Equine veterinary journal2024; doi: 10.1111/evj.14098

Differences in bone turnover markers and injury risks between local and international horses: A Victorian Spring Racing Carnival study.

Abstract: Musculoskeletal injuries (MSI) are common in racehorses and have been of increasing concern in horses travelling internationally to compete. Understanding the differences in bone turnover between local horses and international horses following long-distance air transportation may inform MSI prevention strategies. Objective: To understand the differences in bone turnover markers and risk of MSI between local horses and international horses following long-distance air transportation. Methods: Prospective cohort. Methods: The concentrations of bone turnover markers (OCN and CTXI), markers of stress (cortisol), inflammation (serum amyloid A) and circadian rhythm (melatonin), and bisphosphonates were determined in blood samples collected twice (14-17 days apart), from horses following international travel (n = 69), and from local horses (n = 79). The associations between markers, long-distance travel and MSI were determined using multivariable generalised linear regression models. Results: Within 3-5 days post-transport, concentrations of cortisol in international horses were higher than those of local horses (main effect, Coef. 0.39; 95% CI 0.24, 0.54; p < 0.001) but they decreased and were not different to those of local horses at the second timepoint (interaction effect, Coef. -0.27; 95% CI -0.46, -0.07; p = 0.007). After adjusting for age and sex, OCN and CTXI were not significantly different between international and local horses; however, OCN was lower in international horses at timepoint 2 (interaction effect, Coef. -0.16; 95% CI -0.31, -0.01; p = 0.043). The prevalence of MSI was higher in the international (26%; 95% CI 16, 38%) compared with local horses (8%; 95% CI 3, 16%; p < 0.001), with all severe MSI sustained by the international horses. At the second timepoint compared with the first timepoint post-transport, cortisol remained high or increased (interaction effect, Coef. 0.43; 95% CI 0.24, 0.61; p < 0.001) and OCN increased (interaction effect, Coef. 0.26; 95% CI 0.08, 0.44; p = 0.006) in the horses that sustained severe MSI. Conclusions: Horse population and racing career parameters differed between groups. Bone turnover markers have low sensitivity to detect local bone changes. Conclusions: Most horses showed minimal effects of long-distance air transport within 2 weeks relative to local horses as assessed by stress and bone turnover markers. Screening for persistent high cortisol and evidence of net bone formation after long-distance air transportation may help to identify racehorses at high risk of catastrophic MSI. Background: Les blessures musculosquelettiques (MSI) sont communes chez les chevaux de course et demeurent une source d'inquiétude pour les chevaux voyageant à l'international. Comprendre les différences de remodelage osseux entre les chevaux locaux et ceux voyageant suivant un trajet aérien longue distance pourrait aider au développement de stratégies de prévention des dommages musculosquelettiques. Objective: Comprendre les différences de marqueurs de remodelage osseux et de risques de MSI entre les chevaux locaux et ceux voyageant à l'international suivant un transport aérien de longue distance. TYPE D'ÉTUDE: Étude de cohorte prospective. MÉTHODES: Les concentrations des marqueurs de remodelage osseux (OCN et CTXI), de stress (cortisol), d'inflammation (serum amyloid A), de rythme circadien (melatonin) et les bisphosphonates ont été mesurés dans des échantillons sanguins à deux reprises (14–17 jours à part) chez des chevaux ayant été à l'international (n = 69) et étant restés localement (n = 79). L'association entre les marqueurs, le transport longue distance et les MSI a été déterminée par modèles de régression linéaire multivarié généralisé. RÉSULTATS: Entre 3 à 5 jours suivant le transport, les concentrations de cortisol chez les chevaux internationaux étaient supérieures aux chevaux locaux (effet primaire, Coef. 0.39; 95% CI 0.24, 0.54; P < 0.001), mais ont diminué par la suite jusqu'à ne plus être différent de ceux des chevaux locaux à la deuxième mesure (effet interaction, Coef. −0.27; 95% CI −0.46, −0.07; P = 0.007). Après ajustement pour l'âge et le sexe, OCN et CTXI n'étaient pas significativement différents entre les chevaux internationaux et locaux. Cependant, OCN était inférieur chez les chevaux internationaux à la deuxième mesure (effet interaction, Coef. −0.16; 95% CI −0.31, −0.01; P = 0.043). La prévalence de MSI était plus élevée chez les chevaux internationaux (26%; 95% CI 16, 38%) comparativement aux chevaux locaux (8%; 95% CI 3, 16%; p < 0.001), avec toutes les MSI sévères subi par les chevaux internationaux. Au moment de la deuxième mesure comparée à la première mesure après le transport, le cortisol est demeuré élevé ou a augmenté (effet interaction, Coef. 0.43; 95% CI 0.24, 0.61; P < 0.001) et l'OCN a augmenté (effet interaction, Coef. 0.26; 95% CI 0.08, 0.44; P = 0.006) chez les chevaux ayant subi une MSI sévère. Unassigned: La population équine et leurs paramètres de course diffèrent entre les groupes. Les marqueurs de remodelage osseux ont une faible sensibilité pour la détection de changements osseux localisés. Conclusions: En deux semaines, les effets de transport aérien longue distance ont été minimaux pour la majorité des chevaux comparativement aux chevaux locaux, tel que démontré par les marqueurs de stress et de remodelage osseux. La détection de niveau élevé de cortisol de façon persistante et d'évidence d'os néoformé suivant un transport aérien de longue distance pourrait aider à détecter les chevaux de course à haut risque de MSI.
Publication Date: 2024-04-18 PubMed ID: 38634210DOI: 10.1111/evj.14098Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

This study investigates the difference in bone turnover and the risk of musculoskeletal injuries (MSI) between local racehorses and international racehorses that have been subjected to long-distance air transportation. Results suggest that long-distance transportation may increase stress levels and cause bone changes in horses, leading to a higher risk of severe MSI in international horses compared to local ones.

Study Method

  • The research was a prospective cohort study.
  • Blood samples were taken from 69 international horses and 79 local horses twice, with a gap of 14-17 days between each sample collection.
  • The blood samples were analyzed for the levels of bone turnover markers (OCN and CTXI), stress marker (cortisol), inflammation marker (serum amyloid A), circadian rhythm marker (melatonin), and bisphosphonates.
  • Associations between these markers, long-distance travel, and MSI were determined using multivariable generalised linear regression models.

Results

  • Three to five days post-transport, stress levels (cortisol concentrations) in international horses were higher than those in local horses, but normalised by the second timepoint (14-17 days post-transport).
  • After adjusting for age and gender, bone turnover markers OCN and CTXI were not significantly different between international and local horses. However, OCN was lower in international horses at the second timepoint.
  • Severe MSI was more common in international horses, with a prevalence of 26%, compared to local horses, with a prevalence of 8%.
  • For horses that sustained severe MSI, cortisol levels remained high or increased and OCN levels also increased at the second timepoint compared to the first.

Conclusion

  • Horse population and racing career parameters differed between groups.
  • Bone turnover markers have low sensitivity in detecting local bone changes.
  • Most horses showed minimal effects of long-distance air transport within two weeks, relative to local horses, as assessed by stress and bone turnover markers.
  • Screening for persistently high cortisol levels and evidence of net bone formation after long-distance air transportation may help to identify racehorses at high risk of catastrophic MSI.

Cite This Article

APA
Ayodele BA, Pagel CN, Mackie EJ, Armour F, Yamada S, Zahra P, Courtman N, Whitton RC, Hitchens PL. (2024). Differences in bone turnover markers and injury risks between local and international horses: A Victorian Spring Racing Carnival study. Equine Vet J. https://doi.org/10.1111/evj.14098

Publication

ISSN: 2042-3306
NlmUniqueID: 0173320
Country: United States
Language: English

Researcher Affiliations

Ayodele, Babatunde A
  • Melbourne Veterinary School, Faculty of Science, University of Melbourne, Melbourne, Victoria, Australia.
Pagel, Charles N
  • Melbourne Veterinary School, Faculty of Science, University of Melbourne, Melbourne, Victoria, Australia.
Mackie, Eleanor J
  • Melbourne Veterinary School, Faculty of Science, University of Melbourne, Melbourne, Victoria, Australia.
Armour, Fiona
  • Melbourne Veterinary School, Faculty of Science, University of Melbourne, Melbourne, Victoria, Australia.
Yamada, Sean
  • Racing Analytical Services Limited, Flemington, Victoria, Australia.
Zahra, Paul
  • Racing Analytical Services Limited, Flemington, Victoria, Australia.
Courtman, Natalie
  • Melbourne Veterinary School, Faculty of Science, University of Melbourne, Melbourne, Victoria, Australia.
Whitton, R Chris
  • Melbourne Veterinary School, Faculty of Science, University of Melbourne, Melbourne, Victoria, Australia.
Hitchens, Peta L
  • Melbourne Veterinary School, Faculty of Science, University of Melbourne, Melbourne, Victoria, Australia.

Grant Funding

  • Racing Victoria
  • State Government of Victoria
  • University of Melbourne

References

This article includes 72 references
  1. Boden LA, Anderson GA, Charles JA, Morgan KL, Morton JM, Parkin TD, et al. Risk of fatality and causes of death of thoroughbred horses associated with racing in Victoria, Australia: 1989u20132004. Equine Vet J. 2006;38:312u2013318.
  2. Wylie CE, McManus P, McDonald C, Jorgensen S, McGreevy P. Thoroughbred fatality and associated jockey falls and injuries in races in New South Wales and the Australian Capital Territory, Australia: 2009u20132014. Vet J. 2017;227:1u20137.
  3. Sun TC, Riggs CM, Cogger N, Wright J, Alu2010Alawneh JI. Noncatastrophic and catastrophic fractures in racing thoroughbreds at the Hong Kong jockey Club. Equine Vet J. 2019;51:77u201382.
  4. Johnson BJ, Stover SM, Daft BM, Kinde H, Read DH, Barr BC, et al. Causes of death in racehorses over a 2 year period. Equine Vet J. 1994;26(4):327u2013330.
  5. Parkin TD, Clegg PD, French NP, Proudman CJ, Riggs CM, Singer ER, et al. Risk of fatal distal limb fractures among thoroughbreds involved in the five types of racing in the United Kingdom. Vet Rec. 2004;154:493u2013497.
  6. Verheyen K, Price J, Lanyon L, Wood J. Exercise distance and speed affect the risk of fracture in racehorses. Bone. 2006;39:1322u20131330.
  7. Shaktivesh S, Malekipour F, Whitton RC, Hitchens PL, Lee PV. Fatigue behavior of subchondral bone under simulated physiological loads of equine athletic training. J Mech Behav Biomed Mater. 2020;110:103920.
  8. Estberg L, Stover SM, Gardner IA, Drake CM, Johnson B, Ardans A. Highu2010speed exercise history and catastrophic racing fracture in thoroughbreds. Am J Vet Res. 1996;57:1549u20131555.
  9. Winters M, Burr DB, van der Hoeven H, Condon KW, Bellemans J, Moen MH. Microcracku2010associated bone remodeling is rarely observed in biopsies from athletes with medial tibial stress syndrome. J Bone Miner Metab. 2019;37:496u2013502.
  10. Burr DB, Martin RB, Schaffler MB, Radin EL. Bone remodeling in response to in vivo fatigue microdamage. J Biomech. 1985;18:189u2013200.
  11. Whitton RC, Trope GD, Ghasemu2010Zadeh A, Anderson GA, Parkin TD, Mackie EJ, et al. Third metacarpal condylar fatigue fractures in equine athletes occur within previously modelled subchondral bone. Bone. 2010;47:826u2013831.
  12. Whitton RC, Ayodele BA, Hitchens PL, Mackie EJ. Subchondral bone microdamage accumulation in distal metacarpus of thoroughbred racehorses. Equine Vet J. 2018;50:766u2013773.
  13. Rosanowski SM, Chang YM, Stirk AJ, Verheyen KLP. Epidemiology of raceu2010day distal limb fracture in flat racing thoroughbreds in Great Britain (2000u20132013). Equine Vet J. 2019;51:83u201389.
  14. Parkin TD. Epidemiology of racetrack injuries in racehorses. Vet Clin North Am Equine Pract. 2008;24:1u201319.
  15. Hitchens PL, Morriceu2010West AV, Stevenson MA, Whitton RC. Metau2010analysis of risk factors for racehorse catastrophic musculoskeletal injury in flat racing. Vet J. 2019;245:29u201340.
  16. Georgopoulos SP, Parkin TD. Risk factors for equine fractures in thoroughbred flat racing in North America. Prev Vet Med. 2017;139:99u2013104.
  17. Boden LA, Anderson GA, Charles JA, Morgan KL, Morton JM, Parkin TD, et al. Risk factors for thoroughbred racehorse fatality in flat starts in Victoria, Australia (1989u20132004). Equine Vet J. 2007;39:430u2013437.
  18. Turlo AJ, Cywinska A, Frisbie DD. Revisiting predictive biomarkers of musculoskeletal injury in thoroughbred racehorses: longitudinal study in polish population. BMC Vet Res. 2019;15:66.
  19. Colgate VA, The FRAT Group, Marr CM. Scienceu2010inu2010brief: risk assessment for reducing injuries of the fetlock bones in thoroughbred racehorses. Equine Vet J. 2020;52(4):482u2013488.
  20. Sluyter FJ. Traceability of Equidae: a population in motion. Rev Sci Tech. 2001;20:500u2013509.
  21. Fazio E, Medica P, Cravana C, Aveni F, Ferlazzo A. Comparative endocrinological responses to short transportation of Equidae (Equus asinus and Equus caballus). Anim Sci J. 2013;84:258u2013263.
  22. Stull CL, Rodiek AV. Physiological responses of horses to 24 hours of transportation using a commercial van during summer conditions. J Anim Sci. 2000;78:1458u20131466.
  23. Canalis E, Mazziotti G, Giustina A, Bilezikian JP. Glucocorticoidu2010induced osteoporosis: pathophysiology and therapy. Osteoporos Int. 2007;18:1319u20131328.
  24. StataCorp LP. Stata power, precision, and sampleu2010size reference manual. Vol 17. Texas: A Stata Press Publication StataCorp LP; 2021.
  25. Billinghurst RC, Brama PA, van Weeren PR, Knowlton MS, McIlwraith CW. Significant exerciseu2010related changes in the serum levels of two biomarkers of collagen metabolism in young horses. Osteoarthr Cartil. 2003;11:760u2013769.
  26. Frisbie DD, McIlwraith CW, Arthur RM, Blea J, Baker VA, Billinghurst RC. Serum biomarker levels for musculoskeletal disease in twou2010 and threeu2010yearu2010old racing thoroughbred horses: a prospective study of 130 horses. Equine Vet J. 2010;42:643u2013651.
  27. Popot MA, Garcia P, Hubert C, Bolopion A, Baillyu2010Chouriberry L, Bonnaire Y, et al. HPLC/ESIu2010MS(n) method for nonu2010amino bisphosphonates: application to the detection of tiludronate in equine plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;958:108u2013116.
  28. Kennaway DJ, Voultsios A. Circadian rhythm of free melatonin in human plasma. J Clin Endocrinol Metabol. 1998;83:1013u20131015.
  29. Hosmer D. Applied logistic regression. 3rd ed. Hoboken, New Jersey:John Wiley & Sons; 2013.
  30. Lemmer B, Kern RI, Nold G, Lohrer H. Jet lag in athletes after eastward and westward timeu2010zone transition. Chronobiol Int. 2002;19:743u2013764.
  31. Stull CL, Spier SJ, Aldridge BM, Blanchard M, Stott JL. Immunological response to longu2010term transport stress in mature horses and effects of adaptogenic dietary supplementation as an immunomodulator. Equine Vet J. 2004;36:583u2013589.
  32. Padalino B, Raidal SL, Carter N, Celi P, Muscatello G, Jeffcott L, et al. Immunological, clinical, haematological and oxidative responses to long distance transportation in horses. Res Vet Sci. 2017;115:78u201387.
  33. Padalino B, Raidal SL, Knight P, Celi P, Jeffcott L, Muscatello G. Behaviour during transportation predicts stress response and lower airway contamination in horses. PLoS One. 2018;13:e0194272.
  34. Klingeru2010Konig J, Frenzel S, Hannemann A, Wittfeld K, Bulow R, Friedrich N, et al. Sex differences in the association between basal serum cortisol concentrations and cortical thickness. Neurobiol Stress. 2021;15:100416.
  35. Takahashi T, Sasaki M, Itoh H, Sano H, Yamadera W, Ozone M, et al. Reu2010entrainment of circadian rhythm of plasma melatonin on an 8u2010h eastward flight. Psychiatry Clin Neurosci. 1999;53(2):257u2013260.
  36. Takahashi T, Sasaki M, Itoh H, Yamadera W, Ozone M, Obuchi K, et al. Reu2010entrainment of the circadian rhythms of plasma melatonin in an 11u2010h eastward bound flight. Psychiatry Clin Neurosci. 2001;55(3):275u2013276.
  37. Witkowskau2010Pilaszewicz OD, Zmigrodzka M, Winnicka A, Miskiewicz A, Strzelec K, Cywinska A. Serum amyloid A in equine health and disease. Equine Vet J. 2019;51:293u2013298.
  38. Nunokawa Y, Fujinaga T, Taira T, Okumura M, Yamashita K, Tsunoda N, et al. Evaluation of serum amyloid A protein as an acuteu2010phase reactive protein in horses. J Vet Med Sci. 1993;55:1011u20131016.
  39. Jacobsen S, Kjelgaardu2010Hansen M, Hagbard Petersen H, Jensen AL. Evaluation of a commercially available human serum amyloid A (SAA) turbidometric immunoassay for determination of equine SAA concentrations. Vet J. 2006;172:315u2013319.
  40. Price JS, Jackson B, Eastell R, Goodship AE, Blumsohn A, Wright I, et al. Age related changes in biochemical markers of bone metabolism in horses. Equine Vet J. 1995;27:201u2013207.
  41. Black A, Schoknecht PA, Ralston SL, Shapses SA. Diurnal variation and age differences in the biochemical markers of bone turnover in horses. J Anim Sci. 1999;77:75u201383.
  42. Jackson BF, Lonnell C, Verheyen K, Wood JL, Pfeiffert DU, Price JS. Gender differences in bone turnover in 2u2010yearu2010old thoroughbreds. Equine Vet J. 2003;35:702u2013706.
  43. Jenkins N, Black M, Paul E, Pasco JA, Kotowicz MA, Schneider HG. Ageu2010related reference intervals for bone turnover markers from an Australian reference population. Bone. 2013;55:271u2013276.
  44. Gundberg CM, Looker AC, Nieman SD, Calvo MS. Patterns of osteocalcin and bone specific alkaline phosphatase by age, gender, and race or ethnicity. Bone. 2002;31:703u2013708.
  45. Garnero P, Sornayu2010Rendu E, Chapuy MC, Delmas PD. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res. 1996;11:337u2013349.
  46. Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest. 1998;102:274u2013282.
  47. Yao W, Cheng Z, Busse C, Pham A, Nakamura MC, Lane NE. Glucocorticoid excess in mice results in early activation of osteoclastogenesis and adipogenesis and prolonged suppression of osteogenesis: a longitudinal study of gene expression in bone tissue from glucocorticoidu2010treated mice. Arthritis Rheum. 2008;58:1674u20131686.
  48. Lane NE, Yao W. Glucocorticoidu2010induced bone fragility. Ann N Y Acad Sci. 2010;1192:81u201383.
  49. Shen G, Ren H, Qiu T, Liang D, Wei Q, Tang J, et al. Effect of glucocorticoid withdrawal on glucocorticoid inducing bone impairment. Biochem Biophys Res Commun. 2016;477:1059u20131064.
  50. Nielsen HK, Charles P, Mosekilde L. The effect of single oral doses of prednisone on the circadian rhythm of serum osteocalcin in normal subjects. J Clin Endocrinol Metabol. 1988;67:1025u20131030.
  51. Manolagas SC, Weinstein RS. New developments in the pathogenesis and treatment of steroidu2010inducedu2009osteoporosis. J Bone Miner Res. 1999;14:1061u20131066.
  52. Iyer SP, Nikkel LE, Nishiyama KK, Dworakowski E, Cremers S, Zhang C, et al. Kidney transplantation with early corticosteroid withdrawal: paradoxical effects at the central and peripheral skeleton. J Am Soc Nephrol. 2014;25:1331u20131341.
  53. Delguste C, Amory H, Guyonnet J, Thibaud D, Garnero P, Detilleux J, et al. Comparative pharmacokinetics of two intravenous administration regimens of tiludronate in healthy adult horses and effects on the bone resorption marker CTXu20101. J Vet Pharmacol Ther. 2008;31:108u2013116.
  54. Delguste C, Amory H, Doucet M, Piccotu2010Crezollet C, Thibaud D, Garnero P, et al. Pharmacological effects of tiludronate in horses after longu2010term immobilization. Bone. 2007;41:414u2013421.
  55. Bertuglia A, Basano I, Pagliara E, Bottegaro NB, Spinella G, Bullone M. Effect of intravenous tiludronate disodium administration on the radiographic progression of osteoarthritis of the fetlock joint in Standardbred racehorses. J Am Vet Med Assoc. 2021;259:651u2013661.
  56. Jackson BF, Dyson PK, Lonnell C, Verheyen KL, Pfeiffer DU, Price JS. Bone biomarkers and risk of fracture in twou2010 and threeu2010yearu2010old thoroughbreds. Equine Vet J. 2009;41:410u2013413.
  57. Chiappe A, Gonzalez G, Fradinger E, Iorio G, Ferretti JL, Zanchetta J. Influence of age and sex in serum osteocalcin levels in thoroughbred horses. Arch Physiol Biochem. 1999;107:50u201354.
  58. Tait JL, Drain JR, Bulmer S, Gastin PB, Main LC. Factors predicting training delays and attrition of recruits during basic military training. Int J Environ Res Public Health. 2022;19:7271u20137287.
  59. Beck B, Drysdale L. Risk factors, diagnosis and management of bone stress injuries in adolescent athletes: a narrative review. Sports (Basel). 2021;9:93u2013116.
  60. Guest NS, Barr SI. Cognitive dietary restraint is associated with stress fractures in women runners. Int J Sport Nutr Exerc Metab. 2005;15:147u2013159.
  61. Bennell KL, Malcolm SA, Brukner PD, Green RM, Hopper JL, Wark JD, et al. A 12u2010month prospective study of the relationship between stress fractures and bone turnover in athletes. Calcif Tissue Int. 1998;63:80u201385.
  62. Oertly M, Gerber V, Anhold H, Chan DS, Pusterla N. The accuracy of serum amyloid A in determining early inflammation in horses after longu2010distance transportation by air. J Equine Vet. 2021;97:103337.
  63. De Cozar M, Sherlock C, Knowles E, Mair T. Serum amyloid A and plasma fibrinogen concentrations in horses following emergency exploratory celiotomy. Equine Vet J. 2020;52:59u201366.
  64. Aitken MR, Stefanovski D, Southwood LL. Serum amyloid A concentration in postoperative colic horses and its association with postoperative complications. Vet Surg. 2019;48:143u2013151.
  65. Turlo A, Cywinska A, Czopowicz M, Witkowski L, Niedzwiedz A, Slowikowska M, et al. The effect of different types of musculoskeletal injuries on blood concentration of serum amyloid A in thoroughbred racehorses. PLoS One. 2015;10:e0140673.
  66. Ayala I, Martos NF, Silvan G, Gutierrezu2010Panizo C, Clavel JG, Illera JC. Cortisol, adrenocorticotropic hormone, serotonin, adrenaline and noradrenaline serum concentrations in relation to disease and stress in the horse. Res Vet Sci. 2012;93:103u2013107.
  67. Wagner AE. Effects of stress on pain in horses and incorporating pain scales for equine practice. Vet Clin North Am Equine Pract. 2010;26:481u2013492.
  68. Saunier J, Chapurlat R. Stress fracture in athletes. Joint Bone Spine. 2018;85:307u2013310.
  69. Sauer FJ, Hermann M, Ramseyer A, Burger D, Riemer S, Gerber V. Effects of breed, management and personality on cortisol reactivity in sport horses. PLoS One. 2019;14:e0221794.
  70. Ferlazzo A, Cravana C, Fazio E, Medica P. The different hormonal system during exercise stress coping in horses. Vet World. 2020;13:847u2013859.
  71. Frost HM. The Utah paradigm of skeletal physiology: an overview of its insights for bone, cartilage and collagenous tissue organs. J Bone Miner Metab. 2000;18:305u2013316.
  72. Cayado P, Munozu2010Escassi B, Dominguez C, Manley W, Olabarri B, Sanchez de la Muela M, et al. Hormone response to training and competition in athletic horses. Equine Vet J. 2006;38(S36):274u2013278.

Citations

This article has been cited 0 times.