The Canadian veterinary journal = La revue veterinaire canadienne2023; 64(10); 957-967; doi: 10.1111/vsu.13506

Review of local extravascular delivery systems for chemotherapeutic agents in small animals and horses.

Abstract: Tumors of various sizes and locations can create a treatment dilemma in achieving adequate surgical margins when sufficient free tissue is not available for closure. Extravascular local adjunctive chemotherapy has been investigated clinically to aid in achieving local tumor control in animals with naturally occurring neoplastic disease. Local chemotherapy can be an alternative primary or a local adjunctive treatment. This is a summary of relevant findings of and studies on local chemotherapeutic delivery through carrier media, together with a summary of outcomes of clinical use of local delivery of chemotherapeutic agents in small animals and . Literature from 1990 to 2022 was evaluated searches of PubMed, Google Scholar, and CAB Abstracts databases for studies of local extravascular delivery of chemotherapeutic agents and chemotherapeutic-impregnated delivery systems in research and clinical settings in veterinary medicine. Chemotherapeutic-impregnated calcium sulfate hemihydrate beads with carboplatin are currently favored for extravascular delivery and are associated with minimal wound complications. The ideal delivery system may vary depending on the chemotherapeutic agent used, commercial availability, targeted tumor type, and location. Future investigations might focus on the required dose, the rate of sustained release, and enhancing nodal uptake. Examen des systèmes d’administration extravasculaire locaux d’agents chimiothérapeutiques chez les petits animaux et les chevaux. Des tumeurs de tailles et emplacements différents peuvent créer un dilemme thérapeutique pour obtenir des marges chirurgicales adéquates lorsqu’il n’y a pas suffisamment de tissu libre disponible pour la fermeture. La chimiothérapie d’appoint extravasculaire locale a été étudiée cliniquement pour aider à obtenir une limitation locale de la tumeur chez les animaux atteints d’une maladie néoplasique naturelle. La chimiothérapie locale peut être une alternative primaire ou un traitement local d’appoint. Il s’agit d’un résumé des résultats pertinents d’études et sur l’administration locale de chimiothérapie par le biais de transporteurs, ainsi que d’un résumé des résultats de l’utilisation clinique de l’administration locale d’agents chimiothérapeutiques chez les petits animaux et les équidés. La littérature de 1990 à 2022 a été évaluée des recherches dans les bases de données PubMed, Google Scholar et CAB Abstracts pour des études sur l’administration extravasculaire locale d’agents chimiothérapeutiques et de systèmes d’administration chimiothérapeutiques imprégnés dans des contextes de recherche et cliniques en médecine vétérinaire. Les billes de sulfate de calcium hémihydratée chimiothérapeutique imprégnées de carboplatine sont actuellement privilégiées pour l’administration extravasculaire et sont associées à des complications minimes des plaies. Le système d’administration idéal peut varier en fonction de l’agent chimiothérapeutique utilisé, de la disponibilité commerciale, du type de tumeur ciblé et de l’emplacement. Les recherches futures pourraient se concentrer sur la dose requise, le taux de libération prolongée et l’amélioration de l’absorption nodale.(Traduit par D Serge Messier).
Publication Date: 2023-10-02 PubMed ID: 37780479PubMed Central: PMC10506355DOI: 10.1111/vsu.13506Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article
  • Review

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

The article discusses the evaluation of local chemotherapeutic delivery systems in treating tumors in small animals and horses, with findings favoring the use of chemotherapeutic-impregnated calcium sulfate hemihydrate beads with carboplatin. The research encompasses literature from 1990 to 2022.

Objective

The research aims to review and analyze various studies on the use of local extravascular delivery methods of chemotherapy in veterinary medicine. It emphasizes the challenge of treating tumors where sufficient tissue for surgical closure is not available.

Methodology

  • The research encompasses an extensive literature review, ranging between 1990 to 2022.
  • Databases used for the research include PubMed, Google Scholar, and CAB Abstracts.
  • The paper reviews both laboratory and clinical studies that focus on the local extravascular delivery of chemotherapeutic agents and chemotherapeutic-impregnated delivery systems.

Findings

  • The chemotherapeutic-impregnated calcium sulfate hemihydrate beads combined with carboplatin is currently preferred for extravascular delivery.
  • Using these beads has been found to result in minimal wound complications.
  • Local chemotherapy can serve as a primary alternative treatment or a local adjunctive treatment to control the spread of tumors.

Variables

The ideal chemotherapeutic delivery system may vary depending on some factors such as:

  • The type of chemotherapeutic agent used.
  • The commercial availability of the treatment.
  • The type and location of the targeted tumor.

Future Research

Further investigations based on the study’s findings could focus on areas such as:

  • Determining the required dosage for treatments.
  • Enhancing the rate of the treatment’s sustained release.
  • Improving the nodal uptake of the treatments.

Cite This Article

APA
Risselada M, Worth DB. (2023). Review of local extravascular delivery systems for chemotherapeutic agents in small animals and horses. Can Vet J, 64(10), 957-967. https://doi.org/10.1111/vsu.13506

Publication

ISSN: 0008-5286
NlmUniqueID: 0004653
Country: Canada
Language: English
Volume: 64
Issue: 10
Pages: 957-967

Researcher Affiliations

Risselada, Marije
  • Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, USA.
Worth, David B
  • Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, USA.

MeSH Terms

  • Animals
  • Horses
  • Carboplatin
  • Antineoplastic Agents / therapeutic use

References

This article includes 55 references
  1. Ehrhart N. Soft-tissue sarcomas in dogs: A review. J Am Anim Hosp Assoc. 2005;41:241u2013246.
    pubmed: 15995161
  2. Kuntz CA, Dernell WS, Powers BE, et al. Prognostic factors for surgical treatment of soft-tissue sarcomas in dogs: 75 cases (1986u20131996) J Am Vet Med Assoc. 1997;211:1147u20131151.
    pubmed: 9364229
  3. Forrest LJ, Chun R, Adams WM, et al. Postoperative radiotherapy for canine soft tissue sarcoma. J Vet Intern Med. 2000;14:578u2013582.
    pubmed: 11110377
  4. McKnight JA, Mauldin GN, McEntee MC, et al. Radiation treatment for incompletely resected soft-tissue sarcomas in dogs. J Am Vet Med Assoc. 2000;217:205u2013210.
    pubmed: 10909459
  5. Marconato L, Comastri S, Lorenzo MR, et al. Postsurgical intraincisional 5-fluorouracil in dogs with incompletely resected, extremity malignant spindle cell tumours: A pilot study. Vet Comp Oncol. 2007;5:239u2013249.
    pubmed: 19754782
  6. Bergman NS, Urie BK, Pardo AD, et al. Evaluation of local toxic effects and outcomes for dogs undergoing marginal tumor excision with intralesional cisplatin-impregnated bead placement for treatment of soft tissue sarcomas: 62 cases (2009u20132012) J Am Vet Med Assoc. 2016;248:1148u20131156.
    pubmed: 27135671
  7. Dorbandt DM, Lundberg AP, Roady PJ, et al. Surgical excision of a feline orbital lacrimal gland adenocarcinoma with adjunctive cryotherapy and carboplatin-impregnated bead implantation. Vet Ophthalmol. 2018;21:419u2013425.
    pubmed: 28799265
  8. Hess TA, Drinkhouse ME, Prey JD, et al. Analysis of platinum content in biodegradable carboplatin-impregnated beads and retrospective assessment of tolerability for intralesional use of the beads in dogs following excision of subcutaneous sarcomas: 29 cases (2011u20132014) J Am Vet Med Assoc. 2018;252:448u2013456.
    pubmed: 29393745
  9. Straw RC, Withrow SJ, Douple EB, et al. Effects of cis-diamminedichloroplatinum II released from D,L-polylactic acid implanted adjacent to cortical allografts in dogs. J Orthop Res. 1994;12:871u2013877.
    pubmed: 7983562
  10. Withrow SJ, Liptak JM, Straw RC, et al. Biodegradable cisplatin polymer in limb-sparing surgery for canine osteosarcoma. Ann Surg Oncol. 2004;11:705u2013713.
    pubmed: 15231525
  11. Theon AP, Pascoe JR, Galuppo LD, et al. Comparison of perioperative versus postoperative intratumoral administration of cisplatin for treatment of cutaneous sarcoids and squamous cell carcinomas in horses. J Am Vet Med Assoc. 1999;215:1655u20131660.
    pubmed: 14567430
  12. Theon AP, Wilson WD, Magdesian KG, et al. Long-term outcome associated with intratumoral chemotherapy with cisplatin for cutaneous tumors in equidae: 573 cases (1995u20132004) J Am Vet Med Assoc. 2007;230:1506u20131513.
    pubmed: 17504043
  13. Ragland WL, Keown GH, Spencer GR. Equine sarcoid. Equine Vet J. 1970;2:2u201311.
  14. Diehl M, Vingerhoets M, Stornetta D. Specific methods for removing the equine sarcoid [article in German] Tierarzt Prax. 1987;7:14u201317.
  15. LeBlanc AK, Atherton M, Bentley RT, et al. Veterinary Cooperative Oncology Group. Common Terminology Criteria for Adverse Events (VCOG-CTCAE) following chemotherapy or biological antineoplastic therapy in dogs and cats v1.1. Vet Comp Oncol. 2016;14:417u2013446.
    pubmed: 28530307
  16. Theon AP, Madewell BR, Ryu J, et al. Concurrent irradiation and intratumoral chemotherapy with cisplatin: A pilot study in dogs with spontaneous tumors. Int J Radiat Oncol Biol Phys. 1994;29:1027u20131034.
    pubmed: 8083071
  17. Cox JD, Stetz BS, Pajak TF. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC) Int J Radiat Oncol Biol Phys. 1995;31:1341u20131346.
    pubmed: 7713792
  18. Dernell WS, Withrow SJ, Straw RC, et al. Intracavitary treatment of soft tissue sarcomas in dogs using cisplatin in a biodegradable polymer. Anticancer Res. 1997;17:4499u20134505.
    pubmed: 9494558
  19. Exner AA, Krupka TM, Scherrer K, et al. Enhancement of carboplatin toxicity by Pluronic block copolymers. J Control Release. 2005;106:188u2013197.
    pubmed: 15951044
  20. Havlicek M, Straw RS, Langova V, et al. Intra-operative cisplatin for the treatment of canine extremity soft tissue sarcomas. Vet Comp Oncol. 2009;7:122u2013129.
    pubmed: 19453366
  21. Hsu SH, Leu YL, Hu JW, et al. Physicochemical characterization and drug release of thermosensitive hydrogels composed of a hyaluronic acid/pluronic f127 graft. Chem Pharm Bull (Tokyo) 2009;57:453u2013458.
    pubmed: 19420774
  22. Risselada M, Marcellin-Little DJ, Messenger KM, et al. Assessment of in vitro release of carboplatin from six carrier media. Am J Vet Res. 2016;77:1381u20131386.
    pubmed: 27901382
  23. Tulipan RJ, Phillips H, Garrett LD, et al. Elution of platinum from carboplatin-impregnated calcium sulfate hemihydrate beads in vitro. Am J Vet Res. 2016;77:1252u20131257.
    pubmed: 27805450
  24. Tulipan RJ, Phillips H, Garrett LD, et al. Characterization of long-term elution of platinum from carboplatin-impregnated calcium sulfate hemihydrate beads in vitro by two distinct sample collection methods. Am J Vet Res. 2017;78:618u2013623.
    pubmed: 28441046
  25. Maxwell EA, Phillips H, Schaeffer DJ, et al. In vitro chemosensitivity of feline injection site-associated sarcoma cell lines to carboplatin. Vet Surg. 2018;47:219u2013226.
    pubmed: 29120489
  26. Phillips H, Maxwell EA, Schaeffer DJ, et al. Simulation of spatial diffusion of platinum from carboplatin-impregnated calcium sulfate hemihydrate beads by use of an agarose gelatin tissue phantom. Am J Vet Res. 2018;6:592u2013599.
    pubmed: 30085852
  27. Maxwell EA, Phillips H, Clark-Price SC, et al. Pharmacokinetics of platinum and safety evaluation of carboplatin-impregnated calcium sulfate hemihydrate beads after implantation in healthy cats. Vet Surg. 2020;49:748u2013757.
    pubmed: 31944331
  28. Traverson M, Stewart CE, Papich MG. Evaluation of bioabsorbable calcium sulfate hemihydrate beads for local delivery of carboplatin. PLoS One. 2020;15:e0241718.
    pmc: PMC7644016pubmed: 33151989
  29. Worth DB, Risselada M, Cooper BR, et al. Repeatability of in vitro carboplatin elution from carboplatin-impregnated calcium sulfate hemihydrate beads made in a clinic setting. Vet Surg. 2020;49:1609u20131617.
    pubmed: 32870533
  30. Streppa HK, Singer MJ, Budsberg SC. Applications of local antimicrobial delivery systems in veterinary medicine. J Am Vet Med Assoc. 2001;219:40u201348.
    pubmed: 11439768
  31. Hess TA, Drinkhouse ME, Prey JD, et al. Analysis of platinum content in biodegradable carboplatin-impregnated beads and retrospective assessment of tolerability for intralesional use of the beads in dogs following excision of subcutaneous sarcomas: 29 cases (2011u20132014) J Am Vet Med Assoc. 2018;252:448u2013456.
    pubmed: 29393745
  32. Belda B, Ramos-Vara J, Messenger KM, Risselada M. Pharmacokinetic and safety assessment of carboplatin-impregnated calcium sulfate hemihydrate beads in eight rats. Vet Surg. 2021;50:1650u20131661.
    pubmed: 34375028
  33. Hewes CA, Sullins KE. Use of cisplatin-containing biodegradable beads for treatment of cutaneous neoplasia in equidae: 59 cases (2000u20132004) J Am Vet Med Assoc. 2006;229:1617u20131622.
    pubmed: 17107319
  34. Theon AP, Pascoe JR, Meagher DM. Perioperative intratumoral administration of cisplatin for treatment of cutaneous tumors in equidae. J Am Vet Med Assoc. 1994;205:1170u20131176.
    pubmed: 7890578
  35. Theon AP, Pascoe JR, Carlson GP, et al. Intratumoral chemotherapy with cisplatin in oily emulsion in horses. J Am Vet Med Assoc. 1993;202:261u2013267.
    pubmed: 8428832
  36. McSporran KD. Histologic grade predicts recurrence for marginally excised canine subcutaneous soft tissue sarcomas. Vet Pathol. 2009;46:928u2013933.
    pubmed: 19429989
  37. Stefanello D, Morello E, Roccabianca P, et al. Marginal excision of low-grade spindle cell sarcoma of canine extremities: 35 dogs (1996u20132006) Vet Surg. 2008;37:461u2013465.
    pubmed: 18986313
  38. Elmslie RE, Glawe P, Dow SW. Metronomic therapy with cyclophosphamide and piroxicam effectively delays tumor recurrence in dogs with incompletely resected soft tissue sarcomas. J Vet Intern Med. 2008;22:1373u20131379.
    pubmed: 18976288
  39. Demetriou JL, Brearley MJ, Constantino-Casas F, et al. Intentional marginal excision of canine limb soft tissue sarcomas followed by radiotherapy. J Small Anim Pract. 2012;53:174u2013181.
    pubmed: 22931399
  40. Kisseberth WC, Vail DM, Yaissle J, et al. Phase I clinical evaluation of carboplatin in tumor-bearing cats: A Veterinary Cooperative Oncology Group study. J Vet Intern Med. 2008;22:83u201388.
    pubmed: 18289293
  41. Lascelles BD, Dernell WS, Correa MT, et al. Improved survival associated with postoperative wound infection in dogs treated with limb-salvage surgery for osteosarcoma. Ann Surg Oncol. 2005;12:1073u20131083.
    pubmed: 16252138
  42. Straw RC, Withrow SJ. Limb-sparing surgery versus amputation for dogs with bone tumors. Vet Clin North Am Small Anim Pract. 1996;26:135u2013143.
    pubmed: 8825572
  43. Risselada M, Linder KE, Griffith E, et al. Pharmacokinetics and toxicity of subcutaneous administration of carboplatin in poloxamer 407 in a rodent model pilot study. PloS One. 2017;12:e0186018.
    pmc: PMC5642013pubmed: 28982137
  44. Chen Y, Zhang W, Huang Y, et al. Pluronic-based functional polymeric mixed micelles for co-delivery of doxorubicin and paclitaxel to multidrug resistant tumor. Int J Pharm. 2015;488:44u201358.
    pubmed: 25899286
  45. Dernell WS, Straw RC, Withrow SJ, et al. Apparent interaction of dimethyl sulfoxide with cisplatin released from polymer delivery devices injected subcutaneously in dogs. J Drug Target. 1998;5:391u2013396.
    pubmed: 9771620
  46. Risselada M, Tuohy JL, Law M, et al. Local administration of carboplatin in poloxamer 407 after an ulnar osteosarcoma removal in a dog. J Am Anim Hosp Assoc. 2020;56:325u2013330.
    pubmed: 33113558
  47. Pfizer. Gelfoam absorbable gelatin sponge, USP [revised May 2022] New York, New York: Pharmacia & Upjohn Company; 2022. [Last accessed July 21, 2022]. Available from: http://labeling.pfizer.com/ShowLabeling.aspx?id=624.
  48. Pohlen U, Rieger H, Meyer BT, et al. Chemoembolization of lung metastases: Pharmacokinetic behaviour of carboplatin in a rat model. Anticancer Res. 2007;27:809u2013815.
    pubmed: 17465206
  49. Oguri S, Sakakibara T, Mase H, et al. Clinical pharmacokinetics of carboplatin. J Clin Pharmacol. 1988;28:208u2013215.
    pubmed: 3283185
  50. van der Vijgh WJ. Clinical pharmacokinetics of carboplatin. Clin Pharmacokinet. 1991;21:242u2013261.
    pubmed: 1760899
  51. Sun W, Chen Y, Yuan W. Hemostatic absorbable gelatin sponge loaded with 5-fluorouracil for treatment of tumors. Int J Nanomedicine. 2013;8:1499u20131506.
    pmc: PMC3632586pubmed: 23626465
  52. Cai S, Xie Y, Bagby TR, et al. Intralymphatic chemotherapy using a hyaluronan-cisplatin conjugate. J Surg Res. 2008;147:247u2013252.
    pmc: PMC2430723pubmed: 18498877
  53. Jeong YI, Kim ST, Jin SG, et al. Cisplatin-incorporated hyaluronic acid nanoparticles based on ion-complex formation. J Pharm Sci. 2008;97:1268u20131276.
    pubmed: 17674407
  54. Venable RO, Worley DR, Gustafson DL, et al. Effects of intratumoral administration of a hyaluronan-cisplatin nanoconjugate to five dogs with soft tissue sarcomas. Am J Vet Res. 2012;73:1969u20131976.
    pmc: PMC3778682pubmed: 23176425
  55. Risselada M, Sokolsky-Papkov M. In vitro and in vivo characteristics of targeted and non-targeted nanoformulated carboplatin for treatment of melanoma. Vet Surg. 2020;77:1u201398. doi: 10.1111/vsu.13506. [Scientific Presentation Abstracts: 2020 ACVS Virtual Sessions]
    doi: 10.1111/vsu.13506google scholar: lookup

Citations

This article has been cited 0 times.