PloS one2013; 8(2); e56535; doi: 10.1371/journal.pone.0056535

Stallion sperm transcriptome comprises functionally coherent coding and regulatory RNAs as revealed by microarray analysis and RNA-seq.

Abstract: Mature mammalian sperm contain a complex population of RNAs some of which might regulate spermatogenesis while others probably play a role in fertilization and early development. Due to this limited knowledge, the biological functions of sperm RNAs remain enigmatic. Here we report the first characterization of the global transcriptome of the sperm of fertile stallions. The findings improved understanding of the biological significance of sperm RNAs which in turn will allow the discovery of sperm-based biomarkers for stallion fertility. The stallion sperm transcriptome was interrogated by analyzing sperm and testes RNA on a 21,000-element equine whole-genome oligoarray and by RNA-seq. Microarray analysis revealed 6,761 transcripts in the sperm, of which 165 were sperm-enriched, and 155 were differentially expressed between the sperm and testes. Next, 70 million raw reads were generated by RNA-seq of which 50% could be aligned with the horse reference genome. A total of 19,257 sequence tags were mapped to all horse chromosomes and the mitochondrial genome. The highest density of mapped transcripts was in gene-rich ECA11, 12 and 13, and the lowest in gene-poor ECA9 and X; 7 gene transcripts originated from ECAY. Structural annotation aligned sperm transcripts with 4,504 known horse and/or human genes, rRNAs and 82 miRNAs, whereas 13,354 sequence tags remained anonymous. The data were aligned with selected equine gene models to identify additional exons and splice variants. Gene Ontology annotations showed that sperm transcripts were associated with molecular processes (chemoattractant-activated signal transduction, ion transport) and cellular components (membranes and vesicles) related to known sperm functions at fertilization, while some messenger and micro RNAs might be critical for early development. The findings suggest that the rich repertoire of coding and non-coding RNAs in stallion sperm is not a random remnant from spermatogenesis in testes but a selectively retained and functionally coherent collection of RNAs.
Publication Date: 2013-02-11 PubMed ID: 23409192PubMed Central: PMC3569414DOI: 10.1371/journal.pone.0056535Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article
  • Research Support
  • Non-U.S. Gov't

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

The study investigates the complex population of RNAs found in mature mammalian or horse sperm and their potential roles in regulating spermatogenesis, fertilization and early developmental stages, ultimately leading to a better understanding of sperm-based biomarkers for horse fertility.

Study Overview

  • The research primarily focuses on understanding the RNA composition of stallion sperm using modern scientific methods like microarray analysis and RNA-seq (a method used for analyzing the transcriptome).
  • This investigation helps shed light on the possible biological functions of these RNAs and their role in fertility and early development.

Methodology

  • The researchers used a 21,000-element equine whole-genome oligoarray to analyze sperm and testes RNA, and also employed RNA-seq for further study.
  • The microarray analysis identified 6,761 transcripts in the sperm, of which 165 were sperm-enriched, and 155 were differentially expressed between the sperm and testes.
  • A total of 70 million raw reads were generated using RNA-seq of which around 50% could be perfectly aligned with the horse reference genome.

Results

  • A total of 19,257 sequence tags were successfully mapped to all horse chromosomes and the mitochondrial genome.
  • Structural annotation of the sperm transcripts showed alignment with 4,504 known horse and/or human genes, rRNAs, and 82 miRNAs, but 13,354 sequence tags remained anonymous.
  • The study also utilized selected equine gene models to identify additional exons and splice variants. Gene Ontology annotations revealed that sperm transcripts were associated with molecular processes and cellular components linked with known sperm functions during fertilization.

Significance

  • Some messenger and micro RNAs were identified that might be critical for early development.
  • Overall, the research suggests that the diverse range of coding and non-coding RNAs in stallion sperm are not random remnants from spermatogenesis in testes, but selectively retained and functionally coherent collections of RNAs.

In conclusion, the detailed investigation of the stallion sperm transcriptome in this study helps us better understand the role of RNAs during spermatogenesis, improving our knowledge of fertility processes in stallions. The future exploration of these RNAs could lead to the discovery of new sperm-based biomarkers for stallion fertility.

Cite This Article

APA
Das PJ, McCarthy F, Vishnoi M, Paria N, Gresham C, Li G, Kachroo P, Sudderth AK, Teague S, Love CC, Varner DD, Chowdhary BP, Raudsepp T. (2013). Stallion sperm transcriptome comprises functionally coherent coding and regulatory RNAs as revealed by microarray analysis and RNA-seq. PLoS One, 8(2), e56535. https://doi.org/10.1371/journal.pone.0056535

Publication

ISSN: 1932-6203
NlmUniqueID: 101285081
Country: United States
Language: English
Volume: 8
Issue: 2
Pages: e56535
PII: e56535

Researcher Affiliations

Das, Pranab J
  • Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America.
McCarthy, Fiona
    Vishnoi, Monika
      Paria, Nandina
        Gresham, Cathy
          Li, Gang
            Kachroo, Priyanka
              Sudderth, A Kendrick
                Teague, Sheila
                  Love, Charles C
                    Varner, Dickson D
                      Chowdhary, Bhanu P
                        Raudsepp, Terje

                          MeSH Terms

                          • Animals
                          • Biomarkers / metabolism
                          • Fertility / genetics
                          • Horses / genetics
                          • Horses / physiology
                          • Humans
                          • Male
                          • Oligonucleotide Array Sequence Analysis
                          • RNA, Messenger / genetics
                          • RNA, Messenger / metabolism
                          • Regulatory Sequences, Ribonucleic Acid / genetics
                          • Sequence Analysis, RNA
                          • Spermatozoa / metabolism
                          • Spermatozoa / physiology
                          • Transcriptome
                          • Y Chromosome / genetics

                          Conflict of Interest Statement

                          The authors have declared that no competing interests exist.

                          References

                          This article includes 113 references
                          1. Krawetz SA. Paternal contribution: new insights and future challenges.. Nat Rev Genet 2005 Aug;6(8):633-42.
                            pubmed: 16136654doi: 10.1038/nrg1654google scholar: lookup
                          2. Galeraud-Denis I, Lambard S, Carreau S. Relationship between chromatin organization, mRNAs profile and human male gamete quality.. Asian J Androl 2007 Sep;9(5):587-92.
                          3. Betlach CJ, Erickson RP. A unique RNA species from maturing mouse spermatozoa.. Nature 1973 Mar 9;242(5393):114-5.
                            pubmed: 4694296doi: 10.1038/242114a0google scholar: lookup
                          4. Paul J, Duerksen JD. Chromatin-associated RNA content of heterochromatin and euchromatin.. Mol Cell Biochem 1975 Oct 31;9(1):9-16.
                            pubmed: 1186664doi: 10.1007/BF01731728google scholar: lookup
                          5. Pessot CA, Brito M, Figueroa J, Concha II, Yau00f1ez A, Burzio LO. Presence of RNA in the sperm nucleus.. Biochem Biophys Res Commun 1989 Jan 16;158(1):272-8.
                            pubmed: 2463835doi: 10.1016/s0006-291x(89)80208-6google scholar: lookup
                          6. Ostermeier GC, Dix DJ, Miller D, Khatri P, Krawetz SA. Spermatozoal RNA profiles of normal fertile men.. Lancet 2002 Sep 7;360(9335):772-7.
                            pubmed: 12241836doi: 10.1016/S0140-6736(02)09899-9google scholar: lookup
                          7. Ostermeier GC, Goodrich RJ, Diamond MP, Dix DJ, Krawetz SA. Toward using stable spermatozoal RNAs for prognostic assessment of male factor fertility.. Fertil Steril 2005 Jun;83(6):1687-94.
                          8. Ostermeier GC, Goodrich RJ, Moldenhauer JS, Diamond MP, Krawetz SA. A suite of novel human spermatozoal RNAs.. J Androl 2005 Jan-Feb;26(1):70-4.
                            pubmed: 15611569
                          9. Carreau S, Lambard S, Said L, Saad A, Galeraud-Denis I. RNA dynamics of fertile and infertile spermatozoa.. Biochem Soc Trans 2007 Jun;35(Pt 3):634-6.
                            pubmed: 17511668doi: 10.1042/BST0350634google scholar: lookup
                          10. Dadoune JP. Spermatozoal RNAs: what about their functions?. Microsc Res Tech 2009 Aug;72(8):536-51.
                            pubmed: 19283828doi: 10.1002/jemt.20697google scholar: lookup
                          11. Hamatani T. Human spermatozoal RNAs.. Fertil Steril 2012 Feb;97(2):275-81.
                          12. McIver SC, Roman SD, Nixon B, McLaughlin EA. miRNA and mammalian male germ cells.. Hum Reprod Update 2012 Jan-Feb;18(1):44-59.
                            pubmed: 21989172doi: 10.1093/humupd/dmr041google scholar: lookup
                          13. He Z, Kokkinaki M, Pant D, Gallicano GI, Dym M. Small RNA molecules in the regulation of spermatogenesis.. Reproduction 2009 Jun;137(6):901-11.
                            pubmed: 19318589doi: 10.1530/REP-08-0494google scholar: lookup
                          14. Lee TL, Xiao A, Rennert OM. Identification of novel long noncoding RNA transcripts in male germ cells.. Methods Mol Biol 2012;825:105-14.
                            pmc: PMC3652227pubmed: 22144240doi: 10.1007/978-1-61779-436-0_9google scholar: lookup
                          15. Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm packages genes for embryo development.. Nature 2009 Jul 23;460(7254):473-8.
                            pmc: PMC2858064pubmed: 19525931doi: 10.1038/nature08162google scholar: lookup
                          16. Spadafora C. Sperm-mediated 'reverse' gene transfer: a role of reverse transcriptase in the generation of new genetic information.. Hum Reprod 2008 Apr;23(4):735-40.
                            pubmed: 18270183doi: 10.1093/humrep/dem425google scholar: lookup
                          17. Gur Y, Breitbart H. Mammalian sperm translate nuclear-encoded proteins by mitochondrial-type ribosomes.. Genes Dev 2006 Feb 15;20(4):411-6.
                            pmc: PMC1369042pubmed: 16449571doi: 10.1101/gad.367606google scholar: lookup
                          18. Gur Y, Breitbart H. Protein translation in mammalian sperm.. Soc Reprod Fertil Suppl 2007;65:391-7.
                            pubmed: 17644979
                          19. Gur Y, Breitbart H. Protein synthesis in sperm: dialog between mitochondria and cytoplasm.. Mol Cell Endocrinol 2008 Jan 30;282(1-2):45-55.
                            pubmed: 18226442doi: 10.1016/j.mce.2007.11.015google scholar: lookup
                          20. Cuzin F, Rassoulzadegan M. Non-Mendelian epigenetic heredity: gametic RNAs as epigenetic regulators and transgenerational signals.. Essays Biochem 2010 Sep 20;48(1):101-6.
                            pubmed: 20822489doi: 10.1042/bse0480101google scholar: lookup
                          21. Daxinger L, Whitelaw E. Understanding transgenerational epigenetic inheritance via the gametes in mammals.. Nat Rev Genet 2012 Jan 31;13(3):153-62.
                            pubmed: 22290458doi: 10.1038/nrg3188google scholar: lookup
                          22. Rassoulzadegan M, Grandjean V, Gounon P, Vincent S, Gillot I, Cuzin F. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse.. Nature 2006 May 25;441(7092):469-74.
                            pubmed: 16724059doi: 10.1038/nature04674google scholar: lookup
                          23. Kempisty B, Antosik P, Bukowska D, Jackowska M, Lianeri M, Jau015bkowski JM, Jagodziu0144ski PP. Analysis of selected transcript levels in porcine spermatozoa, oocytes, zygotes and two-cell stage embryos.. Reprod Fertil Dev 2008;20(4):513-8.
                            pubmed: 18462614doi: 10.1071/rd07211google scholar: lookup
                          24. Yao CJ, Xu WJ, Gong XL, Zhou Y, Yan ZQ, Zhu ZJ, Wang ZX, Li QL, Guo XB, Wang LY, Ma D, Qiao ZD. The role of Dby mRNA in early development of male mouse zygotes.. Asian J Androl 2010 Jul;12(4):567-77.
                            pmc: PMC3739365pubmed: 20543856doi: 10.1038/aja.2010.28google scholar: lookup
                          25. Boerke A, Dieleman SJ, Gadella BM. A possible role for sperm RNA in early embryo development.. Theriogenology 2007 Sep 1;68 Suppl 1:S147-55.
                          26. Platts AE, Dix DJ, Chemes HE, Thompson KE, Goodrich R, Rockett JC, Rawe VY, Quintana S, Diamond MP, Strader LF, Krawetz SA. Success and failure in human spermatogenesis as revealed by teratozoospermic RNAs.. Hum Mol Genet 2007 Apr 1;16(7):763-73.
                            pubmed: 17327269doi: 10.1093/hmg/ddm012google scholar: lookup
                          27. Aoki VW, Liu L, Jones KP, Hatasaka HH, Gibson M, Peterson CM, Carrell DT. Sperm protamine 1/protamine 2 ratios are related to in vitro fertilization pregnancy rates and predictive of fertilization ability.. Fertil Steril 2006 Nov;86(5):1408-15.
                          28. Nguyen MT, Delaney DP, Kolon TF. Gene expression alterations in cryptorchid males using spermatozoal microarray analysis.. Fertil Steril 2009 Jul;92(1):182-7.
                          29. Bissonnette N, Lu00e9vesque-Sergerie JP, Thibault C, Boissonneault G. Spermatozoal transcriptome profiling for bull sperm motility: a potential tool to evaluate semen quality.. Reproduction 2009 Jul;138(1):65-80.
                            pubmed: 19423662doi: 10.1530/REP-08-0503google scholar: lookup
                          30. Avendau00f1o C, Franchi A, Jones E, Oehninger S. Pregnancy-specific {beta}-1-glycoprotein 1 and human leukocyte antigen-E mRNA in human sperm: differential expression in fertile and infertile men and evidence of a possible functional role during early development.. Hum Reprod 2009 Feb;24(2):270-7.
                            pubmed: 18987160doi: 10.1093/humrep/den381google scholar: lookup
                          31. Garrido N, Martu00ednez-Conejero JA, Jauregui J, Horcajadas JA, Simu00f3n C, Remohu00ed J, Meseguer M. Microarray analysis in sperm from fertile and infertile men without basic sperm analysis abnormalities reveals a significantly different transcriptome.. Fertil Steril 2009 Apr;91(4 Suppl):1307-10.
                          32. Gilbert I, Bissonnette N, Boissonneault G, Vallu00e9e M, Robert C. A molecular analysis of the population of mRNA in bovine spermatozoa.. Reproduction 2007 Jun;133(6):1073-86.
                            pubmed: 17636162doi: 10.1530/REP-06-0292google scholar: lookup
                          33. Lalancette C, Thibault C, Bachand I, Caron N, Bissonnette N. Transcriptome analysis of bull semen with extreme nonreturn rate: use of suppression-subtractive hybridization to identify functional markers for fertility.. Biol Reprod 2008 Apr;78(4):618-35.
                            pubmed: 18003951doi: 10.1095/biolreprod.106.059030google scholar: lookup
                          34. Feugang JM, Rodriguez-Osorio N, Kaya A, Wang H, Page G, Ostermeier GC, Topper EK, Memili E. Transcriptome analysis of bull spermatozoa: implications for male fertility.. Reprod Biomed Online 2010 Sep;21(3):312-24.
                            pubmed: 20638337doi: 10.1016/j.rbmo.2010.06.022google scholar: lookup
                          35. Yang CC, Lin YS, Hsu CC, Wu SC, Lin EC, Cheng WT. Identification and sequencing of remnant messenger RNAs found in domestic swine (Sus scrofa) fresh ejaculated spermatozoa.. Anim Reprod Sci 2009 Jul;113(1-4):143-55.
                          36. Yang CC, Lin YS, Hsu CC, Tsai MH, Wu SC, Cheng WT. Seasonal effect on sperm messenger RNA profile of domestic swine (Sus Scrofa).. Anim Reprod Sci 2010 May;119(1-2):76-84.
                          37. Sudderth AK, Das PJ, Varner DD, Raudsepp T (2010) Determination of optimal semen processing methods for total RNA isolation and sperm genomic analysis. Animal Reproduction Science 121S: S149u2013S150.
                          38. Das PJ, Vishnoi M, Kachroo P, Wang J, Love CC, et al. (2010) Expression microarray profiling of sperm and testis mRNA of reproductively normal stallions. Animal Reproduction Science 121S S175
                          39. Colenbrander B, Gadella BM, Stout TA. The predictive value of semen analysis in the evaluation of stallion fertility.. Reprod Domest Anim 2003 Aug;38(4):305-11.
                          40. Blanchard TL, Varner DD (1997) Evaluation breeding soundness in stallions. 5. Predicting potential fertility. Vet Med Sept 815u2013818.
                          41. Woods J, Rigby S, Brinsko S, Stephens R, Varner D, Blanchard T. Effect of intrauterine treatment with prostaglandin E2 prior to insemination of mares in the uterine horn or body.. Theriogenology 2000 Jun;53(9):1827-36.
                            pubmed: 10968425doi: 10.1016/s0093-691x(00)00318-6google scholar: lookup
                          42. Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S, Imsland F, Lear TL, Adelson DL, Bailey E, Bellone RR, Blu00f6cker H, Distl O, Edgar RC, Garber M, Leeb T, Mauceli E, MacLeod JN, Penedo MC, Raison JM, Sharpe T, Vogel J, Andersson L, Antczak DF, Biagi T, Binns MM, Chowdhary BP, Coleman SJ, Della Valle G, Fryc S, Guu00e9rin G, Hasegawa T, Hill EW, Jurka J, Kiialainen A, Lindgren G, Liu J, Magnani E, Mickelson JR, Murray J, Nergadze SG, Onofrio R, Pedroni S, Piras MF, Raudsepp T, Rocchi M, Ru00f8ed KH, Ryder OA, Searle S, Skow L, Swinburne JE, Syvu00e4nen AC, Tozaki T, Valberg SJ, Vaudin M, White JR, Zody MC, Lander ES, Lindblad-Toh K. Genome sequence, comparative analysis, and population genetics of the domestic horse.. Science 2009 Nov 6;326(5954):865-7.
                            pmc: PMC3785132pubmed: 19892987doi: 10.1126/science.1178158google scholar: lookup
                          43. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository.. Nucleic Acids Res 2002 Jan 1;30(1):207-10.
                            pmc: PMC99122pubmed: 11752295doi: 10.1093/nar/30.1.207google scholar: lookup
                          44. Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Holko M, Ayanbule O, Yefanov A, Soboleva A. NCBI GEO: archive for functional genomics data sets--10 years on.. Nucleic Acids Res 2011 Jan;39(Database issue):D1005-10.
                            pmc: PMC3013736pubmed: 21097893doi: 10.1093/nar/gkq1184google scholar: lookup
                          45. Xu X, Arnason U. The complete mitochondrial DNA sequence of the horse, Equus caballus: extensive heteroplasmy of the control region.. Gene 1994 Oct 21;148(2):357-62.
                            pubmed: 7958969doi: 10.1016/0378-1119(94)90713-7google scholar: lookup
                          46. Rumble SM, Lacroute P, Dalca AV, Fiume M, Sidow A, Brudno M. SHRiMP: accurate mapping of short color-space reads.. PLoS Comput Biol 2009 May;5(5):e1000386.
                          47. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq.. Nat Methods 2008 Jul;5(7):621-8.
                            pubmed: 18516045doi: 10.1038/nmeth.1226google scholar: lookup
                          48. Martins RP, Krawetz SA. Nuclear organization of the protamine locus.. Soc Reprod Fertil Suppl 2007;64:1-12.
                            pubmed: 17491138doi: 10.5661/rdr-vi-1google scholar: lookup
                          49. Choudhary SK, Wykes SM, Kramer JA, Mohamed AN, Koppitch F, Nelson JE, Krawetz SA. A haploid expressed gene cluster exists as a single chromatin domain in human sperm.. J Biol Chem 1995 Apr 14;270(15):8755-62.
                            pubmed: 7721781doi: 10.1074/jbc.270.15.8755google scholar: lookup
                          50. Bright LA, Burgess SC, Chowdhary B, Swiderski CE, McCarthy FM. Structural and functional-annotation of an equine whole genome oligoarray.. BMC Bioinformatics 2009 Oct 8;10 Suppl 11(Suppl 11):S8.
                            pmc: PMC3226197pubmed: 19811692doi: 10.1186/1471-2105-10-S11-S8google scholar: lookup
                          51. Paria N, Raudsepp T, Pearks Wilkerson AJ, O'Brien PC, Ferguson-Smith MA, Love CC, Arnold C, Rakestraw P, Murphy WJ, Chowdhary BP. A gene catalogue of the euchromatic male-specific region of the horse Y chromosome: comparison with human and other mammals.. PLoS One 2011;6(7):e21374.
                          52. Kumar A, Lee CM, Reddy EP. c-Myc is essential but not sufficient for c-Myb-mediated block of granulocytic differentiation.. J Biol Chem 2003 Mar 28;278(13):11480-8.
                            pubmed: 12525485doi: 10.1074/jbc.M300080200google scholar: lookup
                          53. Chiang MH, Steuerwald N, Lambert H, Main EK, Steinleitner A. Detection of human leukocyte antigen class I messenger ribonucleic acid transcripts in human spermatozoa via reverse transcription-polymerase chain reaction.. Fertil Steril 1994 Feb;61(2):276-80.
                            pubmed: 7507866
                          54. Garcu00eda-Herrero S, Garrido N, Martu00ednez-Conejero JA, Remohu00ed J, Pellicer A, Meseguer M. Differential transcriptomic profile in spermatozoa achieving pregnancy or not via ICSI.. Reprod Biomed Online 2011 Jan;22(1):25-36.
                            pubmed: 21123116doi: 10.1016/j.rbmo.2010.09.013google scholar: lookup
                          55. Srivastava J, Premi S, Kumar S, Ali S. Expressional dynamics of minisatellite 33.15 tagged spermatozoal transcriptome in Bubalus bubalis.. BMC Genomics 2009 Jul 7;10:303.
                            pmc: PMC2713999pubmed: 19583837doi: 10.1186/1471-2164-10-303google scholar: lookup
                          56. Johnson GD, Sendler E, Lalancette C, Hauser R, Diamond MP, Krawetz SA. Cleavage of rRNA ensures translational cessation in sperm at fertilization.. Mol Hum Reprod 2011 Dec;17(12):721-6.
                            pmc: PMC3212859pubmed: 21831882doi: 10.1093/molehr/gar054google scholar: lookup
                          57. Kawano M, Kawaji H, Grandjean V, Kiani J, Rassoulzadegan M. Novel small noncoding RNAs in mouse spermatozoa, zygotes and early embryos.. PLoS One 2012;7(9):e44542.
                          58. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics.. Nat Rev Genet 2009 Jan;10(1):57-63.
                            pmc: PMC2949280pubmed: 19015660doi: 10.1038/nrg2484google scholar: lookup
                          59. Coleman SJ, Zeng Z, Wang K, Luo S, Khrebtukova I, Mienaltowski MJ, Schroth GP, Liu J, MacLeod JN. Structural annotation of equine protein-coding genes determined by mRNA sequencing.. Anim Genet 2010 Dec;41 Suppl 2:121-30.
                          60. Ostermeier GC, Dix DJ, Krawetz SA. A bioinformatic strategy to rapidly characterize cDNA libraries.. Bioinformatics 2002 Jul;18(7):949-52.
                          61. Samplaski MK, Agarwal A, Sharma R, Sabanegh E. New generation of diagnostic tests for infertility: review of specialized semen tests.. Int J Urol 2010 Oct;17(10):839-47.
                          62. Moore GD, Kopf GS, Schultz RM. Complete mouse egg activation in the absence of sperm by stimulation of an exogenous G protein-coupled receptor.. Dev Biol 1993 Oct;159(2):669-78.
                            pubmed: 8405688doi: 10.1006/dbio.1993.1273google scholar: lookup
                          63. Etkovitz N, Tirosh Y, Chazan R, Jaldety Y, Daniel L, Rubinstein S, Breitbart H. Bovine sperm acrosome reaction induced by G-protein-coupled receptor agonists is mediated by epidermal growth factor receptor transactivation.. Dev Biol 2009 Oct 15;334(2):447-57.
                            pubmed: 19666015doi: 10.1016/j.ydbio.2009.08.002google scholar: lookup
                          64. Teves ME, Guidobaldi HA, Uu00f1ates DR, Sanchez R, Miska W, Publicover SJ, Morales Garcia AA, Giojalas LC. Molecular mechanism for human sperm chemotaxis mediated by progesterone.. PLoS One 2009 Dec 8;4(12):e8211.
                          65. Florman HM, Jungnickel MK, Sutton KA. What can we learn about fertilization from cystic fibrosis?. Proc Natl Acad Sci U S A 2007 Jul 3;104(27):11123-4.
                            pmc: PMC2040861pubmed: 17595298doi: 10.1073/pnas.0703626104google scholar: lookup
                          66. Florman HM, Jungnickel MK, Sutton KA. Regulating the acrosome reaction.. Int J Dev Biol 2008;52(5-6):503-10.
                            pubmed: 18649263doi: 10.1387/ijdb.082696hfgoogle scholar: lookup
                          67. Saxena DK, Oh-Oka T, Kadomatsu K, Muramatsu T, Toshimori K. Behaviour of a sperm surface transmembrane glycoprotein basigin during epididymal maturation and its role in fertilization in mice.. Reproduction 2002 Mar;123(3):435-44.
                            pubmed: 11882021doi: 10.1530/rep.0.1230435google scholar: lookup
                          68. Spehr M, Schwane K, Riffell JA, Zimmer RK, Hatt H. Odorant receptors and olfactory-like signaling mechanisms in mammalian sperm.. Mol Cell Endocrinol 2006 May 16;250(1-2):128-36.
                            pubmed: 16413109doi: 10.1016/j.mce.2005.12.035google scholar: lookup
                          69. Imai T, Sakano H. Odorant receptor-mediated signaling in the mouse.. Curr Opin Neurobiol 2008 Jun;18(3):251-60.
                            pubmed: 18721880doi: 10.1016/j.conb.2008.07.009google scholar: lookup
                          70. Yao C, Wang Z, Zhou Y, Xu W, Li Q, Ma D, Wang L, Qiao Z. A study of Y chromosome gene mRNA in human ejaculated spermatozoa.. Mol Reprod Dev 2010 Feb;77(2):158-66.
                            pubmed: 19834984doi: 10.1002/mrd.21116google scholar: lookup
                          71. Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L, Brown LG, Repping S, Pyntikova T, Ali J, Bieri T, Chinwalla A, Delehaunty A, Delehaunty K, Du H, Fewell G, Fulton L, Fulton R, Graves T, Hou SF, Latrielle P, Leonard S, Mardis E, Maupin R, McPherson J, Miner T, Nash W, Nguyen C, Ozersky P, Pepin K, Rock S, Rohlfing T, Scott K, Schultz B, Strong C, Tin-Wollam A, Yang SP, Waterston RH, Wilson RK, Rozen S, Page DC. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes.. Nature 2003 Jun 19;423(6942):825-37.
                            pubmed: 12815422doi: 10.1038/nature01722google scholar: lookup
                          72. Miller D, Ostermeier GC. Spermatozoal RNA: Why is it there and what does it do?. Gynecol Obstet Fertil 2006 Sep;34(9):840-6.
                            pubmed: 16971154doi: 10.1016/j.gyobfe.2006.07.013google scholar: lookup
                          73. Das PJ, Paria N, Gustafson-Seabury A, Vishnoi M, Chaki SP, Love CC, Varner DD, Chowdhary BP, Raudsepp T. Total RNA isolation from stallion sperm and testis biopsies.. Theriogenology 2010 Oct 1;74(6):1099-1106, 1106e1-2.
                          74. Zhou M, Wang Q, Sun J, Li X, Xu L, Yang H, Shi H, Ning S, Chen L, Li Y, He T, Zheng Y. In silico detection and characteristics of novel microRNA genes in the Equus caballus genome using an integrated ab initio and comparative genomic approach.. Genomics 2009 Aug;94(2):125-31.
                            pubmed: 19406225doi: 10.1016/j.ygeno.2009.04.006google scholar: lookup
                          75. Krawetz SA, Kruger A, Lalancette C, Tagett R, Anton E, Draghici S, Diamond MP. A survey of small RNAs in human sperm.. Hum Reprod 2011 Dec;26(12):3401-12.
                            pmc: PMC3212879pubmed: 21989093doi: 10.1093/humrep/der329google scholar: lookup
                          76. Curry E, Ellis SE, Pratt SL. Detection of porcine sperm microRNAs using a heterologous microRNA microarray and reverse transcriptase polymerase chain reaction.. Mol Reprod Dev 2009 Mar;76(3):218-9.
                            pubmed: 19012322doi: 10.1002/mrd.20980google scholar: lookup
                          77. Liu WM, Pang RT, Chiu PC, Wong BP, Lao K, Lee KF, Yeung WS. Sperm-borne microRNA-34c is required for the first cleavage division in mouse.. Proc Natl Acad Sci U S A 2012 Jan 10;109(2):490-4.
                            pmc: PMC3258645pubmed: 22203953doi: 10.1073/pnas.1110368109google scholar: lookup
                          78. Peng H, Shi J, Zhang Y, Zhang H, Liao S, Li W, Lei L, Han C, Ning L, Cao Y, Zhou Q, Chen Q, Duan E. A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm.. Cell Res 2012 Nov;22(11):1609-12.
                            pmc: PMC3494397pubmed: 23044802doi: 10.1038/cr.2012.141google scholar: lookup
                          79. Grandjean V, Gounon P, Wagner N, Martin L, Wagner KD, Bernex F, Cuzin F, Rassoulzadegan M. The miR-124-Sox9 paramutation: RNA-mediated epigenetic control of embryonic and adult growth.. Development 2009 Nov;136(21):3647-55.
                            pubmed: 19820183doi: 10.1242/dev.041061google scholar: lookup
                          80. Meunier J, Lemoine F, Soumillon M, Liechti A, Weier M, Guschanski K, Hu H, Khaitovich P, Kaessmann H. Birth and expression evolution of mammalian microRNA genes.. Genome Res 2013 Jan;23(1):34-45.
                            pmc: PMC3530682pubmed: 23034410doi: 10.1101/gr.140269.112google scholar: lookup
                          81. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions.. Nat Rev Genet 2009 Mar;10(3):155-9.
                            pubmed: 19188922doi: 10.1038/nrg2521google scholar: lookup
                          82. Grunewald S, Paasch U, Glander HJ, Anderegg U. Mature human spermatozoa do not transcribe novel RNA.. Andrologia 2005 Jun;37(2-3):69-71.
                          83. Ostermeier GC, Miller D, Huntriss JD, Diamond MP, Krawetz SA. Reproductive biology: delivering spermatozoan RNA to the oocyte.. Nature 2004 May 13;429(6988):154.
                            pubmed: 15141202doi: 10.1038/429154agoogle scholar: lookup
                          84. Pittoggi C, Beraldi R, Sciamanna I, Barberi L, Giordano R, Magnano AR, Torosantucci L, Pescarmona E, Spadafora C. Generation of biologically active retro-genes upon interaction of mouse spermatozoa with exogenous DNA.. Mol Reprod Dev 2006 Oct;73(10):1239-46.
                            pubmed: 16850445doi: 10.1002/mrd.20550google scholar: lookup
                          85. Zhao C, Guo XJ, Shi ZH, Wang FQ, Huang XY, Huo R, Zhu H, Wang XR, Liu JY, Zhou ZM, Sha JH. Role of translation by mitochondrial-type ribosomes during sperm capacitation: an analysis based on a proteomic approach.. Proteomics 2009 Mar;9(5):1385-99.
                            pubmed: 19253287doi: 10.1002/pmic.200800353google scholar: lookup
                          86. Puri D, Dhawan J, Mishra RK. The paternal hidden agenda: Epigenetic inheritance through sperm chromatin.. Epigenetics 2010 Jul 1;5(5):386-91.
                            pubmed: 20448473doi: 10.4161/epi.5.5.12005google scholar: lookup
                          87. Varner DD. Developments in stallion semen evaluation.. Theriogenology 2008 Aug;70(3):448-62.
                          88. Varner DD, Blanchard TL, Brinsko SP, Love CC, Taylor TS, Johnson L. Techniques for evaluating selected reproductive disorders of stallions.. Anim Reprod Sci 2000 Jul 2;60-61:493-509.
                            pubmed: 10844219doi: 10.1016/s0378-4320(00)00115-9google scholar: lookup
                          89. Chomczynski P, Mackey K. Short technical reports. Modification of the TRI reagent procedure for isolation of RNA from polysaccharide- and proteoglycan-rich sources.. Biotechniques 1995 Dec;19(6):942-5.
                            pubmed: 8747660
                          90. Smyth GK, Speed T. Normalization of cDNA microarray data.. Methods 2003 Dec;31(4):265-73.
                            pubmed: 14597310doi: 10.1016/s1046-2023(03)00155-5google scholar: lookup
                          91. Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers.. Methods Mol Biol 2000;132:365-86.
                            pubmed: 10547847doi: 10.1385/1-59259-192-2:365google scholar: lookup
                          92. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A, Lao K, Surani MA. mRNA-Seq whole-transcriptome analysis of a single cell.. Nat Methods 2009 May;6(5):377-82.
                            pubmed: 19349980doi: 10.1038/nmeth.1315google scholar: lookup
                          93. Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins.. J Mol Biol 1970 Mar;48(3):443-53.
                            pubmed: 5420325doi: 10.1016/0022-2836(70)90057-4google scholar: lookup
                          94. Saengsoi W, Shia WY, Shyu CL, Wu JT, Warinrak C, Lee WM, Cheng FP. Detection of matrix metalloproteinase (MMP)-2 and MMP-9 in canine seminal plasma.. Anim Reprod Sci 2011 Aug;127(1-2):114-9.
                          95. Zhao M, Shirley CR, Yu YE, Mohapatra B, Zhang Y, Unni E, Deng JM, Arango NA, Terry NH, Weil MM, Russell LD, Behringer RR, Meistrich ML. Targeted disruption of the transition protein 2 gene affects sperm chromatin structure and reduces fertility in mice.. Mol Cell Biol 2001 Nov;21(21):7243-55.
                          96. Bench GS, Friz AM, Corzett MH, Morse DH, Balhorn R. DNA and total protamine masses in individual sperm from fertile mammalian subjects.. Cytometry 1996 Apr 1;23(4):263-71.
                          97. Peddinti D, Nanduri B, Kaya A, Feugang JM, Burgess SC, Memili E. Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility.. BMC Syst Biol 2008 Feb 22;2:19.
                            pmc: PMC2291030pubmed: 18294385doi: 10.1186/1752-0509-2-19google scholar: lookup
                          98. Kameshwari DB, Bhande S, Sundaram CS, Kota V, Siva AB, Shivaji S. Glucose-regulated protein precursor (GRP78) and tumor rejection antigen (GP96) are unique to hamster caput epididymal spermatozoa.. Asian J Androl 2010 May;12(3):344-55.
                            pmc: PMC3739268pubmed: 20400973doi: 10.1038/aja.2010.19google scholar: lookup
                          99. Feugang JM, Kaya A, Page GP, Chen L, Mehta T, Hirani K, Nazareth L, Topper E, Gibbs R, Memili E. Two-stage genome-wide association study identifies integrin beta 5 as having potential role in bull fertility.. BMC Genomics 2009 Apr 24;10:176.
                            pmc: PMC2684547pubmed: 19393042doi: 10.1186/1471-2164-10-176google scholar: lookup
                          100. Paillisson A, Dadu00e9 S, Callebaut I, Bontoux M, Dalbiu00e8s-Tran R, Vaiman D, Monget P. Identification, characterization and metagenome analysis of oocyte-specific genes organized in clusters in the mouse genome.. BMC Genomics 2005 May 20;6:76.
                            pmc: PMC1166550pubmed: 15907208doi: 10.1186/1471-2164-6-76google scholar: lookup
                          101. Bader M, Arama E, Steller H. A novel F-box protein is required for caspase activation during cellular remodeling in Drosophila.. Development 2010 May;137(10):1679-88.
                            pmc: PMC2860250pubmed: 20392747doi: 10.1242/dev.050088google scholar: lookup
                          102. Cavalcanti MC, Steilmann C, Failing K, Bergmann M, Kliesch S, Weidner W, Steger K. Apoptotic gene expression in potentially fertile and subfertile men.. Mol Hum Reprod 2011 Jul;17(7):415-20.
                            pubmed: 21317160doi: 10.1093/molehr/gar011google scholar: lookup
                          103. Arangasamy A, Kasimanickam VR, DeJarnette JM, Kasimanickam RK. Association of CRISP2, CCT8, PEBP1 mRNA abundance in sperm and sire conception rate in Holstein bulls.. Theriogenology 2011 Aug;76(3):570-7.
                          104. Neuhaus EM, Mashukova A, Barbour J, Wolters D, Hatt H. Novel function of beta-arrestin2 in the nucleus of mature spermatozoa.. J Cell Sci 2006 Aug 1;119(Pt 15):3047-56.
                            pubmed: 16820410doi: 10.1242/jcs.03046google scholar: lookup
                          105. Coates JC. Armadillo repeat proteins: beyond the animal kingdom.. Trends Cell Biol 2003 Sep;13(9):463-71.
                            pubmed: 12946625doi: 10.1016/s0962-8924(03)00167-3google scholar: lookup
                          106. Boyer A, Yeh JR, Zhang X, Paquet M, Gaudin A, Nagano MC, Boerboom D. CTNNB1 signaling in sertoli cells downregulates spermatogonial stem cell activity via WNT4.. PLoS One 2012;7(1):e29764.
                          107. Yamazaki K, Adachi T, Sato K, Yanagisawa Y, Fukata H, Seki N, Mori C, Komiyama M. Identification and characterization of novel and unknown mouse epididymis-specific genes by complementary DNA microarray technology.. Biol Reprod 2006 Sep;75(3):462-8.
                            pubmed: 16707773doi: 10.1095/biolreprod.105.048058google scholar: lookup
                          108. Fujita K, Shimazaki N, Ohta Y, Kubota T, Ibe S, Toji S, Tamai K, Fujisaki S, Hayano T, Koiwai O. Terminal deoxynucleotidyltransferase forms a ternary complex with a novel chromatin remodeling protein with 82 kDa and core histone.. Genes Cells 2003 Jun;8(6):559-71.
                          109. Huber C, Mu00e5rtensson A, Bokoch GM, Nemazee D, Gavin AL. FGD2, a CDC42-specific exchange factor expressed by antigen-presenting cells, localizes to early endosomes and active membrane ruffles.. J Biol Chem 2008 Dec 5;283(49):34002-12.
                            pmc: PMC2590680pubmed: 18838382doi: 10.1074/jbc.M803957200google scholar: lookup
                          110. Cao XG, Kou CZ, Zhao YP, Gao CL, Zhu C, Zhang CM, Ji CB, Qin DN, Zhang M, Guo XR. Overexpression of LYRM1 induces mitochondrial impairment in 3T3-L1 adipocytes.. Mol Genet Metab 2010 Dec;101(4):395-9.
                            pubmed: 20826099doi: 10.1016/j.ymgme.2010.08.010google scholar: lookup
                          111. Johnson AR, Craciunescu CN, Guo Z, Teng YW, Thresher RJ, Blusztajn JK, Zeisel SH. Deletion of murine choline dehydrogenase results in diminished sperm motility.. FASEB J 2010 Aug;24(8):2752-61.
                            pmc: PMC2909292pubmed: 20371614doi: 10.1096/fj.09-153718google scholar: lookup
                          112. Dun MD, Aitken RJ, Nixon B. The role of molecular chaperones in spermatogenesis and the post-testicular maturation of mammalian spermatozoa.. Hum Reprod Update 2012 Jul;18(4):420-35.
                            pubmed: 22523110doi: 10.1093/humupd/dms009google scholar: lookup
                          113. Miranda-Vizuete A, Ljung J, Damdimopoulos AE, Gustafsson JA, Oko R, Pelto-Huikko M, Spyrou G. Characterization of Sptrx, a novel member of the thioredoxin family specifically expressed in human spermatozoa.. J Biol Chem 2001 Aug 24;276(34):31567-74.
                            pubmed: 11399755doi: 10.1074/jbc.M101760200google scholar: lookup

                          Citations

                          This article has been cited 32 times.
                          1. Vasisth R, Gurao A, Kumari N, Kumar G, Kumar A, Sriranga KR, Dige MS, Mukesh M, Aggarwal RAK, Singh P, Kataria RS. Development and validation of most efficient RNA isolation method from buffalo bull spermatozoa.. Mol Biol Rep 2023 Aug;50(8):6717-6727.
                            doi: 10.1007/s11033-023-08593-0pubmed: 37378747google scholar: lookup
                          2. Indriastuti R, Pardede BP, Gunawan A, Ulum MF, Arifiantini RI, Purwantara B. Sperm Transcriptome Analysis Accurately Reveals Male Fertility Potential in Livestock.. Animals (Basel) 2022 Oct 27;12(21).
                            doi: 10.3390/ani12212955pubmed: 36359078google scholar: lookup
                          3. Thundathil JC, Rajamanickam GD, Kastelic JP. Na/K-ATPase and Regulation of Sperm Function.. Anim Reprod 2018 Jul-Sep;15(Suppl 1):711-720.
                          4. Castro-Arnau J, Chauvignu00e9 F, Gu00f3mez-Garrido J, Esteve-Codina A, Dabad M, Alioto T, Finn RN, Cerdu00e0 J. Developmental RNA-Seq transcriptomics of haploid germ cells and spermatozoa uncovers novel pathways associated with teleost spermiogenesis.. Sci Rep 2022 Aug 19;12(1):14162.
                            doi: 10.1038/s41598-022-18422-2pubmed: 35986060google scholar: lookup
                          5. Karuthadurai T, Das DN, Kumaresan A, Sinha MK, Kamaraj E, Nag P, Ebenezer Samuel King JP, Datta TK, Manimaran A, Jeyakumar S, Ramesha K. Sperm Transcripts Associated With Odorant Binding and Olfactory Transduction Pathways Are Altered in Breeding Bulls Producing Poor-Quality Semen.. Front Vet Sci 2022;9:799386.
                            doi: 10.3389/fvets.2022.799386pubmed: 35274020google scholar: lookup
                          6. Sahoo B, Choudhary RK, Sharma P, Choudhary S, Gupta MK. Significance and Relevance of Spermatozoal RNAs to Male Fertility in Livestock.. Front Genet 2021;12:768196.
                            doi: 10.3389/fgene.2021.768196pubmed: 34956322google scholar: lookup
                          7. Moura FH, Macias-Franco A, Pena-Bello CA, Archilia EC, Batalha IM, Silva AEM, Moreira GM, Norris AB, Schu00fctz LF, Fonseca MA. Sperm DNA 5-methyl cytosine and RNA N6-methyladenosine methylation are differently affected during periods of body weight losses and body weight gain of young and mature breeding bulls.. J Anim Sci 2022 Feb 1;100(2).
                            doi: 10.1093/jas/skab362pubmed: 34902028google scholar: lookup
                          8. Lian Y, Gu00f2dia M, Castello A, Rodriguez-Gil JE, Balasch S, Sanchez A, Clop A. Characterization of the Impact of Density Gradient Centrifugation on the Profile of the Pig Sperm Transcriptome by RNA-Seq.. Front Vet Sci 2021;8:668158.
                            doi: 10.3389/fvets.2021.668158pubmed: 34350225google scholar: lookup
                          9. Prakash MA, Kumaresan A, Ebenezer Samuel King JP, Nag P, Sharma A, Sinha MK, Kamaraj E, Datta TK. Comparative Transcriptomic Analysis of Spermatozoa From High- and Low-Fertile Crossbred Bulls: Implications for Fertility Prediction.. Front Cell Dev Biol 2021;9:647717.
                            doi: 10.3389/fcell.2021.647717pubmed: 34041237google scholar: lookup
                          10. Tang C, Xie Y, Guo M, Yan W. AASRA: an anchor alignment-based small RNA annotation pipelineu2020.. Biol Reprod 2021 Jul 2;105(1):267-277.
                            doi: 10.1093/biolre/ioab062pubmed: 33787835google scholar: lookup
                          11. Keles E, Malama E, Bozukova S, Siuda M, Wyck S, Witschi U, Bauersachs S, Bollwein H. The micro-RNA content of unsorted cryopreserved bovine sperm and its relation to the fertility of sperm after sex-sorting.. BMC Genomics 2021 Jan 7;22(1):30.
                            doi: 10.1186/s12864-020-07280-9pubmed: 33413071google scholar: lookup
                          12. Fraser L, Paukszto u0141, Mau0144kowska A, Brym P, Gilun P, Jastrzu0119bski JP, Pareek CS, Kumar D, Pierzchau0142a M. Regulatory Potential of Long Non-Coding RNAs (lncRNAs) in Boar Spermatozoa with Good and Poor Freezability.. Life (Basel) 2020 Nov 21;10(11).
                            doi: 10.3390/life10110300pubmed: 33233438google scholar: lookup
                          13. Prakash MA, Kumaresan A, Sinha MK, Kamaraj E, Mohanty TK, Datta TK, Morrell JM. RNA-Seq analysis reveals functionally relevant coding and non-coding RNAs in crossbred bull spermatozoa.. Anim Reprod Sci 2020 Nov;222:106621.
                          14. Elango K, Kumaresan A, Sharma A, Nag P, Prakash MA, Sinha MK, Manimaran A, Peter ESKJ, Jeyakumar S, Selvaraju S, Ramesha KP, Datta TK. Sub-fertility in crossbred bulls: deciphering testicular level transcriptomic alterations between zebu (Bos indicus) and crossbred (Bos taurus x Bos indicus) bulls.. BMC Genomics 2020 Jul 21;21(1):502.
                            doi: 10.1186/s12864-020-06907-1pubmed: 32693775google scholar: lookup
                          15. Sellem E, Marthey S, Rau A, Jouneau L, Bonnet A, Perrier JP, Fritz S, Le Danvic C, Boussaha M, Kiefer H, Jammes H, Schibler L. A comprehensive overview of bull sperm-borne small non-coding RNAs and their diversity across breeds.. Epigenetics Chromatin 2020 Mar 30;13(1):19.
                            doi: 10.1186/s13072-020-00340-0pubmed: 32228651google scholar: lookup
                          16. Han H, Chen Q, Gao Y, Li J, Li W, Dang R, Lei C. Comparative Transcriptomics Analysis of Testicular miRNA from Cryptorchid and Normal Horses.. Animals (Basel) 2020 Feb 21;10(2).
                            doi: 10.3390/ani10020338pubmed: 32098036google scholar: lookup
                          17. Das PP, Krishnan G, Doley J, Biswas TK, Paul V, Chakravarty P, Mohan Deb S, Das PJ. Identification and expression profiling of MSY genes of yak for bull fertility.. J Genet 2019 Jun;98(2).
                            pubmed: 31204701
                          18. Gu00f2dia M, Estill M, Castellu00f3 A, Balasch S, Rodru00edguez-Gil JE, Krawetz SA, Su00e1nchez A, Clop A. A RNA-Seq Analysis to Describe the Boar Sperm Transcriptome and Its Seasonal Changes.. Front Genet 2019;10:299.
                            doi: 10.3389/fgene.2019.00299pubmed: 31040860google scholar: lookup
                          19. Keku00e4lu00e4inen J, Evans JP. Gamete-mediated mate choice: towards a more inclusive view of sexual selection.. Proc Biol Sci 2018 Jul 18;285(1883).
                            doi: 10.1098/rspb.2018.0836pubmed: 30051836google scholar: lookup
                          20. Bundgaard J, Barker JS. Genetic variation for resistance to high temperature stress of mature sperm - a study in Drosophila.. PLoS One 2017;12(3):e0173990.
                            doi: 10.1371/journal.pone.0173990pubmed: 28358879google scholar: lookup
                          21. Selvaraju S, Parthipan S, Somashekar L, Kolte AP, Krishnan Binsila B, Arangasamy A, Ravindra JP. Occurrence and functional significance of the transcriptome in bovine (Bos taurus) spermatozoa.. Sci Rep 2017 Mar 9;7:42392.
                            doi: 10.1038/srep42392pubmed: 28276431google scholar: lookup
                          22. Capra E, Turri F, Lazzari B, Cremonesi P, Gliozzi TM, Fojadelli I, Stella A, Pizzi F. Small RNA sequencing of cryopreserved semen from single bull revealed altered miRNAs and piRNAs expression between High- and Low-motile sperm populations.. BMC Genomics 2017 Jan 4;18(1):14.
                            doi: 10.1186/s12864-016-3394-7pubmed: 28052756google scholar: lookup
                          23. Stefaniuk M, Ropka-Molik K. RNA sequencing as a powerful tool in searching for genes influencing health and performance traits of horses.. J Appl Genet 2016 May;57(2):199-206.
                            doi: 10.1007/s13353-015-0320-7pubmed: 26446669google scholar: lookup
                          24. McQueen CM, Dindot SV, Foster MJ, Cohen ND. Genetic Susceptibility to Rhodococcus equi.. J Vet Intern Med 2015 Nov-Dec;29(6):1648-59.
                            doi: 10.1111/jvim.13616pubmed: 26340305google scholar: lookup
                          25. Miller D. Confrontation, Consolidation, and Recognition: The Oocyte's Perspective on the Incoming Sperm.. Cold Spring Harb Perspect Med 2015 May 8;5(8):a023408.
                            doi: 10.1101/cshperspect.a023408pubmed: 25957313google scholar: lookup
                          26. Pacholewska A, Dru00f6gemu00fcller M, Klukowska-Ru00f6tzler J, Lanz S, Hamza E, Dermitzakis ET, Marti E, Gerber V, Leeb T, Jagannathan V. The transcriptome of equine peripheral blood mononuclear cells.. PLoS One 2015;10(3):e0122011.
                            doi: 10.1371/journal.pone.0122011pubmed: 25790166google scholar: lookup
                          27. Luo Z, Liu Y, Chen L, Ellis M, Li M, Wang J, Zhang Y, Fu P, Wang K, Li X, Wang L. microRNA profiling in three main stages during porcine spermatogenesis.. J Assist Reprod Genet 2015 Mar;32(3):451-60.
                            doi: 10.1007/s10815-014-0406-xpubmed: 25563581google scholar: lookup
                          28. Zilli L, Beiru00e3o J, Schiavone R, Herraez MP, Gnoni A, Vilella S. Comparative proteome analysis of cryopreserved flagella and head plasma membrane proteins from sea bream spermatozoa: effect of antifreeze proteins.. PLoS One 2014;9(6):e99992.
                            doi: 10.1371/journal.pone.0099992pubmed: 24941006google scholar: lookup
                          29. Moreton J, Malla S, Aboobaker AA, Tarlinton RE, Emes RD. Characterisation of the horse transcriptome from immunologically active tissues.. PeerJ 2014;2:e382.
                            doi: 10.7717/peerj.382pubmed: 24860704google scholar: lookup
                          30. Kim MC, Lee SW, Ryu DY, Cui FJ, Bhak J, Kim Y. Identification and characterization of microRNAs in normal equine tissues by Next Generation Sequencing.. PLoS One 2014;9(4):e93662.
                            doi: 10.1371/journal.pone.0093662pubmed: 24695583google scholar: lookup
                          31. Jodar M, Selvaraju S, Sendler E, Diamond MP, Krawetz SA. The presence, role and clinical use of spermatozoal RNAs.. Hum Reprod Update 2013 Nov-Dec;19(6):604-24.
                            doi: 10.1093/humupd/dmt031pubmed: 23856356google scholar: lookup
                          32. u00d8strup O, Olbricht G, u00d8strup E, Hyttel P, Collas P, Cabot R. RNA profiles of porcine embryos during genome activation reveal complex metabolic switch sensitive to in vitro conditions.. PLoS One 2013;8(4):e61547.
                            doi: 10.1371/journal.pone.0061547pubmed: 23637850google scholar: lookup