://doi.org/10.1111/jam.15752
    doi: 10.1111/jam.15752pubmed: 35950531google scholar: lookup
  68. Thomson P, Pareja J, Nu00fau00f1ez A, Santibu00e1u00f1ez R, Castro R (2022) Characterization of microbial communities and predicted metabolic pathways in the uterus of healthy mares. Open Vet J 12:797u2013805. https://doi.org/10.5455/OVJ.2022.v12.i6.3
    doi: 10.5455/OVJ.2022.v12.i6.3pubmed: 36650865pmc: 9805769google scholar: lookup
  69. Weese JS, Anderson ME, Lowe A, Penno R, da Costa TM, Button L et al (2004) Screening of the equine intestinal microflora for potential probiotic organisms. Equine Vet J 36:351u2013355. https://doi.org/10.2746/0425164044890616
    doi: 10.2746/0425164044890616pubmed: 15163044google scholar: lookup
  70. Zhang Q, Pan Y, Wang M, Sun L, Xi Y, Li M et al (2022) In vitro evaluation of probiotic properties of lactic acid bacteria isolated from the vagina of yak (Bos grunniens). PeerJ 10:e13177. https://doi.org/10.7717/peerj.13177
    doi: 10.7717/peerj.13177pubmed: 35368335pmc: 8973462google scholar: lookup

Citations

This article has been cited 0 times.