Veterinary sciences2023; 10(12); 698; doi: 10.3390/vetsci10120698

Phospholipase C Zeta 1 (PLCZ1): The Function and Potential for Fertility Assessment and In Vitro Embryo Production in Cattle and Horses.

Abstract: Phospholipase C Zeta 1 (PLCZ1) is considered a major sperm-borne oocyte activation factor. After gamete fusion, PLCZ1 triggers calcium oscillations in the oocyte, resulting in oocyte activation. In assisted fertilization, oocyte activation failure is a major cause of low fertility. Most cases of oocyte activation failures in humans related to male infertility are associated with gene mutations and/or altered PLCZ1. Consequently, PLCZ1 evaluation could be an effective diagnostic marker and predictor of sperm fertilizing potential for in vivo and in vitro embryo production. The characterization of PLCZ1 has been principally investigated in men and mice, with less known about the PLCZ1 impact on assisted reproduction in other species, such as cattle and horses. In horses, sperm PLCZ1 varies among stallions, and sperm populations with high PLCZ1 are associated with cleavage after intracytoplasmic sperm injection (ICSI). In contrast, bull sperm is less able to initiate calcium oscillations and undergo nuclear remodeling, resulting in poor cleavage after ICSI. Advantageously, injections of PLCZ1 are able to rescue oocyte failure in mouse oocytes after ICSI, promoting full development and birth. However, further research is needed to optimize PLCZ1 diagnostic tests for consistent association with fertility and to determine whether PLCZ1 as an oocyte-activating treatment is a physiological, efficient, and safe method for improving assisted fertilization in cattle and horses.
Publication Date: 2023-12-11 PubMed ID: 38133249PubMed Central: PMC10747197DOI: 10.3390/vetsci10120698Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article
  • Review

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

This research focuses on the role of Phospholipase C Zeta 1 (PLCZ1) as a primary activator of oocytes. It suggests that assessing PLCZ1 could help diagnose and predict sperm fertility. It also examines the potential of PLCZ1 to boost fertilization in cattle and horses, where current data is limited.

Function of PLCZ1 and its Potential for Fertility Assessment

  • PLCZ1 is a sperm-borne oocyte activator. When an oocyte or egg cell combines with a sperm cell, PLCZ1 catalyzes calcium oscillations in the oocyte, activating it.
  • A significant cause of low fertility in assisted fertilization procedures is the failure of oocyte activation. In majority of human cases, this failure is linked to male infertility and is often associated with mutations in the PLCZ1 gene or changes in the levels of PLCZ1.
  • Therefore, evaluating PLCZ1 could serve as a reliable marker for diagnosing fertility issues and predicting the fertilization potential of sperm. This could be beneficial for both natural and in vitro (lab-assisted) embryo production.

Research on PLCZ1 in Different Species

  • Current understanding of PLCZ1 is primarily based on studies in humans and mice, with limited knowledge on its role and impact on other species, especially large mammals like cattle and horses.
  • Studies have found variations in sperm PLCZ1 levels among individual stallions, with sperm populations high in PLCZ1 correlating with successful cleavage – the division of cells in the early embryo – following intracytoplasmic sperm injection (ICSI), an assisted fertilization technique.
  • Contrastingly, sperm from bulls seems less competent in initiating calcium oscillations and performing nuclear remodeling, leading to inadequate cleavage post-ICSI.

PLCZ1 as a Treatment for Fertility Improvement

  • Experiments have shown that introducing injections of PLCZ1 can remedy instances of oocyte activation failure in mouse oocytes, leading to full development and birth.
  • Despite these promising results, further research is required to develop and optimize PLCZ1 diagnostic tests that consistently correlate with fertility results. Additionally, it’s crucial to ascertain if using PLCZ1 as an oocyte-activating treatment is a biologically sound, efficient, and safe method for improving assisted fertilization in cattle and horses.

Cite This Article

APA
Gonzalez-Castro RA, Carnevale EM. (2023). Phospholipase C Zeta 1 (PLCZ1): The Function and Potential for Fertility Assessment and In Vitro Embryo Production in Cattle and Horses. Vet Sci, 10(12), 698. https://doi.org/10.3390/vetsci10120698

Publication

ISSN: 2306-7381
NlmUniqueID: 101680127
Country: Switzerland
Language: English
Volume: 10
Issue: 12
PII: 698

Researcher Affiliations

Gonzalez-Castro, Raul A
  • Equine Reproduction Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
Carnevale, Elaine M
  • Equine Reproduction Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.

Grant Funding

  • NA / The Cecil and Irene Hylton Foundation

Conflict of Interest Statement

The authors declare no conflict of interest.

References

This article includes 200 references
  1. Dozortsev D., Qian C., Ermilov A., Rybouchkin A., De Sutter P., Dhont M. Sperm-Associated Oocyte-Activating Factor Is Released from the Spermatozoon within 30 min after Injection as a Result of the Sperm-Oocyte Interaction. Hum. Reprod. 1997;12:2792u20132796. doi: 10.1093/humrep/12.12.2792.
    doi: 10.1093/humrep/12.12.2792pubmed: 9455854google scholar: lookup
  2. Stricker S.A. Comparative Biology of Calcium Signaling during Fertilization and Egg Activation in Animals. Dev. Biol. 1999;211:157u2013176. doi: 10.1006/dbio.1999.9340.
    doi: 10.1006/dbio.1999.9340pubmed: 10395780google scholar: lookup
  3. Malcuit C., Kurokawa M., Fissore R.A. Calcium Oscillations and Mammalian Egg Activation. J. Cell Physiol. 2006;206:565u2013573. doi: 10.1002/jcp.20471.
    doi: 10.1002/jcp.20471pubmed: 16155907google scholar: lookup
  4. Cox L.J., Larman M.G., Saunders C.M., Hashimoto K., Swann K., Lai F.A. Sperm Phospholipase Cu03b6 from Humans and Cynomolgus Monkeys Triggers Ca2+ Oscillations, Activation and Development of Mouse Oocytes. Reproduction. 2002;124:611u2013623. doi: 10.1530/rep.0.1240611.
    doi: 10.1530/rep.0.1240611pubmed: 12416999google scholar: lookup
  5. Saunders C.M., Larman M.G., Parrington J., Cox L.J., Royse J., Blayney L.M., Swann K., Lai F.A. PLC Zeta: A Sperm-Specific Trigger of Ca(2+) Oscillations in Eggs and Embryo Development. Development. 2002;129:3533u20133544. doi: 10.1242/dev.129.15.3533.
    doi: 10.1242/dev.129.15.3533pubmed: 12117804google scholar: lookup
  6. Knott J.G., Kurokawa M., Fissore R.A. Release of the Ca2+ Oscillation-Inducing Sperm Factor during Mouse Fertilization. Dev. Biol. 2003;260:536u2013547. doi: 10.1016/S0012-1606(03)00251-3.
    doi: 10.1016/S0012-1606(03)00251-3pubmed: 12921751google scholar: lookup
  7. Kouchi Z., Fukami K., Shikano T., Oda S., Nakamura Y., Takenawa T., Miyazaki S. Recombinant Phospholipase Cu03b6 Has High Ca2+ Sensitivity and Induces Ca2+ Oscillations in Mouse Eggs. Biochemistry. 2004;279:10408u201310412. doi: 10.1074/jbc.M313801200.
    doi: 10.1074/jbc.M313801200pubmed: 14701816google scholar: lookup
  8. Swann K., Saunders C.M., Rogers N.T., Lai F.A. PLCu03b6(Zeta): A Sperm Protein That Triggers Ca2+oscillations and Egg Activation in Mammals. Semin. Cell Dev. Biol. 2006;17:264u2013273. doi: 10.1016/j.semcdb.2006.03.009.
    doi: 10.1016/j.semcdb.2006.03.009pubmed: 16730199google scholar: lookup
  9. Nomikos M., Blayney L.M., Larman M.G., Campbell K., Rossbach A., Saunders C.M., Swann K., Lai F.A. Role of Phospholipase C-u03b6 Domains in Ca2+-Dependent Phosphatidylinositol 4,5-Bisphosphate Hydrolysis and Cytoplasmic Ca2+ Oscillations. J. Biol. Chem. 2005;280:31011u201331018. doi: 10.1074/jbc.M500629200.
    doi: 10.1074/jbc.M500629200pubmed: 16000311google scholar: lookup
  10. Swann K., Windsor S., Campbell K., Elgmati K., Nomikos M., Zernicka-Goetz M., Amso N., Lai F.A., Thomas A., Graham C. Phospholipase C-u03b6-Induced Ca2+ Oscillations Cause Coincident Cytoplasmic Movements in Human Oocytes that Failed to Fertilize after Intracytoplasmic Sperm Injection. Fertil. Steril. 2012;97:742u2013747. doi: 10.1016/j.fertnstert.2011.12.013.
  11. Nomikos M., Yu Y., Elgmati K., Theodoridou M., Campbell K., Vassilakopoulou V., Zikos C., Livaniou E., Amso N., Nounesis G., et al. Phospholipase Cu03b6 Rescues Failed Oocyte Activation in a Prototype of Male Factor Infertility. Fertil. Steril. 2013;99:76u201385. doi: 10.1016/j.fertnstert.2012.08.035.
  12. Yu Y., Saunders C.M., Lai F.A., Swann K. Preimplantation Development of Mouse Oocytes Activated by Different Levels of Human Phospholipase C Zeta. Hum. Reprod. 2008;23:365u2013373. doi: 10.1093/humrep/dem350.
    doi: 10.1093/humrep/dem350pubmed: 18003622google scholar: lookup
  13. Yoon S.Y., Fissore R.A. Release of Phospholipase C u03b6 and [Ca2+]i Oscillation-Inducing Activity during Mammalian Fertilization. Reproduction. 2007;134:695u2013704. doi: 10.1530/REP-07-0259.
    doi: 10.1530/REP-07-0259pubmed: 17965260google scholar: lookup
  14. Nomikos M. Novel Signalling Mechanism and Clinical Applications of Sperm-Specific PLCu03b6. Biochem. Soc. Trans. 2015;43:371u2013376. doi: 10.1042/BST20140291.
    doi: 10.1042/BST20140291pubmed: 26009178google scholar: lookup
  15. Kline D., Kline J.T. Repetitive Calcium Transients and the Role of Calcium in Exocytosis and Cell Cycle Activation in the Mouse Egg. Dev. Biol. 1992;149:80u201389. doi: 10.1016/0012-1606(92)90265-I.
    doi: 10.1016/0012-1606(92)90265-Ipubmed: 1728596google scholar: lookup
  16. Ducibella T., Huneau D., Angelichio E., Xu Z., Schultz R.M., Kopf G.S., Fissore R., Madoux S., Ozil J.-P. Egg-to-Embryo Transition Is Driven by Differential Responses to Ca2+ Oscillation Number. Dev. Biol. 2002;250:280u2013291. doi: 10.1006/dbio.2002.0788.
    doi: 10.1006/dbio.2002.0788pubmed: 12376103google scholar: lookup
  17. Yassine S., Escoffier J., Martinez G., Coutton C., Karaouzu00e9ne T., Zouari R., Ravanat J.L., Metzler-Guillemain C., Lee H.C., Fissore R., et al. Dpy19l2-Deficient Globozoospermic Sperm Display Altered Genome Packaging and DNA Damage That Compromises the Initiation of Embryo Development. Mol. Hum. Reprod. 2014;21:169u2013185. doi: 10.1093/molehr/gau099.
    doi: 10.1093/molehr/gau099pmc: PMC4311149pubmed: 25354700google scholar: lookup
  18. Zhou X., Liu Z., Jia W., Hou M., Zhang X. Actl7a Deficiency in Mice Leads to Male Infertility and Fertilization Failure. Biochem. Biophys. Res. Commun. 2022;623:154u2013161. doi: 10.1016/j.bbrc.2022.07.065.
    doi: 10.1016/j.bbrc.2022.07.065pubmed: 35921706google scholar: lookup
  19. Cheung S., Parrella A., Tavares D., Keating D., Xie P., Rosenwaks Z., Palermo G.D. Single-Center Thorough Evaluation and Targeted Treatment of Globozoospermic Men. Reprod. Physiol. Dis. 2021;38:2073u20132086. doi: 10.1007/s10815-021-02191-4.
    doi: 10.1007/s10815-021-02191-4pmc: PMC8417186pubmed: 33877510google scholar: lookup
  20. Hirose N., Kikuchi Y., Kageyama A., Sugita H., Sakurai M., Kawata Y., Terakawa J., Wakayama T., Ito J., Kashiwazaki N. Successful Production of Offspring Derived from Phospholipase C Zeta-Deficient Sperm by Additional Artificial Activation. Life. 2023;13:980. doi: 10.3390/life13040980.
    doi: 10.3390/life13040980pmc: PMC10143324pubmed: 37109509google scholar: lookup
  21. Wang T., Cao B., Cai Y., Chen S., Wang B., Yuan Y., Zhang Q. PLCZ11 Deficiency Decreased Fertility in Male Mice Which Is Associated with Sperm Quality Decline and Abnormal Cytoskeleton in Epididymis. Int. J. Mol. Sci. 2023;24:314. doi: 10.3390/ijms24010314.
    doi: 10.3390/ijms24010314pmc: PMC9820195pubmed: 36613757google scholar: lookup
  22. Nomikos M., Elgmati K., Theodoridou M., Calver B.L., Nounesis G., Swann K., Lai F.A. Phospholipase Cu03b6 Binding to PtdIns(4,5)P2 Requires the XY-Linker Region. J. Cell Sci. 2011;124:2582u20132590. doi: 10.1242/jcs.083485.
    doi: 10.1242/jcs.083485pmc: PMC3138701pubmed: 21730019google scholar: lookup
  23. Yu Y., Nomikos M., Theodoridou M., Nounesis G., Lai F.A., Swann K. PLC Causes Ca2+ Oscillations in Mouse Eggs by Targeting Intracellular and Not Plasma Membrane PI(4,5)P2. Mol. Biol. Cell. 2012;23:371u2013380. doi: 10.1091/mbc.e11-08-0687.
    doi: 10.1091/mbc.e11-08-0687pmc: PMC3258180pubmed: 22114355google scholar: lookup
  24. Heytens E., Schmitt-John T., Moser J.M., Jensen N.M., Soleimani R., Young C., Coward K., Parrington J., De Sutter P. Reduced Fertilization after ICSI and Abnormal Phospholipase C Zeta Presence in Spermatozoa from the Wobbler Mouse. Reprod. Biomed. Online. 2010;21:742u2013749. doi: 10.1016/j.rbmo.2010.07.006.
    doi: 10.1016/j.rbmo.2010.07.006pubmed: 21044866google scholar: lookup
  25. Heytens E., Parrington J., Coward K., Young C., Lambrecht S., Yoon S.Y., Fissore R.A., Hamer R., Deane C.M., Ruas M., et al. Reduced Amounts and Abnormal Forms of Phospholipase C Zeta (PLCu03b6) in Spermatozoa from Infertile Men. Hum. Reprod. 2009;24:2417u20132428. doi: 10.1093/humrep/dep207.
    doi: 10.1093/humrep/dep207pubmed: 19584136google scholar: lookup
  26. Nomikos M., Elgmati K., Theodoridou M., Calver B.L., Cumbes B., Nounesis G., Nounesis G., Swann K., Lai F.A. Male Infertility-Linked Point Mutation Disrupts the Ca2+ Oscillation-Inducing and PIP(2) Hydrolysis Activity of Sperm PLCu03b6. Biochem. J. 2011;434:211u2013217. doi: 10.1042/BJ20101772.
    doi: 10.1042/BJ20101772pmc: PMC3195387pubmed: 21204786google scholar: lookup
  27. Nomikos M., Stamatiadis P., Sanders J.R., Beck K., Calver B.L., Buntwal L., Lofty M., Sideratou Z., Swann K., Lai F.A. Male Infertility-Linked Point Mutation Reveals a Vital Binding Role for the C2 Domain of Sperm PLCu03b6. Biochem. J. 2017;474:1003u20131016. doi: 10.1042/BCJ20161057.
    doi: 10.1042/BCJ20161057pubmed: 28270562google scholar: lookup
  28. Kashir J., Konstantinidis M., Jones C., Heindryckx B., De Sutter P., Parrington J., Wells D., Coward K. Characterization of Two Heterozygous Mutations of the Oocyte Activation Factor Phospholipase C Zeta (PLCu03b6) from an Infertile Man by Use of Minisequencing of Individual Sperm and Expression in Somatic Cells. Fertil. Steril. 2012;98:423u2013431. doi: 10.1016/j.fertnstert.2012.05.002.
  29. Escoffier J., Lee H.C., Yassine S., Zouari R., Martinez G., Karaouzu00e8ne T., Coutton C., Kherraf Z.E., Halouani L., Triki C., et al. Homozygous Mutation of PLCZ1 Leads to Defective Human Oocyte Activation and Infertility That Is Not Rescued by the WW-Binding Protein PAWP. Hum. Mol. Genet. 2016;25:878u2013891. doi: 10.1093/hmg/ddv617.
    doi: 10.1093/hmg/ddv617pmc: PMC4754041pubmed: 26721930google scholar: lookup
  30. Torra-Massana M., Rodru00edguez A., Vassena R. Exonic Genetic Variants Associated with Unexpected Fertilization Failure and Zygotic Arrest after ICSI: A Systematic Review. Zygote. 2023;31:316u2013341. doi: 10.1017/S096719942300014X.
    doi: 10.1017/S096719942300014Xpubmed: 37212058google scholar: lookup
  31. Torra-Massana M., Cornet-Bartolomu00e9 D., Barragu00e1n M., Durban M., Ferrer-Vaquer A., Zambelli F., Rodriguez A., Oliva R., Vassena R. Novel Phospholipase C Zeta 1 Mutations Associated with Fertilization Failures after ICSI. Hum. Reprod. 2019;34:1494u20131504. doi: 10.1093/humrep/dez094.
    doi: 10.1093/humrep/dez094pubmed: 31347677google scholar: lookup
  32. Nazarian H., Azad N., Nazari L., Piryaei A., Heidari M.H., Masteri-Farahani R., Karimi M., Ghaffari-Novin M. Effect of Artificial Oocyte Activation on Intra-Cytoplasmic Sperm Injection Outcomes in Patients with Lower Percentage of Sperm Containing Phospholipase Cu03b6: A Randomized Clinical Trial. J. Reprod. Infertil. 2019;20:3u20139.
    pmc: PMC6386797pubmed: 30859076
  33. Cheung S., Xie P., Parrella A., Keating D., Rosenwaks Z., Palermo G.D. Identification and Treatment of Men with Phospholipase Cu03b6u2013Defective Spermatozoa. Fertil. Steril. 2020;114:535u2013544. doi: 10.1016/j.fertnstert.2020.04.044.
  34. Cardona Barberu00e1n A., Bonte D., Boel A., Thys V., Paredis R., Machtelinckx F., De Sutter P., De Croo I., Leybaert L., Stoop D., et al. Assisted Oocyte Activation Does Not Overcome Recurrent Embryo Developmental Problems. Hum. Reprod. 2023;38:872u2013885. doi: 10.1093/humrep/dead051.
    doi: 10.1093/humrep/dead051pubmed: 36931261google scholar: lookup
  35. Rahimizadeh P., Topraggaleh T.R., Nasr-Esfahani M.H., Ziarati N., Mirshahvaladi S., Esmaeili V., Seifi S., Eftekhari-Yazdi P., Shahverdi A. The Alteration of PLCu03b6 Protein Expression in Unexplained Infertile and Asthenoteratozoospermic Patients: A Potential Effect on Sperm Fertilization Ability. Mol. Reprod. Dev. 2020;87:115u2013123. doi: 10.1002/mrd.23293.
    doi: 10.1002/mrd.23293pubmed: 31736165google scholar: lookup
  36. Tavalaee M., Nomikos M., Lai F.A., Nasr-Esfahani M.H. Expression of Sperm PLCu03b6 and Clinical Outcomes of ICSI-AOA in Men Affected by Globozoospermia Due to DPY19L2 Deletion. Reprod. Biomed. Online. 2018;36:348u2013355. doi: 10.1016/j.rbmo.2017.12.013.
    doi: 10.1016/j.rbmo.2017.12.013pubmed: 29339016google scholar: lookup
  37. Mu J., Zhang Z., Wu L., Fu J., Chen B., Yan Z., Li B., Zhou Z., Wang W., Zhao L., et al. The Identification of Novel Mutations in PLCZ1 Responsible for Human Fertilization Failure and a Therapeutic Intervention by Artificial Oocyte Activation. Mol. Hum. Reprod. 2020;26:80u201387. doi: 10.1093/molehr/gaaa003.
    doi: 10.1093/molehr/gaaa003pubmed: 31953539google scholar: lookup
  38. Lin Y., Huang Y., Li B., Zhang T., Niu Y., Hu S., Ding Y., Yao G., Wei Z., Yao N., et al. Novel Mutations in PLCZ1 Lead to Early Embryonic Arrest as a Male Factor. Front. Cell Dev. Biol. 2023;11:1193248. doi: 10.3389/fcell.2023.1193248.
    doi: 10.3389/fcell.2023.1193248pmc: PMC10227596pubmed: 37261077google scholar: lookup
  39. Yuan P., Zheng L., Liang H., Lin Q., Ou S., Zhu Y., Lai L., Zhang Q., He Z., Wang W. Novel Mutations in the PLCZ1 Gene Associated with Human Low or Failed Fertilization. Mol. Genet. Genom. Med. 2020;8:e1470. doi: 10.1002/mgg3.1470.
    doi: 10.1002/mgg3.1470pmc: PMC7549595pubmed: 32840018google scholar: lookup
  40. Dai J., Dai C., Guo J., Zheng W., Zhang T., Li Y., Lu C., Gong F., Lu G., Lin G. Novel Homozygous Variations in PLCZ1 Lead to Poor or Failed Fertilization Characterized by Abnormal Localization Patterns of PLCu03b6 in Sperm. Clin. Genet. 2020;97:347u2013351. doi: 10.1111/cge.13636.
    doi: 10.1111/cge.13636pubmed: 31463947google scholar: lookup
  41. Peng Y., Lin Y., Deng K., Shen J., Cui Y., Liu J., Yang X., Diao F. Mutations in PLCZ1 Induce Male Infertility Associated with Polyspermy and Fertilization Failure. J. Assist. Reprod. Genet. 2023;40:53u201364. doi: 10.1007/s10815-022-02670-2.
    doi: 10.1007/s10815-022-02670-2pmc: PMC9840742pubmed: 36529831google scholar: lookup
  42. Wang F., Zhang J., Kong S., Li C., Zhang Z., He X., Wu H., Tang D., Zha X., Tan Q., et al. A Homozygous Nonsense Mutation of PLCZ1 Cause Male Infertility with Oocyte Activation Deficiency. J. Assist. Reprod. Genet. 2020;37:821u2013828. doi: 10.1007/s10815-020-01719-4.
    doi: 10.1007/s10815-020-01719-4pmc: PMC7183032pubmed: 32146562google scholar: lookup
  43. Kashir J., Mistry B.V., BuSaleh L., Abu-Dawas R., Nomikos M., Ajlan A., Abu-Dawud R., AlYacoub N., AlHassan S., Lai F.A., et al. Phospholipase C Zeta Profiles Are Indicative of Optimal Sperm Parameters and Fertilisation Success in Patients Undergoing Fertility Treatment. Andrology. 2020;8:1143u20131159. doi: 10.1111/andr.12796.
    doi: 10.1111/andr.12796pubmed: 32298520google scholar: lookup
  44. Tavalaee M., Kiani-Esfahani A., Nasr-Esfahani M.H. Relationship between Potential Sperm Factors Involved in Oocyte Activation and Sperm DNA Fragmentation with Intra-Cytoplasmic Sperm Injection Clinical Outcomes. Cell J. 2016;18:588u2013596.
    pmc: PMC5086337pubmed: 28042543
  45. Yelumalai S., Yeste M., Jones C., Amdani S.N., Kashir J., Mounce G., Da Silva S.J.M., Barratt C.L., McVeigh E., Coward K. Total Levels, Localization Patterns, and Proportions of Sperm Exhibiting Phospholipase C Zeta Are Significantly Correlated with Fertilization Rates after Intracytoplasmic Sperm Injection. Fertil. Steril. 2015;104:561u2013568.e4. doi: 10.1016/j.fertnstert.2015.05.018.
  46. Kamali-Dolat Abadi M., Tavalaee M., Shahverdi A., Nasr-Esfahani M.H. Evaluation of PLCu03b6 and PAWP Expression in Globozoospermic Individuals. Cell J. 2016;18:438u2013445.
    pmc: PMC5011332pubmed: 27602326
  47. Suarez S.S. Interactions of Gametes with the Female Reproductive Tract. Cell Tissue Res. 2016;363:185u2013194. doi: 10.1007/s00441-015-2244-2.
    doi: 10.1007/s00441-015-2244-2pmc: PMC4703433pubmed: 26183721google scholar: lookup
  48. Suarez S.S., Pacey A.A. Sperm Transport in the Female Reproductive Tract. Hum. Reprod. Update. 2006;12:23u201337. doi: 10.1093/humupd/dmi047.
    doi: 10.1093/humupd/dmi047pubmed: 16272225google scholar: lookup
  49. Hachem A., Godwin J., Ruas M., Lee H.C., Buitrago M.F., Ardestani G., Bassett A., Fox S., Navarrete F., De Sutter P., et al. Plcu03b6 Is the Physiological Trigger of the Ca2+ Oscillations That Induce Embryogenesis in Mammals but Conception Can Occur in Its Absence. Development. 2017;144:2914u20132924. doi: 10.1242/dev.150227.
    doi: 10.1242/dev.150227pmc: PMC5592814pubmed: 28694258google scholar: lookup
  50. Nozawa K., Satouh Y., Fujimoto T., Oji A., Ikawa M. Sperm-Borne Phospholipase C Zeta-1 Ensures Monospermic Fertilization in Mice. Sci. Rep. 2018;8:1315. doi: 10.1038/s41598-018-19497-6.
    doi: 10.1038/s41598-018-19497-6pmc: PMC5778054pubmed: 29358633google scholar: lookup
  51. Vanden Meerschaut F., Leybaert L., Nikiforaki D., Qian C., Heindryckx B., De Sutter P. Diagnostic and Prognostic Value of Calcium Oscillatory Pattern Analysis for Patients with ICSI Fertilization Failure. Hum. Reprod. 2013;28:87u201398. doi: 10.1093/humrep/des368.
    doi: 10.1093/humrep/des368pubmed: 23081875google scholar: lookup
  52. Souza Setti A., Ferreira R.C., Paes De Almeida Ferreira Braga D., De Cu00e1ssia Su00e1vio Figueira R., Iaconelli A., Borges E. Intracytoplasmic Sperm Injection Outcome versus Intracytoplasmic Morphologically Selected Sperm Injection Outcome: A Meta-Analysis. Reprod. Biomed. Online. 2010;21:450u2013455. doi: 10.1016/j.rbmo.2010.05.017.
    doi: 10.1016/j.rbmo.2010.05.017pubmed: 20800549google scholar: lookup
  53. Ruggeri E., Deluca K.F., Galli C., Lazzari G., Deluca J.G., Carnevale E.M. Cytoskeletal Alterations Associated with Donor Age and Culture Interval for Equine Oocytes and Potential Zygotes That Failed to Cleave after Intracytoplasmic Sperm Injection. Reprod. Fertil. Dev. 2015;27:944u2013956. doi: 10.1071/RD14468.
    doi: 10.1071/RD14468pmc: PMC4934900pubmed: 25798646google scholar: lookup
  54. Galli C., Colleoni S., Duchi R., Lazzari G. Male Factors Affecting the Success of Equine In Vitro Embryo Production by Ovum Pickup-Intracytoplasmic Sperm Injection in a Clinical Setting. J. Equine Vet. Sci. 2016;43:S6u2013S10. doi: 10.1016/j.jevs.2016.05.014.
  55. Gonzalez-Castro R.A., Amoroso-Sanches F., Stokes J.E., Graham J.K., Carnevale E.M. Localisation of Phospholipase Cu03b61 (PLCZ1) and Postacrosomal WW-Binding Protein (WBP2 N-Terminal like) on Equine Spermatozoa and Flow Cytometry Quantification of PLCZ1 and Association with Cleavage in Vitro. Reprod. Fertil. Dev. 2019;31:1778u20131792. doi: 10.1071/RD19217.
    doi: 10.1071/RD19217pubmed: 31597592google scholar: lookup
  56. Colleoni S., Lazzari G., Duchi R., Baca Castex C., Mari G., Lagutina I., Galli C. Fertilization and Development of Oocytes after ICSI with Semen of Stallions with Different in Vivo Fertility. J. Equine Vet. Sci. 2012;32:408u2013409. doi: 10.1016/j.jevs.2012.05.030.
  57. Gonzalez-Castro R., Carnevale E. Association between Equine Sperm Parameters and ICSI Outcome. J. Equine Vet. Sci. 2016;41:62. doi: 10.1016/j.jevs.2016.04.041.
  58. Yoneda A., Kashima M., Yoshida S., Terada K., Nakagawa S., Sakamoto A., Hayakawa K., Suzuki K., Ueda J., Watanabe T. Molecular Cloning, Testicular Postnatal Expression, and Oocyte-Activating Potential of Porcine Phospholipase Cu03b6. Reproduction. 2006;132:393u2013401. doi: 10.1530/rep.1.01018.
    doi: 10.1530/rep.1.01018pubmed: 16940280google scholar: lookup
  59. Kurokawa M., Sato K.I., Wu H., He C., Malcuit C., Black S.J., Fukami K., Fissore R.A. Functional, Biochemical, and Chromatographic Characterization of the Complete [Ca2+]i Oscillation-Inducing Activity of Porcine Sperm. Dev. Biol. 2005;285:376u2013392. doi: 10.1016/j.ydbio.2005.06.029.
    doi: 10.1016/j.ydbio.2005.06.029pubmed: 16098961google scholar: lookup
  60. Atabay E.P., Tadeo R.D., Atabay E.C., Venturina E.V., Fissore R.A., Mingala C.N. Molecular Characterization and Comparison of Phospholipase C Zeta (PLCZ1) Gene Between Swamp (Bubalus Carabanensis) and Riverine (Bubalus Bubalis) Buffaloes: Its Implications and Future Perspectives. Anim. Biotechnol. 2018;29:190u2013198. doi: 10.1080/10495398.2017.1350689.
    doi: 10.1080/10495398.2017.1350689pubmed: 28799828google scholar: lookup
  61. Kasimanickam V., Kasimanickam R., Arangasamy A., Saberivand A., Stevenson J.S., Kastelic J.P. Association between MRNA Abundance of Functional Sperm Function Proteins and Fertility of Holstein Bulls. Theriogenology. 2012;78:2007u20132019.e2. doi: 10.1016/j.theriogenology.2012.07.016.
  62. Cooney M.A., Malcuit C., Cheon B., Holland M.K., Fissore R.A., Du2019Cruz N.T. Species-Specific Differences in the Activity and Nuclear Localization of Murine and Bovine Phospholipase C Zeta 1. Biol. Reprod. 2010;83:92u2013101. doi: 10.1095/biolreprod.109.079814.
  63. Unnikrishnan V., Kastelic J.P., Thundathil J.C. Ouabain-Induced Activation of Phospholipase C Zeta and Its Contributions to Bovine Sperm Capacitation. Cell Tissue Res. 2021;385:785u2013801. doi: 10.1007/s00441-021-03455-2.
    doi: 10.1007/s00441-021-03455-2pubmed: 33885964google scholar: lookup
  64. Meju00eda-Flores I., Chiquete-Fu00e9lix N., Palma-Lara I., Uribe-Carvajal S., De Lourdes Juu00e1rez-Mosqueda M. During Capacitation in Bull Spermatozoa, Actin and PLC-u03b6 Undergo Dynamic Interactions. Zygote. 2017;25:558u2013566. doi: 10.1017/S0967199417000260.
    doi: 10.1017/S0967199417000260pubmed: 28929980google scholar: lookup
  65. Villaverde A.I.S.B., Fioratti E.G., Fissore R.A., He C., Lee H.C., Souza F.F., Landim-Alvarenga F.C., Lopes M.D. Identification of Phospholipase C Zeta in Normospermic and Teratospermic Domestic Cat Sperm. Theriogenology. 2013;80:722u2013729. doi: 10.1016/j.theriogenology.2013.06.005.
  66. Yoda A., Oda S., Shikano T., Kouchi Z., Awaji T., Shirakawa H., Kinoshita K., Miyazaki S. Ca2+ Oscillation-Inducing Phospholipase C Zeta Expressed in Mouse Eggs Is Accumulated to the Pronucleus during Egg Activation. Dev. Biol. 2004;268:245u2013257. doi: 10.1016/j.ydbio.2003.12.028.
    doi: 10.1016/j.ydbio.2003.12.028pubmed: 15063165google scholar: lookup
  67. Young C., Grasa P., Coward K., Davis L.C., Parrington J. Phospholipase C Zeta Undergoes Dynamic Changes in Its Pattern of Localization in Sperm during Capacitation and the Acrosome Reaction. Fertil. Steril. 2009;91:2230u20132242. doi: 10.1016/j.fertnstert.2008.05.021.
  68. Bedford-Guaus S.J., McPartlin L.A., Xie J., Westmiller S.L., Buffone M.G., Roberson M.S. Molecular Cloning and Characterization of Phospholipase C Zeta in Equine Sperm and Testis Reveals Species-Specific Differences in Expression of Catalytically Active Protein. Biol. Reprod. 2011;85:78u201388. doi: 10.1095/biolreprod.110.089466.
    doi: 10.1095/biolreprod.110.089466pubmed: 21389344google scholar: lookup
  69. Sato K., Wakai T., Seita Y., Takizawa A., Fissore R.A., Ito J., Kashiwazaki N. Molecular Characteristics of Horse Phospholipase C Zeta (PLCu03b6) Anim. Sci. J. 2013;84:359u2013368. doi: 10.1111/asj.12044.
    doi: 10.1111/asj.12044pubmed: 23590511google scholar: lookup
  70. Fujimoto S., Yoshida N., Fukui T., Amanai M., Isobe T., Itagaki C., Izumi T., Perry A.C.F. Mammalian Phospholipase Cu03b6 Induces Oocyte Activation from the Sperm Perinuclear Matrix. Dev. Biol. 2004;274:370u2013383. doi: 10.1016/j.ydbio.2004.07.025.
    doi: 10.1016/j.ydbio.2004.07.025pubmed: 15385165google scholar: lookup
  71. Ito M., Shikano T., Oda S., Horiguchi T., Tanimoto S., Awaji T., Mitani H., Miyazaki S. Difference in Ca2+ Oscillation-Inducing Activity and Nuclear Translocation Ability of PLCZ1, an Egg-Activating Sperm Factor Candidate, Between Mouse, Rat, Human, and Medaka Fish1. Biol. Reprod. 2008;78:1081u20131090. doi: 10.1095/biolreprod.108.067801.
    doi: 10.1095/biolreprod.108.067801pubmed: 18322275google scholar: lookup
  72. Nomikos M., Mulgrew-Nesbitt A., Pallavi P., Mihalyne G., Zaitseva I., Swann K., Lai F.A., Murray D., McLaughlin S. Binding of Phosphoinositide-Specific Phospholipase C-u03b6 (PLC-u03b6) to Phospholipid Membranes: Potential Role of an Unstructured Cluster of Basic Residues. J. Biol. Chem. 2007;282:16644u201316653. doi: 10.1074/jbc.M701072200.
    doi: 10.1074/jbc.M701072200pubmed: 17430887google scholar: lookup
  73. Nomikos M., Swann K., Lai F.A. Starting a New Life: Sperm PLC-Zeta Mobilizes the Ca2+ Signal That Induces Egg Activation and Embryo Development: An Essential Phospholipase C with Implications for Male Infertility. BioEssays. 2012;34:126u2013134. doi: 10.1002/bies.201100127.
    doi: 10.1002/bies.201100127pubmed: 22086556google scholar: lookup
  74. Nomikos M., Kashir J., Swann K., Lai F.A. Sperm PLCu03b6: From Structure to Ca2+ Oscillations, Egg Activation and Therapeutic Potential. FEBS Lett. 2013;587:3609u20133616. doi: 10.1016/j.febslet.2013.10.008.
    doi: 10.1016/j.febslet.2013.10.008pubmed: 24157362google scholar: lookup
  75. Kuroda K., Ito M., Shikano T., Awaji T., Yoda A., Takeuchi H., Kinoshita K., Miyazaki S. The Role of X/Y Linker Region and N-Terminal EF-Hand Domain in Nuclear Translocation and Ca2+ Oscillation-Inducing Activities of Phospholipase Cu03b6, a Mammalian Egg-Activating Factor. J. Biol. Chem. 2006;281:27794u201327805. doi: 10.1074/jbc.M603473200.
    doi: 10.1074/jbc.M603473200pubmed: 16854985google scholar: lookup
  76. Thanassoulas A., Swann K., Lai F.A., Nomikos M. The Structure and Function Relationship of Sperm PLCZ1. Reproduction. 2022;164:F1u2013F8. doi: 10.1530/REP-21-0477.
    doi: 10.1530/REP-21-0477pubmed: 35521907google scholar: lookup
  77. Sanders J.R., Ashley B., Moon A., Woolley T.E., Swann K. PLCu03b6 Induced Ca2+ Oscillations in Mouse Eggs Involve a Positive Feedback Cycle of Ca2+ Induced InsP3 Formation from Cytoplasmic PIP2. Front. Cell Dev. Biol. 2018;6:36. doi: 10.3389/fcell.2018.00036.
    doi: 10.3389/fcell.2018.00036pmc: PMC5891639pubmed: 29666796google scholar: lookup
  78. Theodoridou M., Nomikos M., Parthimos D., Gonzalez-Garcia J.R., Elgmati K., Calver B.L., Sideratou Z., Nounesis G., Swann K., Lai F.A. Chimeras of Sperm PLCu03b6 Reveal Disparate Protein Domain Functions in the Generation of Intracellular Ca2+ Oscillations in Mammalian Eggs at Fertilization. Mol. Hum. Reprod. 2013;19:852u2013864. doi: 10.1093/molehr/gat070.
    doi: 10.1093/molehr/gat070pmc: PMC3843027pubmed: 24152875google scholar: lookup
  79. Kurokawa M., Yoon S.Y., Alfandari D., Fukami K., Sato K.-I., Fissore R.A. Proteolytic Processing of Phospholipase Cu03b6 and [Ca2+]i Oscillations during Mammalian Fertilization. Dev. Biol. 2007;312:407u2013418. doi: 10.1016/j.ydbio.2007.09.040.
    doi: 10.1016/j.ydbio.2007.09.040pmc: PMC2254324pubmed: 18028898google scholar: lookup
  80. Stein P., Savy V., Williams A.M., Williams C.J. Modulators of Calcium Signalling at Fertilization. Open Biol. 2020;10:200118. doi: 10.1098/rsob.200118.
    doi: 10.1098/rsob.200118pmc: PMC7574550pubmed: 32673518google scholar: lookup
  81. Jones K., Soeller C., Cannell M. The Passage of Ca2+ and Fluorescent Markers between the Sperm and the Egg after Fusion in the Mouse. Development. 1998;125:4627u20134635. doi: 10.1242/dev.125.23.4627.
    doi: 10.1242/dev.125.23.4627pubmed: 9806912google scholar: lookup
  82. Lawrence Y., Whitaker M., Swann K. Sperm-Egg Fusion Is the Prelude to the Initial Ca2+ Increase at Fertilization in the Mouse. Development. 1997;124:233u2013241. doi: 10.1242/dev.124.1.233.
    doi: 10.1242/dev.124.1.233pubmed: 9006083google scholar: lookup
  83. Kashir J., Nomikos M., Lai F.A., Swann K. Sperm-Induced Ca2+ Release during Egg Activation in Mammals. Biochem. Biophys. Res. Commun. 2014;450:1204u20131211. doi: 10.1016/j.bbrc.2014.04.078.
    doi: 10.1016/j.bbrc.2014.04.078pubmed: 24769204google scholar: lookup
  84. Nomikos M., Kashir J., Lai F.A. The Role and Mechanism of Action of Sperm PLC-Zeta in Mammalian Fertilisation. Biochem. J. 2017;474:3659u20133673. doi: 10.1042/BCJ20160521.
    doi: 10.1042/BCJ20160521pubmed: 29061915google scholar: lookup
  85. Coward K., Ponting C.P., Chang H.Y., Hibbitt O., Savolainen P., Jones K.T., Parrington J. Phospholipase Cu03b6, the Trigger Egg Activation in Mammals, Is Present in a Non-Mammalian Species. Reproduction. 2005;130:157u2013163. doi: 10.1530/rep.1.00707.
    doi: 10.1530/rep.1.00707pubmed: 16049153google scholar: lookup
  86. Ross P.J., Beyhan Z., Iager A.E., Yoon S.Y., Malcuit C., Schellander K., Fissore R.A., Cibelli J.B. Parthenogenetic Activation of Bovine Oocytes Using Bovine and Murine Phospholipase C Zeta. BMC Dev. Biol. 2008;8:16. doi: 10.1186/1471-213X-8-16.
    doi: 10.1186/1471-213X-8-16pmc: PMC2266721pubmed: 18284699google scholar: lookup
  87. Swann K., Lai F.A. PLCu03b6 and the Initiation of Ca2+ Oscillations in Fertilizing Mammalian Eggs. Cell Calcium. 2013;53:55u201362. doi: 10.1016/j.ceca.2012.11.001.
    doi: 10.1016/j.ceca.2012.11.001pubmed: 23218672google scholar: lookup
  88. Amdani S.N., Yeste M., Jones C., Coward K. Phospholipase C Zeta (PLCu03b6) and Male Infertility: Clinical Update and Topical Developments. Adv. Biol. Regul. 2016;61:58u201367. doi: 10.1016/j.jbior.2015.11.009.
    doi: 10.1016/j.jbior.2015.11.009pubmed: 26700242google scholar: lookup
  89. Abdulsamad H.M.R., Murtaza Z.F., AlMuhairi H.M., Bafleh W.S., AlMansoori S.A., AlQubaisi S.A., Hamdan H., Kashir J. The Therapeutic and Diagnostic Potential of Phospholipase C Zeta, Oocyte Activation, and Calcium in Treating Human Infertility. Pharmaceuticals. 2023;16:441. doi: 10.3390/ph16030441.
    doi: 10.3390/ph16030441pmc: PMC10056371pubmed: 36986540google scholar: lookup
  90. Ozil J.P., Huneau D. Activation of Rabbit Oocytes: The Impact of the Ca2+ Signal Regime on Development. Development. 2001;128:917u2013928. doi: 10.1242/dev.128.6.917.
    doi: 10.1242/dev.128.6.917pubmed: 11222146google scholar: lookup
  91. Bedford-Guaus S., Yoon S.Y., Fissore R.A., Choi Y.O., Hinrichs K. Microinjection of Mouse Phospholipase Cu03b6 Complementary RNA into Mare Oocytes Induces Long-Lasting Intracellular Calcium Oscillations and Embryonic Development. Reprod. Fertil. Dev. 2008;20:875u2013883. doi: 10.1071/RD08115.
    doi: 10.1071/RD08115pubmed: 19007551google scholar: lookup
  92. Kim A.M., Bernhardt M.L., Kong B.Y., Ahn R.W., Vogt S., Woodruff T.K., Ou2019Halloran T.V. Zinc Sparks Are Triggered by Fertilization and Facilitate Cell Cycle Resumption in Mammalian Eggs. ACS Chem. Biol. 2011;6:716u2013723. doi: 10.1021/cb200084y.
    doi: 10.1021/cb200084ypmc: PMC3171139pubmed: 21526836google scholar: lookup
  93. Que E.L., Bleher R., Duncan F.E., Kong B.Y., Gleber S.C., Vogt S., Chen S., Garwin S.A., Bayer A.R., Dravid V.P., et al. Quantitative Mapping of Zinc Fluxes in the Mammalian Egg Reveals the Origin of Fertilization-Induced Zinc Sparks. Nat. Chem. 2015;7:130u2013139. doi: 10.1038/nchem.2133.
    doi: 10.1038/nchem.2133pmc: PMC4315321pubmed: 25615666google scholar: lookup
  94. Suzuki T., Yoshida N., Suzuki E., Okuda E., Perry A.C.F. Full-Term Mouse Development by Abolishing Zn2+-Dependent Metaphase II Arrest without Ca2+ Release. Development. 2010;137:2659u20132669. doi: 10.1242/dev.049791.
    doi: 10.1242/dev.049791pubmed: 20591924google scholar: lookup
  95. Bernhardt M.L., Kim A.M., Ou2019Halloran T.V., Woodruff T.K. Zinc Requirement during Meiosis I-Meiosis II Transition in Mouse Oocytes Is Independent of the MOS-MAPK Pathway. Biol. Reprod. 2011;84:526u2013536. doi: 10.1095/biolreprod.110.086488.
  96. Duncan F.E., Que E.L., Zhang N., Feinberg E.C., Ou2019Halloran T.V., Woodruff T.K. The Zinc Spark Is an Inorganic Signature of Human Egg Activation. Sci. Rep. 2016;6:24737. doi: 10.1038/srep24737.
    doi: 10.1038/srep24737pmc: PMC4845039pubmed: 27113677google scholar: lookup
  97. Kim A.M., Vogt S., Ou2019Halloran T.V., Woodruff T.K. Zinc Availability Regulates Exit from Meiosis in Maturing Mammalian Oocytes. Nat. Chem. Biol. 2010;6:674u2013681. doi: 10.1038/nchembio.419.
    doi: 10.1038/nchembio.419pmc: PMC2924620pubmed: 20693991google scholar: lookup
  98. Tian X., Anthony K., Neuberger T., Diaz F.J. Preconception Zinc Deficiency Disrupts Postimplantation Fetal and Placental Development in Mice. Biol. Reprod. 2014;90:83. doi: 10.1095/biolreprod.113.113910.
  99. Kong B.Y., Bernhardt M.L., Kim A.M., Ou2019Halloran T.V., Woodruff T.K. Zinc Maintains Prophase i Arrest in Mouse Oocytes through Regulation of the: Mos-Mapk Pathway. Biol. Reprod. 2012;87:11. doi: 10.1095/biolreprod.112.099390.
  100. Kong B.Y., Duncan F.E., Que E.L., Kim A.M., Ou2019Halloran T.V., Woodruff T.K. Maternally-Derived Zinc Transporters ZIP6 and ZIP10 Drive the Mammalian Oocyte-to-Egg Transition. Mol. Hum. Reprod. 2014;20:1077u20131089. doi: 10.1093/molehr/gau066.
    doi: 10.1093/molehr/gau066pmc: PMC4209882pubmed: 25143461google scholar: lookup
  101. Kong B.Y., Duncan F.E., Que E.L., Xu Y., Vogt S., Ou2019halloran T.V., Woodruff T.K. The Inorganic Anatomy of the Mammalian Preimplantation Embryo and the Requirement of Zinc During the First Mitotic Divisions. Dev. Dyn. 2015;244:936u2013947. doi: 10.1002/dvdy.24285.
    doi: 10.1002/dvdy.24285pmc: PMC4617753pubmed: 25903945google scholar: lookup
  102. Zhang N., Duncan F.E., Que E.L., Ou2019Halloran T.V., Woodruff T.K. The Fertilization-Induced Zinc Spark Is a Novel Biomarker of Mouse Embryo Quality and Early Development. Sci. Rep. 2016;6:22772. doi: 10.1038/srep22772.
    doi: 10.1038/srep22772pmc: PMC4796984pubmed: 26987302google scholar: lookup
  103. Bernhardt M.L., Kong B.Y., Kim A.M., Ou2019Halloran T.V., Woodruff T.K. A Zinc-Dependent Mechanism Regulates Meiotic Progression in Mammalian Oocytes. Biol. Reprod. 2012;86:114. doi: 10.1095/biolreprod.111.097253.
  104. Que E.L., Duncan F.E., Lee H.C., Hornick J.E., Vogt S., Fissore R.A., Ou2019Halloran T.V., Woodruff T.K. Bovine Eggs Release Zinc in Response to Parthenogenetic and Sperm-Induced Egg Activation. Theriogenology. 2019;127:41u201348. doi: 10.1016/j.theriogenology.2018.12.031.
  105. Malcuit C., Knott J.G., He C., Wainwright T., Parys J.B., Robl J.M., Fissore R.A. Fertilization and Inositol 1,4,5-Trisphosphate (IP3)-Induced Calcium Release in Type-1 Inositol 1,4,5-Trisphosphate Receptor down-Regulated Bovine Eggs. Biol. Reprod. 2005;73:2u201313. doi: 10.1095/biolreprod.104.037333.
    doi: 10.1095/biolreprod.104.037333pubmed: 15744020google scholar: lookup
  106. Malcuit C., Maserati M., Takahashi Y., Page R., Fissore R.A. Intracytoplasmic Sperm Injection in the Bovine Induces Abnormal [Ca 2+]i Responses and Oocyte Activation. Reprod. Fertil. Dev. 2006;18:39u201351. doi: 10.1071/RD05131.
    doi: 10.1071/RD05131pubmed: 16478601google scholar: lookup
  107. Larman M.G., Saunders C.M., Carroll J., Lai F.A., Swann K. Cell Cycle-Dependent Ca2+ Oscillations in Mouse Embryos Are Regulated by Nuclear Targeting of PLCu03b6. J. Cell Sci. 2004;117:2513u20132521. doi: 10.1242/jcs.01109.
    doi: 10.1242/jcs.01109pubmed: 15159452google scholar: lookup
  108. Escoffier J., Yassine S., Lee H.C., Martinez G., Delaroche J., Coutton C., Karaouzu00e9ne T., Zouari R., Metzler-Guillemain C., Pernet-Gallay K., et al. Subcellular Localization of Phospholipase Cz in Human Sperm and Its Absence in DPY19L2-Deficient Sperm Are Consistent with Its Role in Oocyte Activation. Mol. Hum. Reprod. 2014;21:157u2013168. doi: 10.1093/molehr/gau098.
    doi: 10.1093/molehr/gau098pmc: PMC4311148pubmed: 25354701google scholar: lookup
  109. Grasa P., Coward K., Young C., Parrington J. The Pattern of Localization of the Putative Oocyte Activation Factor, Phospholipase Cu03b6, in Uncapacitated, Capacitated, and Ionophore-Treated Human Spermatozoa. Hum. Reprod. 2008;23:2513u20132522. doi: 10.1093/humrep/den280.
    doi: 10.1093/humrep/den280pubmed: 18653671google scholar: lookup
  110. Sutovsky P., Manandhar G., Wu A., Oko R. Interactions of Sperm Perinuclear Theca with the Oocyte: Implications for Oocyte Activation, Anti-Polyspermy Defense, and Assisted Reproduction. Microsc. Res. Tech. 2003;61:362u2013378. doi: 10.1002/jemt.10350.
    doi: 10.1002/jemt.10350pubmed: 12811742google scholar: lookup
  111. Oko R., Sutovsky P. Biogenesis of Sperm Perinuclear Theca and Its Role in Sperm Functional Competence and Fertilization. J. Reprod. Immunol. 2009;83:2u20137. doi: 10.1016/j.jri.2009.05.008.
    doi: 10.1016/j.jri.2009.05.008pubmed: 19883945google scholar: lookup
  112. Gonzalez-Castro R., Graham J., Carnevale E. Flow Cytometric Expression Levels of Phospholipase C Zeta in Capacitated and Acrosome Reacted Stallion Sperm. Anim. Reprod. Sci. 2018;194:e2. doi: 10.1016/j.anireprosci.2018.04.009.
  113. Wu H., He C.-L., Jehn B., Black S.J., Fissore R.A. Partial Characterization of the Calcium-Releasing Activity of Porcine Sperm Cytosolic Extracts. Dev. Biol. 1998;203:369u2013381. doi: 10.1006/dbio.1998.9070.
    doi: 10.1006/dbio.1998.9070pubmed: 9808787google scholar: lookup
  114. Wu H., Smyth J., Luzzi V., Fukami K., Takenawa T., Black S.L., Allbritton N.L., Fissore R.A. Sperm Factor Induces Intracellular Calcium Oscillations by Stimulating the Phosphoinositide Pathway. Biol. Reprod. 2001;64:1338u20131349. doi: 10.1095/biolreprod64.5.1338.
    doi: 10.1095/biolreprod64.5.1338pubmed: 11319137google scholar: lookup
  115. Kurokawa M., Fissore R.A. ICSI-generated Mouse Zygotes Exhibit Altered Calcium Oscillations, Inositol 1,4,5-trisphosphate Receptor-1 Down-regulation, and Embryo Development. MHR Basic. Sci. Reprod. Med. 2003;9:523u2013533. doi: 10.1093/molehr/gag072.
    doi: 10.1093/molehr/gag072pubmed: 12900511google scholar: lookup
  116. Kimura Y., Yanagimachi R., Kuretake S., Bortkiewicz H., Perry A.C.F., Yanagimachi H. Analysis of Mouse Oocyte Activation Suggests the Involvement of Sperm Perinuclear Materialu2019. Biol. Reprod. 1998;58:1407u20131415. doi: 10.1095/biolreprod58.6.1407.
    doi: 10.1095/biolreprod58.6.1407pubmed: 9623599google scholar: lookup
  117. Miyazaki S., Shirakawa H., Nakada K., Honda Y. Essential Role of the Inositol 1,4,5-Trisphosphate Receptor/Ca2+ Release Channel in Ca2+ Waves and Ca2+ Oscillations at Fertilization of Mammalian Eggs. Dev. Biol. 1993;158:62u201378. doi: 10.1006/dbio.1993.1168.
    doi: 10.1006/dbio.1993.1168pubmed: 8392472google scholar: lookup
  118. Igusa Y., Miyazaki S.-I., Yamashita N. Periodic Hyperpolarizing Responses in Hamster and Mouse Eggs Fertilized with Mouse Sperm. J. Physiol. 1983;340:633u2013647. doi: 10.1113/jphysiol.1983.sp014784.
  119. Dominguez E.M., Moreno-Irusta A., Rodriguez M.B., Salamone D.F., de Arruda R.P., Losinno L., Giojalas L.C. Chemotactic Selection of Frozen-Thawed Stallion Sperm Improves Sperm Quality and Heterologous Binding to Oocytes. Anim. Reprod. Sci. 2020;221:106582. doi: 10.1016/j.anireprosci.2020.106582.
  120. Ito J., Kashiwazaki N. Molecular Mechanism of Fertilization in the Pig. Anim. Sci. J. 2012;83:669u2013682. doi: 10.1111/j.1740-0929.2012.01044.x.
  121. Gonzalez-Castro R.A., Whitcomb L.A., Pinsinski E.C., Carnevale E.M. Cryopreservation of Equine Spermatozoa Reduces Plasma Membrane Integrity and Phospholipase C Zeta 1 Content as Associated with Oocyte Activation. Andrology. 2023:1u201314. doi: 10.1111/andr.13517. Online ahead of print .
    doi: 10.1111/andr.13517pubmed: 37608516google scholar: lookup
  122. Bedford-Guaus S.J., McPartlin L.A., Varner D.D. Characterization of Equine Phospholipase C Zeta: A Review and Preliminary Results on Expression Defects in Subfertile Stallions. J. Equine Vet. Sci. 2012;32:445u2013450. doi: 10.1016/j.jevs.2012.06.002.
  123. Carnevale E.M. Clinical Considerations Regarding Assisted Reproductive Procedures in Horses. J. Equine Vet. Sci. 2008;28:686u2013690. doi: 10.1016/j.jevs.2008.10.005.
  124. Gonzalez-Castro R.A., Trentin J.M., Carnevale E.M., Graham J.K. Effects of Extender, Cryoprotectants and Thawing Protocol on Motility of Frozen-Thawed Stallion Sperm That Were Refrozen for Intracytoplasmic Sperm Injection Doses. Theriogenology. 2019;136:36u201342. doi: 10.1016/j.theriogenology.2019.06.030.
  125. Sieme H., Oldenhof H., Wolkers W.F. Sperm Membrane Behaviour during Cooling and Cryopreservation. Reprod. Domest. Anim. 2015;50:20u201326. doi: 10.1111/rda.12594.
    doi: 10.1111/rda.12594pubmed: 26382025google scholar: lookup
  126. Bogle O.A., Kumar K., Attardo-Parrinello C., Lewis S.E.M., Estanyol J.M., Ballescu00e0 J.L., Oliva R. Identification of Protein Changes in Human Spermatozoa throughout the Cryopreservation Process. Andrology. 2017;5:10u201322. doi: 10.1111/andr.12279.
    doi: 10.1111/andr.12279pubmed: 27860400google scholar: lookup
  127. Peris-Frau P., Soler A.J., Iniesta-Cuerda M., Martu00edn-Maestro A., Su00e1nchez-Ajofru00edn I., Medina-Chu00e1vez D.A., Fernu00e1ndez-Santos M.R., Garcu00eda-u00e1lvarez O., Maroto-Morales A., Montoro V., et al. Sperm Cryodamage in Ruminants: Understanding the Molecular Changes Induced by the Cryopreservation Process to Optimize Sperm Quality. Int. J. Mol. Sci. 2020;21:2781. doi: 10.3390/ijms21082781.
    doi: 10.3390/ijms21082781pmc: PMC7215299pubmed: 32316334google scholar: lookup
  128. Gonzalez-Castro R.A., Carnevale E.M. Semiquantitative and Quantitative Assessments of Phospholipase C Zeta 1 in Stallion Sperm. Reprod. Fertil. Dev. 2023;35:150. doi: 10.1071/RDv35n2Ab48.
    doi: 10.1071/RDv35n2Ab48google scholar: lookup
  129. Gonzalez-Castro R.A., Carnevale E.M. Phospholipase C Zeta Quantification by Flow Cytometry in Fresh, Frozen and Refrozen Stallion Sperm. J. Equine Vet. Sci. 2020;89:103033. doi: 10.1016/j.jevs.2020.103033.
  130. Kashir J., Jones C., Mounce G., Ramadan W.M., Lemmon B., Heindryckx B., De Sutter P., Parrington J., Turner K., Child T., et al. Variance in Total Levels of Phospholipase C Zeta (PLC-u03b6) in Human Sperm May Limit the Applicability of Quantitative Immunofluorescent Analysis as a Diagnostic Indicator of Oocyte Activation Capability. Fertil. Steril. 2013;99:107u2013117.e3. doi: 10.1016/j.fertnstert.2012.09.001.
  131. Moreau J., Fargeon S., Gatimel N., Parinaud J., Lu00e9andri R.D. Expression of Phospholipase PLC Zeta in Human Spermatozoa: Impact of Cryopreservation. Andrology. 2019;7:315u2013318. doi: 10.1111/andr.12593.
    doi: 10.1111/andr.12593pubmed: 30779311google scholar: lookup
  132. Kashir J., Heynen A., Jones C., Durrans C., Craig J., Gadea J., Turner K., Parrington J., Coward K. Effects of Cryopreservation and Density-Gradient Washing on Phospholipase C Zeta Concentrations in Human Spermatozoa. Reprod. Biomed. Online. 2011;23:263u2013267. doi: 10.1016/j.rbmo.2011.04.006.
    doi: 10.1016/j.rbmo.2011.04.006pubmed: 21665540google scholar: lookup
  133. Yamamoto Y., Hirose N., Kamimura S., Wakayama S., Ito J., Ooga M., Wakayama T. Production of Mouse Offspring from Inactivated Spermatozoa Using Horse PLCu03b6 MRNA. J. Reprod. Dev. 2020;66:67u201376. doi: 10.1262/jrd.2019-043.
    doi: 10.1262/jrd.2019-043pmc: PMC7040210pubmed: 31852860google scholar: lookup
  134. Homa S.T., Swann K. Fertilization and Early Embryology: A Cytosolic Sperm Factor Triggers Calcium Oscillations and Membrane Hyperpolarizations in Human Oocytes. Hum. Reprod. 1994;9:2356u20132361. doi: 10.1093/oxfordjournals.humrep.a138452.
  135. Swann K. A Cytosolic Sperm Factor Stimulates Repetitive Calcium Increases and Mimics Fertilization in Hamster Eggs. Development. 1990;110:1295u20131302. doi: 10.1242/dev.110.4.1295.
    doi: 10.1242/dev.110.4.1295pubmed: 2100264google scholar: lookup
  136. Rogers N.T., Hobson E., Pickering S., Lai F.A., Braude P., Swann K. Phospholipase Cu03b6 Causes Ca2+ Oscillations and Parthenogenetic Activation of Human Oocytes. Reproduction. 2004;128:697u2013702. doi: 10.1530/rep.1.00484.
    doi: 10.1530/rep.1.00484pubmed: 15579586google scholar: lookup
  137. Gradil C., Yoon S., Brown J., He C., Visconti P., Fissore R. PLC Zeta: A Marker of Fertility for Stallions? Anim. Reprod. Sci. 2006;94:23u201325. doi: 10.1016/j.anireprosci.2006.03.095.
  138. Sessions-Bresnahan D.R., Graham J.K., Carnevale E.M. Validation of a Heterologous Fertilization Assay and Comparison of Fertilization Rates of Equine Oocytes Using Invitro Fertilization, Perivitelline, and Intracytoplasmic Sperm Injections. Theriogenology. 2014;82:274u2013282. doi: 10.1016/j.theriogenology.2014.04.002.
  139. Amoroso-Sanches F., Gonzalez-Castro R.A., Stokes J.E., Carnevale E.M. Stallion Sperm Phospholipase C Zeta Affects Cleavage Rates after Intracytoplasmic Injection in Bovine Oocytes. Reprod. Fertil. Dev. 2018;31:214u2013251. doi: 10.1071/RDv31n1Ab180.
    doi: 10.1071/RDv31n1Ab180google scholar: lookup
  140. Ferrer-Vaquer A., Barragan M., Freour T., Vernaeve V., Vassena R. PLCu03b6 Sequence, Protein Levels, and Distribution in Human Sperm Do Not Correlate with Semen Characteristics and Fertilization Rates after ICSI. J. Assist. Reprod. Genet. 2016;33:747u2013756. doi: 10.1007/s10815-016-0718-0.
    doi: 10.1007/s10815-016-0718-0pmc: PMC4889489pubmed: 27138933google scholar: lookup
  141. Giesecke K., Hamann H., Sieme H., Distl O. Evaluation of Prolactin Receptor (PRLR) as Candidate Gene for Male Fertility in Hanoverian Warmblood Horses. Reprod. Domest. Anim. 2010;45:e124u2013e130. doi: 10.1111/j.1439-0531.2009.01533.x.
  142. Giesecke K., Hamann H., Sieme H., Distl O. INHBA-Associated Markers as Candidates for Stallion Fertility. Reprod. Domest. Anim. 2010;45:342u2013347. doi: 10.1111/j.1439-0531.2008.01325.x.
  143. Giesecke K., Hamann H., Stock K.F., Klewitz J., Martinsson G., Distl O., Sieme H. Evaluation of ACE, SP17, and FSHB as Candidates for Stallion Fertility in Hanoverian Warmblood Horses. Anim. Reprod. Sci. 2011;126:200u2013206. doi: 10.1016/j.anireprosci.2011.05.007.
  144. Giesecke K., Hamann H., Stock K.F., Woehlke A., Sieme H., Distl O. Evaluation of SPATA1-Associated Markers for Stallion Fertility. Anim. Genet. 2009;40:359u2013365. doi: 10.1111/j.1365-2052.2008.01844.x.
  145. Hamann H., Jude R., Sieme H., Mertens U., Tu00f6pfer-Petersen E., Distl O., Leeb T. A Polymorphism within the Equine CRISP3 Gene Is Associated with Stallion Fertility in Hanoverian Warmblood Horses. Anim. Genet. 2007;38:259u2013264. doi: 10.1111/j.1365-2052.2007.01594.x.
  146. Raudsepp T., McCue M.E., Das P.J., Dobson L., Vishnoi M., Fritz K.L., Schaefer R., Rendahl A.K., Derr J.N., Love C.C., et al. Genome-Wide Association Study Implicates Testis-Sperm Specific FKBP6 as a Susceptibility Locus for Impaired Acrosome Reaction in Stallions. PLoS Genet. 2012;8:e1003139. doi: 10.1371/journal.pgen.1003139.
  147. Schrimpf R., Dierks C., Martinsson G., Sieme H., Distl O. Genome-Wide Association Study Identifies Phospholipase C Zeta 1 (PLCz1) as a Stallion Fertility Locus in Hanoverian Warmblood Horses. PLoS ONE. 2014;9:e109675. doi: 10.1371/journal.pone.0109675.
  148. Ju Z.H., Pan Q., Zhang Y., Huang J.M., Qi C., Wang X.G., Li Q.L., Zhong J.F., Liu M., Wang C.F. Identification and Characterization of a Novel Splice Variant of the PLCu03b61 Gene in Bull Testis Tissues. Genet. Mol. Res. 2014;13:9899u20139909. doi: 10.4238/2014.November.27.18.
    doi: 10.4238/2014.November.27.18pubmed: 25501200google scholar: lookup
  149. Yuan Z., Cai T., Tian J., Ivanov A.V., Giovannucci D.R., Xie Z. Na/K-ATPase Tethers Phospholipase C and IP3 Receptor into a Calcium-Regulatory Complex. Mol. Biol. Cell. 2005;16:4034u20134045. doi: 10.1091/mbc.e05-04-0295.
    doi: 10.1091/mbc.e05-04-0295pmc: PMC1196317pubmed: 15975899google scholar: lookup
  150. Thundathil J.C., Anzar M., Buhr M.M. Na+/K+ ATPase as a Signaling Molecule during Bovine Sperm Capacitation. Biol. Reprod. 2006;75:308u2013317. doi: 10.1095/biolreprod.105.047852.
    doi: 10.1095/biolreprod.105.047852pubmed: 16687652google scholar: lookup
  151. Newton L.D., Krishnakumar S., Menon A.G., Kastelic J.P., Van Der Hoorn F.A., Thundathil J.C. Na+/K+ ATPase Regulates Sperm Capacitation through a Mechanism Involving Kinases and Redistribution of Its Testis-Specific Isoform. Mol. Reprod. Dev. 2010;77:136u2013148. doi: 10.1002/mrd.21114.
    doi: 10.1002/mrd.21114pmc: PMC5059152pubmed: 19834983google scholar: lookup
  152. Jimenez T., Su00e1nchez G., Wertheimer E., Blanco G. Activity of the Na,K-ATPase A4 Isoform Is Important for Membrane Potential, Intracellular Ca2+, and PH to Maintain Motility in Rat Spermatozoa. Reproduction. 2010;139:835u2013845. doi: 10.1530/REP-09-0495.
    doi: 10.1530/REP-09-0495pubmed: 20179187google scholar: lookup
  153. Jimenez T., Su00e1nchez G., Blanco G. Activity of the Na,K-ATPase A4 Isoform Is Regulated during Sperm Capacitation to Support Sperm Motility. J. Androl. 2012;33:1047u20131057. doi: 10.2164/jandrol.111.015545.
    doi: 10.2164/jandrol.111.015545pubmed: 22441762google scholar: lookup
  154. Thundathil J.C., Rajamanickam G.D., Kastelic J.P. Na/K-ATPase and Regulation of Sperm Function. Anim. Reprod. 2018;15:711u2013720. doi: 10.21451/1984-3143-AR2018-0024.
  155. Unnikrishnan V., Kastelic J., Thundathil J. Intracytoplasmic Sperm Injection in Cattle. Genes. 2021;12:198. doi: 10.3390/genes12020198.
    doi: 10.3390/genes12020198pmc: PMC7911995pubmed: 33572865google scholar: lookup
  156. u00c1guila L., Felmer R., Arias M.E., Navarrete F., Martin-Hidalgo D., Lee H.C., Visconti P., Fissore R. Defective Sperm Head Decondensation Undermines the Success of ICSI in the Bovine. Reproduction. 2017;154:307u2013318. doi: 10.1530/REP-17-0270.
    doi: 10.1530/REP-17-0270pmc: PMC6430150pubmed: 28751536google scholar: lookup
  157. Hara H., Abdalla H., Morita H., Kuwayama M., Hirabayashi M., Hochi S. Procedure for Bovine ICSI, nor Sperm Freezing-Drying, Impairs the Function of the Microtubule-Organizing Center. J. Reprod. Dev. 2011;57:428u2013432. doi: 10.1262/jrd.10-167N.
    doi: 10.1262/jrd.10-167Npubmed: 21325738google scholar: lookup
  158. Ferru00e9 L.B., Kjelland M.E., Taiyeb A.M., Campos-Chillon F., Ross P.J. Recent Progress in Bovine in Vitro-Derived Embryo Cryotolerance: Impact of in Vitro Culture Systems, Advances in Cryopreservation and Future Considerations. Reprod. Domest. Anim. 2020;55:659u2013676. doi: 10.1111/rda.13667.
    doi: 10.1111/rda.13667pubmed: 32144939google scholar: lookup
  159. Gupta N., Akizawa H., Lee H.C., Fissore R.A. ICSI and the Discovery of the Sperm Factor and PLCZ1. Reproduction. 2022;164:F9u2013F20. doi: 10.1530/REP-21-0487.
    doi: 10.1530/REP-21-0487pmc: PMC9152605pubmed: 35521902google scholar: lookup
  160. Sutovsky P., Oko R., Hewitson L., Schatten G. The Removal of the Sperm Perinuclear Theca and Its Association with the Bovine Oocyte Surface during Fertilization. Dev. Biol. 1997;188:75u201384. doi: 10.1006/dbio.1997.8618.
    doi: 10.1006/dbio.1997.8618pubmed: 9245513google scholar: lookup
  161. Jager S., Wijchman J., Kremer J. Studies on the Decondensation of Human, Mouse, and Bull Sperm Nuclei by Heparin and Other Polyanions. J. Exp. Zool. 1990;256:315u2013322. doi: 10.1002/jez.1402560311.
    doi: 10.1002/jez.1402560311pubmed: 2250165google scholar: lookup
  162. Perreault S.D., Barbee R.R., Elstein K.H., Zucker R.M., Keefer C.L. Interspecies Differences in the Stability of Mammalian Sperm Nuclei Assessed in Vivo by Sperm Microinjection and in Vitro by Flow Cytometry. Biol. Reprod. 1988;39:157u2013167. doi: 10.1095/biolreprod39.1.157.
    doi: 10.1095/biolreprod39.1.157pubmed: 3207794google scholar: lookup
  163. Zambrano F., Aguila L., Arias M.E., Su00e1nchez R., Felmer R. Improved Preimplantation Development of Bovine ICSI Embryos Generated with Spermatozoa Pretreated with Membrane-Destabilizing Agents Lysolecithin and Triton X-100. Theriogenology. 2016;86:1489u20131497. doi: 10.1016/j.theriogenology.2016.05.007.
  164. Galli C., Vassiliev I., Lagutina I., Galli A., Lazzari G. Bovine Embryo Development Following ICSI: Effect of Activation, Sperm Capacitation and Pre-Treatment with Dithiothreitol. Theriogenology. 2003;60:1467u20131480. doi: 10.1016/S0093-691X(03)00133-X.
    doi: 10.1016/S0093-691X(03)00133-Xpubmed: 14519468google scholar: lookup
  165. Morozumi K., Yanagimachi R. Incorporation of the Acrosome into the Oocyte during Intracytoplasmic Sperm Injection Could Be Potentially Hazardous to Embryo Development. Proc. Natl. Acad. Sci. USA. 2005;102:14209u201314214. doi: 10.1073/pnas.0507005102.
    doi: 10.1073/pnas.0507005102pmc: PMC1242329pubmed: 16183738google scholar: lookup
  166. Seita Y., Ito J., Kashiwazaki N. Removal of Acrosomal Membrane from Sperm Head Improves Development of Rat Zygotes Derived from Intracytoplasmic Sperm Injection. J. Reprod. Dev. 2009;55:475u2013479. doi: 10.1262/jrd.20216.
    doi: 10.1262/jrd.20216pubmed: 19444004google scholar: lookup
  167. Daghigh-Kia H. Ph.D. Thesis. University of Bonn; Boon, Germany: 2007. Identification and SNP Detection for Preimplantation Active Genes and Their Association with Embryo Development and Male Fertility in Cattle.
  168. Pan Q., Ju Z., Huang J., Zhang Y., Qi C., Gao Q., Zhou L., Li Q., Wang L., Zhong J., et al. PLCz Functional Haplotypes Modulating Promoter Transcriptional Activity Are Associated with Semen Quality Traits in Chinese Holstein Bulls. PLoS ONE. 2013;8:e58795. doi: 10.1371/journal.pone.0058795.
  169. Steger K. Perspectives in the Diagnosis of Testicular Biopsies Using Molecular Biological Techniques. Andrologia. 2003;35:183. doi: 10.1046/j.1439-0272.2003.00552_12.x.
  170. Ostermeier G.C., Dix D.J., Miller D., Khatri P., Krawetz S.A. Spermatozoal RNA Profiles of Normal Fertile Men. Lancet. 2002;360:772u2013777. doi: 10.1016/S0140-6736(02)09899-9.
    doi: 10.1016/S0140-6736(02)09899-9pubmed: 12241836google scholar: lookup
  171. Dadoune J.-P. Expression of Mammalian Spermatozoal Nucleoproteins. Microsc. Res. Tech. 2003;61:56u201375. doi: 10.1002/jemt.10317.
    doi: 10.1002/jemt.10317pubmed: 12672123google scholar: lookup
  172. Lambard S., Galeraud-Denis I., Martin G., Levy R., Chocat A., Carreau S. Analysis and Significance of MRNA in Human Ejaculated Sperm from Normozoospermic Donors: Relationship to Sperm Motility and Capacitation. Mol. Hum. Reprod. 2004;10:535u2013541. doi: 10.1093/molehr/gah064.
    doi: 10.1093/molehr/gah064pubmed: 15100385google scholar: lookup
  173. Meng X., Melo P., Jones C., Ross C., Mounce G., Turner K., Child T., Coward K. Use of Phospholipase C Zeta Analysis to Identify Candidates for Artificial Oocyte Activation: A Case Series of Clinical Pregnancies and a Proposed Algorithm for Patient Management. Fertil. Steril. 2020;114:163u2013174. doi: 10.1016/j.fertnstert.2020.02.113.
  174. Aghajanpour S., Ghaedi K., Salamian A., Deemeh M.R., Tavalaee M., Moshtaghian J., Parrington J., Nasr-Esfahani M.H. Quantitative Expression of Phospholipase C Zeta, as an Index to Assess Fertilization Potential of a Semen Sample. Hum. Reprod. 2011;26:2950u20132956. doi: 10.1093/humrep/der285.
    doi: 10.1093/humrep/der285pubmed: 21896550google scholar: lookup
  175. Yan Z., Fan Y., Wang F., Yan Z., Li M., Ouyang J., Wu L., Yin M., Zhao J., Kuang Y., et al. Novel Mutations in PLCZ1 Cause Male Infertility Due to Fertilization Failure or Poor Fertilization. Hum. Reprod. 2020;35:472u2013481. doi: 10.1093/humrep/dez282.
    doi: 10.1093/humrep/dez282pubmed: 32048714google scholar: lookup
  176. Tavalaee M., Nasr-Esfahani M.H. Expression Profile of PLCu03b6, PAWP, and TR-KIT in Association with Fertilization Potential, Embryo Development, and Pregnancy Outcomes in Globozoospermic Candidates for Intra-Cytoplasmic Sperm Injection and Artificial Oocyte Activation. Andrology. 2016;4:850u2013856. doi: 10.1111/andr.12179.
    doi: 10.1111/andr.12179pubmed: 27089467google scholar: lookup
  177. Ostermeier G.C., Miller D., Huntriss J.D., Diamond M.P., Krawetz S.A. Delivering Spermatozoan RNA to the Oocyte. Nature. 2004;429:154. doi: 10.1038/429154a.
    doi: 10.1038/429154apubmed: 15141202google scholar: lookup
  178. Miller D., Ostermeier G.C., Krawetz S.A. The Controversy, Potential and Roles of Spermatozoal RNA. Trends Mol. Med. 2005;11:156u2013163. doi: 10.1016/j.molmed.2005.02.006.
    doi: 10.1016/j.molmed.2005.02.006pubmed: 15823753google scholar: lookup
  179. Tavalaee M., Kiani-Esfahani A., Nasr-Esfahani M.H. Relationship between Phospholipase C-Zeta, Semen Parameters, and Chromatin Status. Syst. Biol. Reprod. Med. 2017;63:259u2013268. doi: 10.1080/19396368.2017.1298006.
    doi: 10.1080/19396368.2017.1298006pubmed: 28345968google scholar: lookup
  180. Aras-Tosun D., Cakar Z., Can A., Ozkavukcu S., Kaplanoglu I., Cinar O. Phospholipase C-Zeta Levels Are Not Correlated with Fertilisation Rates in Infertile Couples. Andrologia. 2022;54:e14269. doi: 10.1111/and.14269.
    doi: 10.1111/and.14269pubmed: 34651330google scholar: lookup
  181. Alsaed O.S., Alamlih L.I., Al-Radideh O., Chandra P., Alemadi S., Al-Allaf A.-W. Clinical Utility of ANA-ELISA vs. ANA-Immunofluorescence in Connective Tissue Diseases. Sci. Rep. 2021;11:8229. doi: 10.1038/s41598-021-87366-w.
    doi: 10.1038/s41598-021-87366-wpmc: PMC8050204pubmed: 33859213google scholar: lookup
  182. Yoon S.Y., Jellerette T., Salicioni A.M., Lee H.C., Yoo M., Coward K., Parrington J., Grow D., Cibelli J., Visconti P., et al. Human Sperm Devoid of PLC, Zeta 1 Fail to Induce Ca2+ Release and Are Unable to Initiate the First Step of Embryo Development. J. Clin. Investig. 2008;118:3671u20133681. doi: 10.1172/JCI36942.
    doi: 10.1172/JCI36942pmc: PMC2567839pubmed: 18924610google scholar: lookup
  183. Kashir J., Buntwal L., Nomikos M., Calver B.L., Stamatiadis P., Ashley P., Vassilakopoulou V., Sanders D., Knaggs P., Livaniou E., et al. Antigen Unmasking Enhances Visualization Efficacy of the Oocyte Activation Factor, Phospholipase C Zeta, in Mammalian Sperm. Mol. Hum. Reprod. 2017;23:54u201367. doi: 10.1093/molehr/gaw073.
    doi: 10.1093/molehr/gaw073pubmed: 27932551google scholar: lookup
  184. Kashir J., Mistry B.V., BuSaleh L., Nomikos M., Almuqayyil S., Abu-Dawud R., AlYacoub N., Hamdan H., AlHassan S., Lai F.A., et al. Antigen Unmasking Is Required to Clinically Assess Levels and Localisation Patterns of Phospholipase C Zeta in Human Sperm. Pharmaceuticals. 2023;16:198. doi: 10.3390/ph16020198.
    doi: 10.3390/ph16020198pmc: PMC9962097pubmed: 37259347google scholar: lookup
  185. Meng X., Jones C., Melo P., Ross C., Mounce G., Child T., Coward K. Antigen Unmasking Does Not Improve the Visualization of Phospholipase C Zeta in Human Spermatozoa. Asian J. Androl. 2022;24:345u2013352. doi: 10.4103/aja202168.
    doi: 10.4103/aja202168pmc: PMC9295478pubmed: 34893574google scholar: lookup
  186. Heindryckx B., Van der Elst J., De Sutter P., Dhont M. Treatment Option for Sperm- or Oocyte-Related Fertilization Failure: Assisted Oocyte Activation Following Diagnostic Heterologous ICSI. Hum. Reprod. 2005;20:2237u20132241. doi: 10.1093/humrep/dei029.
    doi: 10.1093/humrep/dei029pubmed: 15831504google scholar: lookup
  187. Ferrer-Buitrago M., Dhaenens L., Lu Y., Bonte D., Vanden Meerschaut F., De Sutter P., Leybaert L., Heindryckx B. Human Oocyte Calcium Analysis Predicts the Response to Assisted Oocyte Activation in Patients Experiencing Fertilization Failure after ICSI. Hum. Reprod. 2018;33:416u2013425. doi: 10.1093/humrep/dex376.
    doi: 10.1093/humrep/dex376pubmed: 29329390google scholar: lookup
  188. Bonte D., Thys V., De Sutter P., Boel A., Leybaert L., Heindryckx B. Vitrification Negatively Affects the Ca2+-Releasing and Activation Potential of Mouse Oocytes, but Vitrified Oocytes Are Potentially Useful for Diagnostic Purposes. Reprod. Biomed. Online. 2020;40:13u201325. doi: 10.1016/j.rbmo.2019.09.012.
    doi: 10.1016/j.rbmo.2019.09.012pubmed: 31740224google scholar: lookup
  189. Bonte D., Ferrer-Buitrago M., Dhaenens L., Popovic M., Thys V., De Croo I., De Gheselle S., Steyaert N., Boel A., Vanden Meerschaut F., et al. Assisted Oocyte Activation Significantly Increases Fertilization and Pregnancy Outcome in Patients with Low and Total Failed Fertilization after Intracytoplasmic Sperm Injection: A 17-Year Retrospective Study. Fertil. Steril. 2019;112:266u2013274. doi: 10.1016/j.fertnstert.2019.04.006.
  190. Tesarik J., Rienzi L., Ubaldi F., Mendoza C., Greco E. Use of a Modified Intracytoplasmic Sperm Injection Technique to Overcome Sperm-Borne and Oocyte-Borne Oocyte Activation Failures. Fertil. Steril. 2002;78:619u2013624. doi: 10.1016/S0015-0282(02)03291-0.
    doi: 10.1016/S0015-0282(02)03291-0pubmed: 12215343google scholar: lookup
  191. Vanden Meerschaut F., Nikiforaki D., Heindryckx B., De Sutter P. Assisted Oocyte Activation Following ICSI Fertilization Failure. Reprod. Biomed. Online. 2014;28:560u2013571. doi: 10.1016/j.rbmo.2014.01.008.
    doi: 10.1016/j.rbmo.2014.01.008pubmed: 24656559google scholar: lookup
  192. Taylor S.L., Yoon S.Y., Morshedi M.S., Lacey D.R., Jellerette T., Fissore R.A., Oehninger S. Complete Globozoospermia Associated with PLCu03b6 Deficiency Treated with Calcium Ionophore and ICSI Results in Pregnancy. Reprod. Biomed. Online. 2010;20:559u2013564. doi: 10.1016/j.rbmo.2009.12.024.
    doi: 10.1016/j.rbmo.2009.12.024pmc: PMC2847674pubmed: 20133201google scholar: lookup
  193. Ozil J.P., Banrezes B., Tu00f3th S., Pan H., Schultz R.M. Ca2+ oscillatory Pattern in Fertilized Mouse Eggs Affects Gene Expression and Development to Term. Dev. Biol. 2006;300:534u2013544. doi: 10.1016/j.ydbio.2006.08.041.
    doi: 10.1016/j.ydbio.2006.08.041pubmed: 16996050google scholar: lookup
  194. Bridges P.J., Jeoung M., Kim H., Kim J.H., Lee D.R., Ko C., Baker D.J. Methodology Matters: IVF versus ICSI and Embryonic Gene Expression. Reprod. Biomed. Online. 2011;23:234u2013244. doi: 10.1016/j.rbmo.2011.04.007.
    doi: 10.1016/j.rbmo.2011.04.007pmc: PMC3151342pubmed: 21665548google scholar: lookup
  195. Heindryckx B., De Gheselle S., Gerris J., Dhont M., De Sutter P. Efficiency of Assisted Oocyte Activation as a Solution for Failed Intracytoplasmic Sperm Injection. Reprod. Biomed. Online. 2008;17:662u2013668. doi: 10.1016/S1472-6483(10)60313-6.
    doi: 10.1016/S1472-6483(10)60313-6pubmed: 18983750google scholar: lookup
  196. Miura K., Matoba S., Ogonuki N., Namiki T., Ito J., Kashiwazaki N., Ogura A. Application of Auxin-Inducible Degron Technology to Mouse Oocyte Activation with PLCu03b6. J. Od Reprod. Dev. 2018;64:319u2013326. doi: 10.1262/jrd.2018-053.
    doi: 10.1262/jrd.2018-053pmc: PMC6105737pubmed: 29731504google scholar: lookup
  197. Bedford S.J., Kurokawa M., Hinrichs K., Fissore R. a Patterns of Intracellular Calcium Oscillations in Horse Oocytes Fertilized by Intracytoplasmic Sperm Injection: Possible Explanations for the Low Success of This Assisted Reproduction Technique in the Horse. Biol. Reprod. 2004;70:936u2013944. doi: 10.1095/biolreprod.103.021485.
    doi: 10.1095/biolreprod.103.021485pubmed: 14656727google scholar: lookup
  198. Yoon S.-Y., Eum J.H., Lee J.E., Lee H.C., Kim Y.S., Han J.E., Won H.J., Park S.H., Shim S.H., Lee W.S., et al. Recombinant Human Phospholipase C Zeta 1 Induces Intracellular Calcium Oscillations and Oocyte Activation in Mouse and Human Oocytes. Hum. Reprod. 2012;27:1768u20131780. doi: 10.1093/humrep/des092.
    doi: 10.1093/humrep/des092pubmed: 22456923google scholar: lookup
  199. Kashir J., Jones C., Lee H.C., Rietdorf K., Nikiforaki D., Durrans C., Ruas M., Tee S.T., Heindryckx B., Galione A., et al. Loss of Activity Mutations in Phospholipase C Zeta (PLCu03b6) Abolishes Calcium Oscillatory Ability of Human Recombinant Protein in Mouse Oocytes. Hum. Reprod. 2011;26:3372u20133387. doi: 10.1093/humrep/der336.
    doi: 10.1093/humrep/der336pmc: PMC3212881pubmed: 22010140google scholar: lookup
  200. Sanusi R., Yu Y., Nomikos M., Lai F.A., Swann K. Rescue of Failed Oocyte Activation after ICSI in a Mouse Model of Male Factor Infertility by Recombinant Phospholipase Cu03b6. Mol. Hum. Reprod. 2015;21:783u2013791. doi: 10.1093/molehr/gav042.
    doi: 10.1093/molehr/gav042pmc: PMC4586348pubmed: 26187950google scholar: lookup

Citations

This article has been cited 0 times.