International journal of molecular sciences2024; 25(4); 2350; doi: 10.3390/ijms25042350

Therapeutic Potential in Wound Healing of Allogeneic Use of Equine Umbilical Cord Mesenchymal Stem Cells.

Abstract: Wound healing after skin injury is a complex process, particularly in equines where leg wounds are prevalent and their repair is complicated due to the anatomical characteristics. Conventional treatments are not effective enough. The umbilical cord offers an unlimited source of adult mesenchymal stem cells (ucMSCs) from Wharton's jelly tissue. The present study aims to demonstrate the safety and therapeutic potential of the allogeneic use of equine ucMSCs (e-ucMSCs) in the healing of severe equine leg wounds. The methods employed were the isolation, culture and expansion of e-ucMSCs. Flow cytometry and a PCR assay were used for cell characterization. This study included an immunomodulation assay, a murine pre-clinical trial and the first phase of an equine clinical trial. Our results showed that e-ucMSCs express a functional HLA-G homolog, EQMHCB2. In the immunomodulation assay, the e-ucMSCs inhibited the proliferation of activated equine peripheral blood mononuclear cells (e-PBMCs). In the murine pre-clinical trial, e-ucMSCs reduced healing time by 50%. In the equine clinical trial, the injection of e-ucMSCs into severe leg lesions improved the closure time and quality of the tissues involved, regenerating them without fibrous tissue scar formation. In conclusion, the results of this study suggest that e-ucMSCs can be used allogeneically for wound healing by creating a tolerogenic environment.
Publication Date: 2024-02-16 PubMed ID: 38397024PubMed Central: PMC10889822DOI: 10.3390/ijms25042350Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

The research article outlines an experiment which studies the potential of using equine umbilical cord stem cells (e-ucMSCs) in healing severe leg injuries in horses. The study found that these stem cells can indeed promote quicker and higher quality wound healing, suggesting their possible future use in medical applications.

Objective and Methodology

  • The research seeks to find more effective treatments for wound healing in horses, particularly those injuries on the leg which can be complex due to the animal’s specific anatomy.
  • The team hypothesizes that mesenchymal stem cells (MSCs), derived from the Wharton’s jelly tissue of the equine umbilical cord, could potentially help in wound recovery.
  • The methodology employed for the study includes the isolation, culture, and proliferation of the umbilical cord stem cells. The team also performed characterization assays on the cells through flow cytometry and a Polymerase Chain Reaction (PCR) assay.

Immunomodulation Assay, Preclinical Trial and Clinical Trial

  • An immunomodulation assay was conducted to test how the stem cells interact with the immune cells of the horses. It was found that e-ucMSCs inhibited the proliferation of activated horse immune cells, creating a more tolerogenic or accepting environment for recovery.
  • A preclinical trial was conducted on mice where the use of stem cells resulted in a reduction of healing time by around 50%, showcasing the stem cells’ potential efficacy.
  • The first phase of a clinical trial on horses was also conducted. The stem cells were injected into severe leg lesions where it was observed that the healing time of the wounds was improved and the quality of tissue regeneration also enhanced, with no fibrous scar tissue formation.

Conclusion

  • The researchers concluded that e-ucMSCs could be used to improve wound healing in horses, creating a tolerogenic or accepting environment for recovery. This suggests a promising future in the use of e-ucMSCs for wound healing applications in equine medical settings.

Cite This Article

APA
Iribarne A, Palma MB, Andrini L, Riccillo F, Rodriguez D, Casella M, Garay F, Zabala JS, Mazza L, Muro A, Buero G, Miriuka SG, Carosella E, Garcu00eda MN. (2024). Therapeutic Potential in Wound Healing of Allogeneic Use of Equine Umbilical Cord Mesenchymal Stem Cells. Int J Mol Sci, 25(4), 2350. https://doi.org/10.3390/ijms25042350

Publication

ISSN: 1422-0067
NlmUniqueID: 101092791
Country: Switzerland
Language: English
Volume: 25
Issue: 4
PII: 2350

Researcher Affiliations

Iribarne, Ailu00e9n
  • Cu00e1tedra de Citologu00eda, Histologu00eda y Embriologu00eda, Facultad de Ciencias Mu00e9dicas, Universidad Nacional de La Plata, Buenos Aires CP 1900, Argentina.
Palma, Maru00eda Belu00e9n
  • Cu00e1tedra de Citologu00eda, Histologu00eda y Embriologu00eda, Facultad de Ciencias Mu00e9dicas, Universidad Nacional de La Plata, Buenos Aires CP 1900, Argentina.
  • Instituto de Neurociencias (INEU), Fundaciu00f3n para la Lucha contra Enfermedades Neurolu00f3gicas de la Infancia-Consejo Nacional de Investigaciones Cientu00edficas y Tu00e9cnicas (FLENI-CONICET) Escobar, Buenos Aires CP B1625, Argentina.
Andrini, Laura
  • Cu00e1tedra de Citologu00eda, Histologu00eda y Embriologu00eda, Facultad de Ciencias Mu00e9dicas, Universidad Nacional de La Plata, Buenos Aires CP 1900, Argentina.
Riccillo, Fernando
  • Cu00e1tedra de Citologu00eda, Histologu00eda y Embriologu00eda, Facultad de Ciencias Mu00e9dicas, Universidad Nacional de La Plata, Buenos Aires CP 1900, Argentina.
Rodriguez, Delfina
  • Centro de Reproducciu00f3n Equina La Adela, Chascomu00fas, Buenos Aires CP 7130, Argentina.
Casella, Martu00edn
  • Divisiu00f3n Remonta Haras La Teruca, Buenos Aires B1900, Argentina.
Garay, Felipe
  • Divisiu00f3n Remonta Haras La Teruca, Buenos Aires B1900, Argentina.
  • Direcciu00f3n Veterinaria, Policu00eda de la Provincia de Buenos Aires, Buenos Aires B1904, Argentina.
Zabala, Julieta Spoto
  • Divisiu00f3n Remonta Haras La Teruca, Buenos Aires B1900, Argentina.
  • Direcciu00f3n Veterinaria, Policu00eda de la Provincia de Buenos Aires, Buenos Aires B1904, Argentina.
Mazza, Leandro
  • Cu00e1tedra de Anatomu00eda B, Facultad de Ciencias Mu00e9dicas, Universidad Nacional de La Plata, Buenos Aires CP 1900, Argentina.
Muro, Adriana
  • Laboratorio de Anu00e1lisis Clu00ednicos Veterinarios, La Plata, Buenos Aires CP 1900, Argentina.
Buero, Guillermo
  • Sanatorio Mater Dei, Ciudad Autu00f3noma de Buenos Aires, Buenos Aires CP C1425, Argentina.
Miriuka, Santiago G
  • Instituto de Neurociencias (INEU), Fundaciu00f3n para la Lucha contra Enfermedades Neurolu00f3gicas de la Infancia-Consejo Nacional de Investigaciones Cientu00edficas y Tu00e9cnicas (FLENI-CONICET) Escobar, Buenos Aires CP B1625, Argentina.
Carosella, Edgardo
  • Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA), Service de Recherche en Hemato-Immunologie (SRHI), Saint-Louis Hospital, 75010 Paris, France.
  • Hopital Saint-Louis, IUH, Universitu00e9 Paris Diderot, Sorbonne Paris Cite, 75010 Paris, France.
Garcu00eda, Marcela N
  • Cu00e1tedra de Citologu00eda, Histologu00eda y Embriologu00eda, Facultad de Ciencias Mu00e9dicas, Universidad Nacional de La Plata, Buenos Aires CP 1900, Argentina.

MeSH Terms

  • Animals
  • Horses
  • Mice
  • Leukocytes, Mononuclear
  • Mesenchymal Stem Cells
  • Umbilical Cord
  • Cicatrix
  • Hematopoietic Stem Cell Transplantation

Conflict of Interest Statement

The authors declare no conflicts of interest.

References

This article includes 29 references
  1. Sparks H.D., Sigaeva T., Tarraf S., Mandla S., Pope H., Hee O., Di Martino E.S., Biernaskie J., Radisic M., Scott W.M. Biomechanics of Wound Healing in an Equine Limb Model: Effect of Location and Treatment with a Peptide-Modified Collagenu2013Chitosan Hydrogel. ACS Biomater. Sci. Eng. 2021;7:265u2013278. doi: 10.1021/acsbiomaterials.0c01431.
  2. Ranera B., Ordovu00e1s L., Lyahyai J., Bernal M.L., Fernandes F., Remacha A.R., Romero A., Vu00e1zquez F.J., Osta R., Cons C., et al. Comparative study of equine bone marrow and adipose tissue-derived mesenchymal stromal cells. Equine Veter. J. 2012;44:33u201342. doi: 10.1111/j.2042-3306.2010.00353.x.
  3. Godwin E.E., Young N.J., Dudhia J., Beamish I.C., Smith R.K.W. Implantation of bone marrow-derived mesenchymal stem cells demonstrates improved outcome in horses with overstrain injury of the superficial digital flexor tendon. Equine Veter. J. 2012;44:25u201332. doi: 10.1111/j.2042-3306.2011.00363.x.
  4. Remacha A.R., Barrachina L., u00c1lvarez-Arguedas S., Ranera B., Romero A., Vu00e1zquez F.J., Zaragoza P., Yau00f1ez R., Martu00edn-Burriel I., Rodellar C. Expression of genes involved in immune response and in vitro immunosuppressive effect of equine MSCs. Veter. Immunol. Immunopathol. 2015;165:107u2013118. doi: 10.1016/j.vetimm.2015.04.004.
    doi: 10.1016/j.vetimm.2015.04.004pubmed: 25977164google scholar: lookup
  5. Paterson Y.Z., Rash N., Garvican E.R., Paillot R., Guest D.J. Equine mesenchymal stromal cells and embryo-derived stem cells are immune privileged in vitro. Stem Cell Res. Ther. 2014;5:90. doi: 10.1186/scrt479.
    doi: 10.1186/scrt479pmc: PMC4247727pubmed: 25080326google scholar: lookup
  6. Rowland A.L., Miller D., Berglund A., Schnabel L.V., Levine G.J., Antczak D.F., Watts A.E. Cross-matching of allogeneic mesenchymal stromal cells eliminates recipient immune targeting. Stem Cells Transl. Med. 2021;10:694u2013710. doi: 10.1002/sctm.20-0435.
    doi: 10.1002/sctm.20-0435pmc: PMC8046071pubmed: 33369287google scholar: lookup
  7. Clark K.C., Kol A., Shahbenderian S., Granick J.L., Walker N.J., Borjesson D.L. Canine and Equine Mesenchymal Stem Cells Grown in Serum Free Media Have Altered Immunophenotype. Stem Cell Rev. Rep. 2016;12:245u2013256. doi: 10.1007/s12015-015-9638-0.
    doi: 10.1007/s12015-015-9638-0pmc: PMC4841858pubmed: 26638159google scholar: lookup
  8. Cequier A., Sanz C., Rodellar C., Barrachina L. The Usefulness of Mesenchymal Stem Cells beyond the Musculoskeletal System in Horses. Animals. 2021;11:931. doi: 10.3390/ani11040931.
    doi: 10.3390/ani11040931pmc: PMC8064371pubmed: 33805967google scholar: lookup
  9. Carrade D.D., Owens S.D., Galuppo L.D., Vidal M.A., Ferraro G.L., Librach F., Buerchler S., Friedman M.S., Walker N.J., Borjesson D.L. Clinicopathologic findings following intra-articular injection of autologous and allogeneic placentally de-rived equine mesenchymal stem cells in horses. Cytotherapy. 2011;13:419u2013430. doi: 10.3109/14653249.2010.536213.
    doi: 10.3109/14653249.2010.536213pubmed: 21105841google scholar: lookup
  10. Arnhold S., Wenisch S. Adipose tissue derived mesenchymal stem cells for musculoskeletal repair in veterinary medicine. Am. J. Stem Cells. 2015;4:1u201312.
    pmc: PMC4396154pubmed: 25973326
  11. Carrade D.D., Affolter V.K., Outerbridge C.A., Watson J.L., Galuppo L.D., Buerchler S., Kumar V., Walker N.J., Borjesson D.L. Intradermal injections of equine allogeneic umbilical cord-derived mesenchymal stem cells are well tolerated and do not elicit immediate or delayed hypersensitivity reactions. Cytotherapy. 2011;13:1180u20131192. doi: 10.3109/14653249.2011.602338.
    doi: 10.3109/14653249.2011.602338pubmed: 21899391google scholar: lookup
  12. Palma M.B., Luzzani C., Andrini L.B., Riccillo F., Buero G., Pelinski P., Inda A.M., Errecalde A.L., Miriuka S., Carosella E.D., et al. Wound Healing by Allogeneic Transplantation of Specific Subpopulation From Human Umbilical Cord Mesenchymal Stem Cells. Cell Transplant. 2021;30:963689721993774. doi: 10.1177/0963689721993774.
    doi: 10.1177/0963689721993774pmc: PMC8120529pubmed: 33975446google scholar: lookup
  13. Carrade D.D., Lame M.W., Kent M.S., Clark K.C., Walker N.J., Borjesson D.L. Comparative Analysis of the Immunomodulatory Properties of Equine Adult-Derived Mesenchymal Stem Cells. Cell Med. 2012;4:1u201311. doi: 10.3727/215517912X647217.
    doi: 10.3727/215517912X647217pmc: PMC3495591pubmed: 23152950google scholar: lookup
  14. Carosella E.D., Moreau P., LeMaoult J., Rouas-Freiss N. HLA-G: From biology to clinical benefits. Trends Immunol. 2018;29:125u2013132. doi: 10.1016/j.it.2007.11.005.
    doi: 10.1016/j.it.2007.11.005pubmed: 18249584google scholar: lookup
  15. Rapacz-Leonard A., Leonard M., Chmielewska-Krzesiu0144ska M., Pau017adzior-Czapula K., Janowski T. Major histocompatibility complex class I in the horse (Equus caballus) placenta during pregnancy and parturition. Placenta. 2018;74:36u201346. doi: 10.1016/j.placenta.2018.12.006.
  16. Eggleston R.B. Equine Wound Management. Veter. Clin. North Am. Equine Pr. 2018;34:557u2013574. doi: 10.1016/j.cveq.2018.07.010.
    doi: 10.1016/j.cveq.2018.07.010pubmed: 30342804google scholar: lookup
  17. Rong X., Zhang G., Yang Y., Gao C., Chu W., Sun H., Wang Y., Li C. Transplanted Antler Stem Cells Stimulated Regenerative Healing of Radiation-induced Cutaneous Wounds in Rats. Cell Transplant. 2020;29:0963689720951549. doi: 10.1177/0963689720951549.
    doi: 10.1177/0963689720951549pmc: PMC7784515pubmed: 32907381google scholar: lookup
  18. Corotchi M.C., Popa M.A., Remes A., Sima L.E., Gussi I., Plesu M.L. Isolation method and xeno-free culture conditions influence multipotent differentiation capacity of human Whartonu2019s jelly-derived mesenchymal stem cells. Stem Cell Res. Ther. 2013;4:81. doi: 10.1186/scrt232.
    doi: 10.1186/scrt232pmc: PMC3854854pubmed: 23845279google scholar: lookup
  19. Luzzani C., Neiman G., Garate X., Questa M., Solari C., Espinosa D.F., Garcu00eda M., Errecalde A.L., Guberman A., Scassa M.E., et al. A therapy-grade protocol for differentiation of pluripotent stem cells into mesenchymal stem cells using platelet lysate as supplement. Stem Cell Res. Ther. 2015;6:6. doi: 10.1186/scrt540.
    doi: 10.1186/scrt540pmc: PMC4417240pubmed: 25582222google scholar: lookup
  20. Ding D.-C., Chang Y.-H., Shyu W.-C., Lin S.-Z. Human Umbilical Cord Mesenchymal Stem Cells: A New Era for Stem Cell Therapy. Cell Transplant. 2015;24:339u2013347. doi: 10.3727/096368915X686841.
    doi: 10.3727/096368915X686841pubmed: 25622293google scholar: lookup
  21. Naji A., Rouas-Freiss N., Durrbach A., Carosella E., Sensebe L., Deschaseaux F. Concise review: Combining human leu-kocyte antigen g and mesenchymal stem cells for immunosuppressant biotherapy. Stem Cells. 2013;31:2296u20132303. doi: 10.1002/stem.1494.
    doi: 10.1002/stem.1494pubmed: 23922260google scholar: lookup
  22. de Araujo Farias V., Carrillo-Galvez A.B., Martu0131n F., Anderson P. TGF-b and mesenchymal stromal cells in regenerative medicine, autoimmunity and cancer. Cytokine Growth Factor Rev. 2018;43:25u201337. doi: 10.1016/j.cytogfr.2018.06.002.
    doi: 10.1016/j.cytogfr.2018.06.002pubmed: 29954665google scholar: lookup
  23. Chen B., Sun Y., Zhang J., Zhu Q., Yang Y., Niu X., Deng Z., Li Q., Wang Y. Human embryonic stem cell-derived exosomes promote pressure ulcer healing in aged mice by rejuvenating senescent endothelial cells. Stem Cell Res. Ther. 2019;10:142. doi: 10.1186/s13287-019-1253-6.
    doi: 10.1186/s13287-019-1253-6pmc: PMC6528288pubmed: 31113469google scholar: lookup
  24. Lee D.E., Ayoub N., Agrawal D.K. Mesenchymal stem cells and cutaneous wound healing: Novel methods to increase cell delivery and therapeutic efficacy. Stem Cell Res. Ther. 2016;7:37. doi: 10.1186/s13287-016-0303-6.
    doi: 10.1186/s13287-016-0303-6pmc: PMC4784457pubmed: 26960535google scholar: lookup
  25. Comiskey M., Goldstein C., De Fazio S., Mammolenti M., Newmark J., Warner C. Evidence that HLA-G is the functional homolog of mouse Qa-2, the Ped gene product. Hum. Immunol. 2003;64:999u20131004. doi: 10.1016/j.humimm.2003.08.352.
  26. Sherman A.B., Gilger B.C., Berglund A.K., Schnabel L.V. Effect of bone marrow-derived mesenchymal stem cells and stem cell supernatant on equine corneal wound healing in vitro. Stem Cell Res. Ther. 2017;8:120. doi: 10.1186/s13287-017-0577-3.
    doi: 10.1186/s13287-017-0577-3pmc: PMC5445363pubmed: 28545510google scholar: lookup
  27. Textor J.A., Clark K.C., Walker N.J., Aristizobal F.A., Kol A., LeJeune S.S., Bledsoe A., Davidyan A., Gray S.N., Bohannon-Worsley L.K., et al. Allogeneic Stem Cells Alter Gene Expression and Improve Healing of Distal Limb Wounds in Horses. Stem Cells Transl. Med. 2018;7:98u2013108. doi: 10.1002/sctm.17-0071.
    doi: 10.1002/sctm.17-0071pmc: PMC5746157pubmed: 29063737google scholar: lookup
  28. Roux D.T., Renard J., Vu00e9rine J., Renault V., Tubacher E., LeMaoult J., Rouas-Freiss N., Deleuze J., Desgrandschamps F., Carosella E.D. Novel landscape of HLA-G isoforms expressed in clear cell renal cell carcinoma patients. Mol. Oncol. 2017;11:1561u20131578. doi: 10.1002/1878-0261.12119.
    doi: 10.1002/1878-0261.12119pmc: PMC5664004pubmed: 28815885google scholar: lookup
  29. Du2019Alessio P., Mirshahi M., Bisson J.F., Bene M. Skin repair properties of d-Limonene and perillyl alcohol in murine models. Antiinflamm. Antiallergy Agents Med. Chem. 2014;13:29u201335. doi: 10.2174/18715230113126660021.
    doi: 10.2174/18715230113126660021pubmed: 24160248google scholar: lookup

Citations

This article has been cited 0 times.