Current issues in molecular biology2024; 46(4); 3251-3277; doi: 10.3390/cimb46040204

Extracellular Vesicles Isolated from Equine Adipose-Derived Stromal Stem Cells (ASCs) Mitigate Tunicamycin-Induced ER Stress in Equine Corneal Stromal Stem Cells (CSSCs).

Abstract: Corneal ulcers, characterized by severe inflammation of the cornea, can lead to serious, debilitating complications and may be vision-threatening for horses. In this study, we aimed to investigate the role of endoplasmic reticulum (ER) stress in corneal stem progenitor cell (CSSC) dysfunction and explore the potential of equine adipose-derived stromal stem cell (ASC)-derived extracellular vesicles (EVs) to improve corneal wound healing. We showed that CSSCs expressed high levels of CD44, CD45, and CD90 surface markers, indicating their stemness. Supplementation of the ER-stress-inducer tunicamycin to CSSCs resulted in reduced proliferative and migratory potential, accumulation of endoplasmic reticulum (ER)-stressed cells in the G0/G1 phase of the cell cycle, increased expression of proinflammatory genes, induced oxidative stress and sustained ER stress, and unfolded protein response (UPR). Importantly, treatment with EVs increased the proliferative activity and number of cells in the G2/Mitosis phase, enhanced migratory ability, suppressed the overexpression of proinflammatory cytokines, and upregulated the anti-inflammatory , compared to control and/or ER-stressed cells. Additionally, EVs lowered the expression of ER-stress master regulators and effectors (, , , and ), increased the number of mitochondria, and reduced the expression of and , thereby promoting metabolic homeostasis and protecting against apoptosis in equine CSSCs. Our findings demonstrate that MSCs-derived EVs represent an innovative and promising therapeutic strategy for the transfer of bioactive mediators which regulate various cellular and molecular signaling pathways.
Publication Date: 2024-04-09 PubMed ID: 38666934PubMed Central: PMC11048834DOI: 10.3390/cimb46040204Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

The research article investigates the use of stem-cell derived extracellular vesicles in treating corneal ulcers in horses. The study finds these vesicles can improve cell function, reduce inflammation, and potentially enhance wound healing.

Understanding Corneal Ulcers and Stem Cells

  • The study starts by explaining the severity of corneal ulcers, which can lead to debilitating complications and potentially vision loss in horses. This research primarily focused on how endoplasmic reticulum (ER) stress in cells can impact the development and treatment of these corneal ulcers.
  • To improve our understanding of ER stress, the study explored the potential of extracellular vesicles (EVs) derived from equine adipose-derived stromal stem cells (ASC) to advance the healing of corneal wounds.
  • Using cell markers, the researchers determined that corneal stromal progenitor cells (CSSCs) exhibit high stemness, are essentially, they are capable of self-renewal and differentiation into other cell types.

Investigation of ER Stress and Its Impact

  • The researchers introduced ER-stress-inducer tunicamycin to CSSCs, which resulted in several adverse outcomes, including a reduction in cell proliferation and migration.
  • It led to an accumulation of ER-stressed cells in the G0/G1 phase of the cell cycle, an increase in the expression of proinflammatory genes, and a sustained ER stress response.
  • This sequence of events induced oxidative stress, impacting the overall health of the cells in question.

The Role of Extracellular Vesicles (EVs)

  • The treatment with EVs derived from adipose-derived stromal stem cells (ASCs) yielded remarkable results, including the enhancement of the proliferative activity of CSSCs, and an increase in the number of cells in the G2/Mitosis phase of the cell cycle.
  • The EVs enhanced the migratory capability of cells, suppressed the overexpression of proinflammatory cytokines, and upregulated anti-inflammatory agents.
  • The study also found EVs reduced the expression of ER-stress master regulators and effectors, increased mitochondria numbers, and decreased apoptosis (programmed cell death), thus promoting metabolic balance.

Conclusion

  • The research discussed suggests that extracellular vesicles derived from mesenchymal stem cells (MSCs) could provide a novel therapeutic strategy for the treatment of corneal ulcers.
  • These vesicles can transfer bioactive mediators, which have the potential to regulate various cellular and molecular signaling pathways, thereby alleviating ER stress and promoting overall cellular health.
  • In particular, they hold promise for improving aspects of corneal wound healing in horses and potentially other animals.

Cite This Article

APA
Meissner JM, Chmieliu0144ska A, Ofri R, Cisu0142o-Sankowska A, Marycz K. (2024). Extracellular Vesicles Isolated from Equine Adipose-Derived Stromal Stem Cells (ASCs) Mitigate Tunicamycin-Induced ER Stress in Equine Corneal Stromal Stem Cells (CSSCs). Curr Issues Mol Biol, 46(4), 3251-3277. https://doi.org/10.3390/cimb46040204

Publication

ISSN: 1467-3045
NlmUniqueID: 100931761
Country: Switzerland
Language: English
Volume: 46
Issue: 4
Pages: 3251-3277

Researcher Affiliations

Meissner, Justyna M
  • Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocu0142aw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland.
Chmieliu0144ska, Aleksandra
  • International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mala, Poland.
Ofri, Ron
  • Koret School of Veterinary Medicine, Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel.
Cisu0142o-Sankowska, Anna
  • International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mala, Poland.
Marycz, Krzysztof
  • Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocu0142aw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland.
  • International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mala, Poland.
  • Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95516, USA.

Conflict of Interest Statement

The authors declare no conflicts of interest.

References

This article includes 110 references
  1. Williams L.B., Pinard C.L. Corneal Ulcers in Horses. Compend. Contin. Educ. Vet. 2013;35:E4.
    pubmed: 23532729
  2. Ollivier F.J., Brooks D.E., Kallberg M.E., Komaromy A.M., Lassaline M.E., Andrew S.E., Gelatt K.N., Stevens G.R., Blalock T.D., Setten G.-B., et al. Evaluation of Various Compounds to Inhibit Activity of Matrix Metalloproteinases in the Tear Film of Horses with Ulcerative Keratitis. Am. J. Vet. Res. 2003;64:1081u20131087. doi: 10.2460/ajvr.2003.64.1081.
    doi: 10.2460/ajvr.2003.64.1081pubmed: 13677383google scholar: lookup
  3. Saghizadeh M., Soleymani S., Harounian A., Bhakta B., Troyanovsky S.M., Brunken W.J., Pellegrini G., Ljubimov A.V. Alterations of Epithelial Stem Cell Marker Patterns in Human Diabetic Corneas and Effects of C-Met Gene Therapy. Mol. Vis. 2011;17:2177u20132190.
    pmc: PMC3159681pubmed: 21866211
  4. Keadle T.L., Usui N., Laycock K.A., Miller J.K., Pepose J.S., Stuart P.M. IL-1 and TNF-Alpha Are Important Factors in the Pathogenesis of Murine Recurrent Herpetic Stromal Keratitis. Investig. Ophthalmol. Vis. Sci. 2000;41:96u2013102.
    pubmed: 10634607
  5. Brooks D.E., Andrew S.E., Biros D.J., Denis H.M., Cutler T.J., Strubbe D.T., Gelatt K.N. Ulcerative Keratitis Caused by Beta-Hemolytic Streptococcus Equi in 11 Horses. Vet. Ophthalmol. 2000;3:121u2013125. doi: 10.1046/j.1463-5224.2000.00120.x.
  6. Krupa W., Topczewska J., Garbiec A., Karpinski M. Is the Welfare of Sport Horses Assured by Modern Management Practices? Anim. Sci. Genet. 2022;18:57u201377.
  7. Practical Horseman Understanding Ulcers. [(accessed on 8 January 2023)]. Available online: https://practicalhorsemanmag.com/health-archive/understanding-ulcers-54340/
  8. de Araujo A.L., Gomes J.u00c1. Corneal Stem Cells and Tissue Engineering: Current Advances and Future Perspectives. World J. Stem Cells. 2015;7:806u2013814. doi: 10.4252/wjsc.v7.i5.806.
    doi: 10.4252/wjsc.v7.i5.806pmc: PMC4478627pubmed: 26131311google scholar: lookup
  9. Saghizadeh M., Kramerov A.A., Svendsen C.N., Ljubimov A.V. Concise Review: Stem Cells for Corneal Wound Healing. Stem Cells. 2017;35:2105u20132114. doi: 10.1002/stem.2667.
    doi: 10.1002/stem.2667pmc: PMC5637932pubmed: 28748596google scholar: lookup
  10. Rafat M., Jabbarvand M., Sharma N., Xeroudaki M., Tabe S., Omrani R., Thangavelu M., Mukwaya A., Fagerholm P., Lennikov A., et al. Bioengineered Corneal Tissue for Minimally Invasive Vision Restoration in Advanced Keratoconus in Two Clinical Cohorts. Nat. Biotechnol. 2022;41:70u201381. doi: 10.1038/s41587-022-01408-w.
    doi: 10.1038/s41587-022-01408-wpmc: PMC9849136pubmed: 35953672google scholar: lookup
  11. Saccu G., Menchise V., Giordano C., Delli Castelli D., Dastru00f9 W., Pellicano R., Tolosano E., Van Pham P., Altruda F., Fagoonee S. Regenerative Approaches and Future Trends for the Treatment of Corneal Burn Injuries. J. Clin. Med. 2021;10:317. doi: 10.3390/jcm10020317.
    doi: 10.3390/jcm10020317pmc: PMC7830803pubmed: 33467167google scholar: lookup
  12. Kureshi A.K., Dziasko M., Funderburgh J.L., Daniels J.T. Human Corneal Stromal Stem Cells Support Limbal Epithelial Cells Cultured on RAFT Tissue Equivalents. Sci. Rep. 2015;5:16186. doi: 10.1038/srep16186.
    doi: 10.1038/srep16186pmc: PMC4632025pubmed: 26531048google scholar: lookup
  13. Veru00e9b Z., Pu00f3liska S., Albert R., Olstad O.K., Boratku00f3 A., Csortos C., Moe M.C., Facsku00f3 A., Petrovski G. Role of Human Corneal Stroma-Derived Mesenchymal-Like Stem Cells in Corneal Immunity and Wound Healing. Sci. Rep. 2016;6:26227. doi: 10.1038/srep26227.
    doi: 10.1038/srep26227pmc: PMC4872602pubmed: 27195722google scholar: lookup
  14. Kenyon K.R. Inflammatory Mechanisms in Corneal Ulceration. Trans. Am. Ophthalmol. Soc. 1985;83:610u2013663.
    pmc: PMC1298713pubmed: 3914132
  15. Pinnamaneni N., Funderburgh J.L. Concise Review: Stem Cells in the Corneal Stroma. Stem Cells. 2012;30:1059u20131063. doi: 10.1002/stem.1100.
    doi: 10.1002/stem.1100pmc: PMC3580383pubmed: 22489057google scholar: lookup
  16. West-Mays J.A., Dwivedi D.J. The Keratocyte: Corneal Stromal Cell with Variable Repair Phenotypes. Int. J. Biochem. Cell Biol. 2006;38:1625u20131631. doi: 10.1016/j.biocel.2006.03.010.
  17. Musiau0142-Wysocka A., Kot M., Majka M. The Pros and Cons of Mesenchymal Stem Cell-Based Therapies. Cell Transplant. 2019;28:801u2013812. doi: 10.1177/0963689719837897.
    doi: 10.1177/0963689719837897pmc: PMC6719501pubmed: 31018669google scholar: lookup
  18. Kumar A., Xu Y., Yang E., Du Y. Stemness and Regenerative Potential of Corneal Stromal Stem Cells and Their Secretome After Long-Term Storage: Implications for Ocular Regeneration. Investig. Ophthalmol. Vis. Sci. 2018;59:3728u20133738. doi: 10.1167/iovs.18-23824.
    doi: 10.1167/iovs.18-23824pmc: PMC6059729pubmed: 30046814google scholar: lookup
  19. Oie Y., Nishida K. Regenerative Medicine for the Cornea. BioMed Res. Int. 2013;2013:e428247. doi: 10.1155/2013/428247.
    doi: 10.1155/2013/428247pmc: PMC3876767pubmed: 24396826google scholar: lookup
  20. Nurkoviu0107 J.S., Vojinoviu0107 R., Doliu0107anin Z. Corneal Stem Cells as a Source of Regenerative Cell-Based Therapy. Stem Cells Int. 2020;2020:e8813447. doi: 10.1155/2020/8813447.
    doi: 10.1155/2020/8813447pmc: PMC7388005pubmed: 32765614google scholar: lookup
  21. Magrelli F.M., Merra A., Pellegrini G. Surgery Versus ATMPs: An Example from Ophthalmology. Front. Bioeng. Biotechnol. 2020;8:440. doi: 10.3389/fbioe.2020.00440.
    doi: 10.3389/fbioe.2020.00440pmc: PMC7297921pubmed: 32587848google scholar: lookup
  22. Maurizi E., Adamo D., Magrelli F.M., Galaverni G., Attico E., Merra A., Maffezzoni M.B.R., Losi L., Genna V.G., Sceberras V., et al. Regenerative Medicine of Epithelia: Lessons From the Past and Future Goals. Front. Bioeng. Biotechnol. 2021;9:652214. doi: 10.3389/fbioe.2021.652214.
    doi: 10.3389/fbioe.2021.652214pmc: PMC8026866pubmed: 33842447google scholar: lookup
  23. Hsu C.-C., Peng C.-H., Hung K.-H., Lee Y.-Y., Lin T.-C., Jang S.-F., Liu J.-H., Chen Y.-T., Woung L.-C., Wang C.-Y., et al. Stem Cell Therapy for Corneal Regeneration Medicine and Contemporary Nanomedicine for Corneal Disorders. Cell Transplant. 2015;24:1915u20131930. doi: 10.3727/096368914X685744.
    doi: 10.3727/096368914X685744pubmed: 25506885google scholar: lookup
  24. Kitazawa K., Sotozono C., Kinoshita S. Current Advancements in Corneal Cellu2013Based Therapy. Asia-Pac. J. Ophthalmol. 2022;11:335. doi: 10.1097/APO.0000000000000530.
    doi: 10.1097/APO.0000000000000530pubmed: 36041148google scholar: lookup
  25. Chakrabarty K., Shetty R., Ghosh A. Corneal Cell Therapy: With iPSCs, It Is No More a Far-Sight. Stem Cell Res. Ther. 2018;9:287. doi: 10.1186/s13287-018-1036-5.
    doi: 10.1186/s13287-018-1036-5pmc: PMC6202849pubmed: 30359313google scholar: lookup
  26. Sasamoto Y., Oie Y., Nishida K. Corneal Stem Cell-Based Therapies. In: Aliu00f3 J.L., Aliu00f3 del Barrio J.L., Arnalich-Montiel F., editors. Corneal Regeneration: Therapy and Surgery. Springer International Publishing; Cham, Switzerland: 2019. pp. 155u2013172. Essentials in Ophthalmology.
  27. De Sousa K.P., Rossi I., Abdullahi M., Ramirez M.I., Stratton D., Inal J.M. Isolation and Characterization of Extracellular Vesicles and Future Directions in Diagnosis and Therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023;15:e1835. doi: 10.1002/wnan.1835.
    doi: 10.1002/wnan.1835pmc: PMC10078256pubmed: 35898167google scholar: lookup
  28. Zhang K., Zhao X., Chen X., Wei Y., Du W., Wang Y., Liu L., Zhao W., Han Z., Kong D., et al. Enhanced Therapeutic Effects of Mesenchymal Stem Cell-Derived Exosomes with an Injectable Hydrogel for Hindlimb Ischemia Treatment. ACS Appl. Mater. Interfaces. 2018;10:30081u201330091. doi: 10.1021/acsami.8b08449.
    doi: 10.1021/acsami.8b08449pubmed: 30118197google scholar: lookup
  29. Du W., Zhang K., Zhang S., Wang R., Nie Y., Tao H., Han Z., Liang L., Wang D., Liu J., et al. Enhanced Proangiogenic Potential of Mesenchymal Stem Cell-Derived Exosomes Stimulated by a Nitric Oxide Releasing Polymer. Biomaterials. 2017;133:70u201381. doi: 10.1016/j.biomaterials.2017.04.030.
  30. Yu F.-S.X., Yin J., Xu K., Huang J. Growth Factors and Corneal Epithelial Wound Healing. Brain Res. Bull. 2010;81:229u2013235. doi: 10.1016/j.brainresbull.2009.08.024.
  31. Beck S., Hochreiter B., Schmid J.A. Extracellular Vesicles Linking Inflammation, Cancer and Thrombotic Risks. Front. Cell Dev. Biol. 2022;10:859863. doi: 10.3389/fcell.2022.859863.
    doi: 10.3389/fcell.2022.859863pmc: PMC8970602pubmed: 35372327google scholar: lookup
  32. Xu K., Liu Q., Wu K., Liu L., Zhao M., Yang H., Wang X., Wang W. Extracellular Vesicles as Potential Biomarkers and Therapeutic Approaches in Autoimmune Diseases. J. Transl. Med. 2020;18:432. doi: 10.1186/s12967-020-02609-0.
    doi: 10.1186/s12967-020-02609-0pmc: PMC7664085pubmed: 33183315google scholar: lookup
  33. Wu W.-C., Song S.-J., Zhang Y., Li X. Role of Extracellular Vesicles in Autoimmune Pathogenesis. Front. Immunol. 2020;11:579043. doi: 10.3389/fimmu.2020.579043.
    doi: 10.3389/fimmu.2020.579043pmc: PMC7538611pubmed: 33072123google scholar: lookup
  34. Akhmerov A., Parimon T. Extracellular Vesicles, Inflammation, and Cardiovascular Disease. Cells. 2022;11:2229. doi: 10.3390/cells11142229.
    doi: 10.3390/cells11142229pmc: PMC9320258pubmed: 35883672google scholar: lookup
  35. Hill A.F. Extracellular Vesicles and Neurodegenerative Diseases. J. Neurosci. 2019;39:9269u20139273. doi: 10.1523/JNEUROSCI.0147-18.2019.
  36. Regev-Rudzki N., Michaeli S., Torrecilhas A.C. Editorial: Extracellular Vesicles in Infectious Diseases. Front. Cell. Infect. Microbiol. 2021;11:697919. doi: 10.3389/fcimb.2021.697919.
    doi: 10.3389/fcimb.2021.697919pmc: PMC8281291pubmed: 34277475google scholar: lookup
  37. Yeung V., Boychev N., Farhat W., Ntentakis D.P., Hutcheon A.E.K., Ross A.E., Ciolino J.B. Extracellular Vesicles in Corneal Fibrosis/Scarring. Int. J. Mol. Sci. 2022;23:5921. doi: 10.3390/ijms23115921.
    doi: 10.3390/ijms23115921pmc: PMC9180085pubmed: 35682600google scholar: lookup
  38. Yeung V., Zhang T.C., Yuan L., Parekh M., Cortinas J.A., Delavogia E., Hutcheon A.E.K., Guo X., Ciolino J.B. Extracellular Vesicles Secreted by Corneal Myofibroblasts Promote Corneal Epithelial Cell Migration. Int. J. Mol. Sci. 2022;23:3136. doi: 10.3390/ijms23063136.
    doi: 10.3390/ijms23063136pmc: PMC8951135pubmed: 35328555google scholar: lookup
  39. Han K.-Y., Tran J.A., Chang J.-H., Azar D.T., Zieske J.D. Potential Role of Corneal Epithelial Cell-Derived Exosomes in Corneal Wound Healing and Neovascularization. Sci. Rep. 2017;7:40548. doi: 10.1038/srep40548.
    doi: 10.1038/srep40548pmc: PMC5292698pubmed: 28165027google scholar: lookup
  40. Samaeekia R., Rabiee B., Putra I., Shen X., Park Y.J., Hematti P., Eslani M., Djalilian A.R. Effect of Human Corneal Mesenchymal Stromal Cell-Derived Exosomes on Corneal Epithelial Wound Healing. Investig. Opthalmology Vis. Sci. 2018;59:5194. doi: 10.1167/iovs.18-24803.
    doi: 10.1167/iovs.18-24803pmc: PMC6203220pubmed: 30372747google scholar: lookup
  41. McKay T.B., Yeung V., Hutcheon A.E.K., Guo X., Zieske J.D., Ciolino J.B. Extracellular Vesicles in the Cornea: Insights from Other Tissues. Anal. Cell. Pathol. Amst. 2021;2021:9983900. doi: 10.1155/2021/9983900.
    doi: 10.1155/2021/9983900pmc: PMC8324376pubmed: 34336556google scholar: lookup
  42. Zieske J.D., Higashijima S.C., Spurr-Michaud S.J., Gipson I.K. Biosynthetic Responses of the Rabbit Cornea to a Keratectomy Wound. Investig. Ophthalmol. Vis. Sci. 1987;28:1668u20131677.
    pubmed: 3308758
  43. McKay T.B., Hutcheon A.E.K., Zieske J.D., Ciolino J.B. Extracellular Vesicles Secreted by Corneal Epithelial Cells Promote Myofibroblast Differentiation. Cells. 2020;9:1080. doi: 10.3390/cells9051080.
    doi: 10.3390/cells9051080pmc: PMC7290736pubmed: 32357574google scholar: lookup
  44. Leszczynska A., Kulkarni M., Ljubimov A.V., Saghizadeh M. Exosomes from Normal and Diabetic Human Corneolimbal Keratocytes Differentially Regulate Migration, Proliferation and Marker Expression of Limbal Epithelial Cells. Sci. Rep. 2018;8:15173. doi: 10.1038/s41598-018-33169-5.
    doi: 10.1038/s41598-018-33169-5pmc: PMC6182003pubmed: 30310159google scholar: lookup
  45. Shojaati G., Khandaker I., Funderburgh M.L., Mann M.M., Basu R., Stolz D.B., Geary M.L., Dos Santos A., Deng S.X., Funderburgh J.L. Mesenchymal Stem Cells Reduce Corneal Fibrosis and Inflammation via Extracellular Vesicle-Mediated Delivery of miRNA. Stem Cells Transl. Med. 2019;8:1192u20131201. doi: 10.1002/sctm.18-0297.
    doi: 10.1002/sctm.18-0297pmc: PMC6811691pubmed: 31290598google scholar: lookup
  46. Harting M.T., Srivastava A.K., Zhaorigetu S., Bair H., Prabhakara K.S., Toledano Furman N.E., Vykoukal J.V., Ruppert K.A., Cox C.S., Olson S.D. Inflammation-Stimulated Mesenchymal Stromal Cell-Derived Extracellular Vesicles Attenuate Inflammation. Stem Cells. 2018;36:79u201390. doi: 10.1002/stem.2730.
    doi: 10.1002/stem.2730pubmed: 29076623google scholar: lookup
  47. Bazzoni R., Takam Kamga P., Tanasi I., Krampera M. Extracellular Vesicle-Dependent Communication Between Mesenchymal Stromal Cells and Immune Effector Cells. Front. Cell Dev. Biol. 2020;8:596079. doi: 10.3389/fcell.2020.596079.
    doi: 10.3389/fcell.2020.596079pmc: PMC7677193pubmed: 33240892google scholar: lookup
  48. Kroeger H., Chiang W.-C., Felden J., Nguyen A., Lin J.H. ER Stress and Unfolded Protein Response in Ocular Health and Disease. FEBS J. 2019;286:399u2013412. doi: 10.1111/febs.14522.
    doi: 10.1111/febs.14522pmc: PMC6583901pubmed: 29802807google scholar: lookup
  49. Periyasamy P., Shinohara T. Age-Related Cataracts: Role of Unfolded Protein Response, Ca2+ Mobilization, Epigenetic DNA Modifications, and Loss of Nrf2/Keap1 Dependent Cytoprotection. Prog. Retin. Eye Res. 2017;60:1u201319. doi: 10.1016/j.preteyeres.2017.08.003.
  50. Athanasiou D., Aguila M., Bellingham J., Kanuga N., Adamson P., Cheetham M.E. The Role of the ER Stress-Response Protein PERK in Rhodopsin Retinitis Pigmentosa. Hum. Mol. Genet. 2017;26:4896u20134905. doi: 10.1093/hmg/ddx370.
    doi: 10.1093/hmg/ddx370pmc: PMC5868081pubmed: 29036441google scholar: lookup
  51. Peters J.C., Bhattacharya S., Clark A.F., Zode G.S. Increased Endoplasmic Reticulum Stress in Human Glaucomatous Trabecular Meshwork Cells and Tissues. Investig. Ophthalmol. Vis. Sci. 2015;56:3860u20133868. doi: 10.1167/iovs.14-16220.
    doi: 10.1167/iovs.14-16220pmc: PMC4468426pubmed: 26066753google scholar: lookup
  52. Sayin N., Kara N., Pekel G. Ocular Complications of Diabetes Mellitus. World J. Diabetes. 2015;6:92u2013108. doi: 10.4239/wjd.v6.i1.92.
    doi: 10.4239/wjd.v6.i1.92pmc: PMC4317321pubmed: 25685281google scholar: lookup
  53. Wang X., Li W., Zhou Q., Li J., Wang X., Zhang J., Li D., Qi X., Liu T., Zhao X., et al. MANF Promotes Diabetic Corneal Epithelial Wound Healing and Nerve Regeneration by Attenuating Hyperglycemia-Induced Endoplasmic Reticulum Stress. Diabetes. 2020;69:1264u20131278. doi: 10.2337/db19-0835.
    doi: 10.2337/db19-0835pubmed: 32312869google scholar: lookup
  54. Woodward A.M., Di Zazzo A., Bonini S., Argu00fceso P. Endoplasmic Reticulum Stress Promotes Inflammation-Mediated Proteolytic Activity at the Ocular Surface. Sci. Rep. 2020;10:2216. doi: 10.1038/s41598-020-59237-3.
    doi: 10.1038/s41598-020-59237-3pmc: PMC7010695pubmed: 32042069google scholar: lookup
  55. Salminen A., Kauppinen A., Hyttinen J.M.T., Toropainen E., Kaarniranta K. Endoplasmic Reticulum Stress in Age-Related Macular Degeneration: Trigger for Neovascularization. Mol. Med. 2010;16:535u2013542. doi: 10.2119/molmed.2010.00070.
    doi: 10.2119/molmed.2010.00070pmc: PMC2972399pubmed: 20683548google scholar: lookup
  56. Berber P., Grassmann F., Kiel C., Weber B.H.F. An Eye on Age-Related Macular Degeneration: The Role of MicroRNAs in Disease Pathology. Mol. Diagn. Ther. 2017;21:31u201343. doi: 10.1007/s40291-016-0234-z.
    doi: 10.1007/s40291-016-0234-zpmc: PMC5250647pubmed: 27658786google scholar: lookup
  57. Hetz C., Martinon F., Rodriguez D., Glimcher L.H. The Unfolded Protein Response: Integrating Stress Signals through the Stress Sensor IRE1u03b1. Physiol. Rev. 2011;91:1219u20131243. doi: 10.1152/physrev.00001.2011.
    doi: 10.1152/physrev.00001.2011pubmed: 22013210google scholar: lookup
  58. Lenna S., Trojanowska M. The Role of Endoplasmic Reticulum Stress and the Unfolded Protein Response in Fibrosis. Curr. Opin. Rheumatol. 2012;24:663u2013668. doi: 10.1097/BOR.0b013e3283588dbb.
  59. Bertolotti A., Zhang Y., Hendershot L.M., Harding H.P., Ron D. Dynamic Interaction of BiP and ER Stress Transducers in the Unfolded-Protein Response. Nat. Cell Biol. 2000;2:326u2013332. doi: 10.1038/35014014.
    doi: 10.1038/35014014pubmed: 10854322google scholar: lookup
  60. Yao P.-P., Sheng M.-J., Weng W.-H., Long Y., Liu H., Chen L., Lu J.-J., Rong A., Li B. High Glucose Causes Apoptosis of Rabbit Corneal Epithelial Cells Involving Activation of PERK-eIF2u03b1-CHOP-Caspase-12 Signaling Pathway. Int. J. Ophthalmol. 2019;12:1815u20131822. doi: 10.18240/ijo.2019.12.01.
    doi: 10.18240/ijo.2019.12.01pmc: PMC6901899pubmed: 31850162google scholar: lookup
  61. Boyko T.V., Bam R., Jiang D., Wang Z., Bhatia N., Tran M.C., Longaker M.T., Koong A.C., Yang G.P. Inhibition of IRE1 Results in Decreased Scar Formation. Wound Repair Regen. 2017;25:964u2013971. doi: 10.1111/wrr.12603.
    doi: 10.1111/wrr.12603pmc: PMC5854534pubmed: 29316036google scholar: lookup
  62. Park H.-R., Sun R., Panganiban R.A., Christiani D.C., Lu Q. MicroRNA-124 Reduces Arsenic-Induced Endoplasmic Reticulum Stress and Neurotoxicity and Is Linked with Neurodevelopment in Children. Sci. Rep. 2020;10:5934. doi: 10.1038/s41598-020-62594-8.
    doi: 10.1038/s41598-020-62594-8pmc: PMC7125130pubmed: 32246005google scholar: lookup
  63. Hao X., Liu Y., Hu S., Pan X., Chen P. Association of Macular Corneal Dystrophy with Excessive Cell Senescence and Apoptosis Induced by the Novel Mutant CHST6. Exp. Eye Res. 2022;214:108862. doi: 10.1016/j.exer.2021.108862.
    doi: 10.1016/j.exer.2021.108862pubmed: 34826417google scholar: lookup
  64. Buono L., Scalabrin S., De Iuliis M., Tanzi A., Grange C., Tapparo M., Nuzzi R., Bussolati B. Mesenchymal Stem Cell-Derived Extracellular Vesicles Protect Human Corneal Endothelial Cells from Endoplasmic Reticulum Stress-Mediated Apoptosis. Int. J. Mol. Sci. 2021;22:4930. doi: 10.3390/ijms22094930.
    doi: 10.3390/ijms22094930pmc: PMC8125791pubmed: 34066474google scholar: lookup
  65. Nagymihu00e1ly R., Veru00e9b Z., Facsku00f3 A., Moe M.C., Petrovski G. Effect of Isolation Technique and Location on the Phenotype of Human Corneal Stroma-Derived Cells. Stem Cells Int. 2017;2017:9275248. doi: 10.1155/2017/9275248.
    doi: 10.1155/2017/9275248pmc: PMC5682086pubmed: 29213290google scholar: lookup
  66. Szatanek R., Baran J., Siedlar M., Baj-Krzyworzeka M. Isolation of Extracellular Vesicles: Determining the Correct Approach (Review) Int. J. Mol. Med. 2015;36:11u201317. doi: 10.3892/ijmm.2015.2194.
    doi: 10.3892/ijmm.2015.2194pmc: PMC4494580pubmed: 25902369google scholar: lookup
  67. Nigro A., Finardi A., Ferraro M.M., Manno D.E., Quattrini A., Furlan R., Romano A. Selective Loss of Microvesicles Is a Major Issue of the Differential Centrifugation Isolation Protocols. Sci. Rep. 2021;11:3589. doi: 10.1038/s41598-021-83241-w.
    doi: 10.1038/s41598-021-83241-wpmc: PMC7878808pubmed: 33574479google scholar: lookup
  68. Kornicka K., Szu0142apka-Kosarzewska J., u015amieszek A., Marycz K. 5-Azacytydine and Resveratrol Reverse Senescence and Ageing of Adipose Stem Cells via Modulation of Mitochondrial Dynamics and Autophagy. J. Cell. Mol. Med. 2019;23:237u2013259. doi: 10.1111/jcmm.13914.
    doi: 10.1111/jcmm.13914pmc: PMC6307768pubmed: 30370650google scholar: lookup
  69. Pham H.N.T., Vuong Q.V., Bowyer M.C., Scarlett C.J. In Vitro Anti-Pancreatic Cancer Activity of HPLC-Derived Fractions from Helicteres Hirsuta Lour. Stem. Mol. Biol. Rep. 2020;47:897u2013905. doi: 10.1007/s11033-019-05180-0.
    doi: 10.1007/s11033-019-05180-0pubmed: 31724126google scholar: lookup
  70. Jung J.-H., Choi J.-W., Lee M.-K., Choi Y.-H., Nam T.-J. Effect of Cyclophilin from Pyropia Yezoensis on the Proliferation of Intestinal Epithelial Cells by Epidermal Growth Factor Receptor/Ras Signaling Pathway. Mar. Drugs. 2019;17:297. doi: 10.3390/md17050297.
    doi: 10.3390/md17050297pmc: PMC6562528pubmed: 31109065google scholar: lookup
  71. Olu00e1h M., Farkas E., Szu00e9ku00e1cs I., Horvath R., Szu00e9ku00e1cs A. Cytotoxic Effects of Roundup Classic and Its Components on NE-4C and MC3T3-E1 Cell Lines Determined by Biochemical and Flow Cytometric Assays. Toxicol. Rep. 2022;9:914u2013926. doi: 10.1016/j.toxrep.2022.04.014.
  72. Ekstru00f6m K., Crescitelli R., Pu00e9tursson H.I., Johansson J., Lu00e4sser C., Olofsson Bagge R. Characterization of Surface Markers on Extracellular Vesicles Isolated from Lymphatic Exudate from Patients with Breast Cancer. BMC Cancer. 2022;22:50. doi: 10.1186/s12885-021-08870-w.
    doi: 10.1186/s12885-021-08870-wpmc: PMC8744234pubmed: 35012489google scholar: lookup
  73. Davidson S.M., Boulanger C.M., Aikawa E., Badimon L., Barile L., Binder C.J., Brisson A., Buzas E., Emanueli C., Jansen F., et al. Methods for the Identification and Characterization of Extracellular Vesicles in Cardiovascular Studies: From Exosomes to Microvesicles. Cardiovasc. Res. 2023;119:45u201363. doi: 10.1093/cvr/cvac031.
    doi: 10.1093/cvr/cvac031pmc: PMC10233250pubmed: 35325061google scholar: lookup
  74. Alorda-Clara M., Reyes J., Trelles-Guzman M.G., Florido M., Roca P., Pons D.G., Oliver J. Isolation and Characterization of Extracellular Vesicles in Human Bowel Lavage Fluid. Int. J. Mol. Sci. 2023;24:7391. doi: 10.3390/ijms24087391.
    doi: 10.3390/ijms24087391pmc: PMC10138310pubmed: 37108550google scholar: lookup
  75. Prieto-Vila M., Yoshioka Y., Ochiya T. Biological Functions Driven by mRNAs Carried by Extracellular Vesicles in Cancer. Front. Cell Dev. Biol. 2021;9:620498. doi: 10.3389/fcell.2021.620498.
    doi: 10.3389/fcell.2021.620498pmc: PMC8435577pubmed: 34527665google scholar: lookup
  76. Sun Y., Dos Santos A., Balayan A., Deng S.X. Evaluation of Cryopreservation Media for the Preservation of Human Corneal Stromal Stem Cells. Tissue Eng. Part C Methods. 2020;26:37u201343. doi: 10.1089/ten.tec.2019.0195.
    doi: 10.1089/ten.tec.2019.0195pubmed: 31686624google scholar: lookup
  77. Santra M., Geary M.L., Rubin E., Hsu M.Y.S., Funderburgh M.L., Chandran C., Du Y., Dhaliwal D.K., Jhanji V., Yam G.H.-F. Good Manufacturing Practice Production of Human Corneal Limbus-Derived Stromal Stem Cells and in Vitro Quality Screening for Therapeutic Inhibition of Corneal Scarring. Stem Cell Res. Ther. 2024;15:11. doi: 10.1186/s13287-023-03626-8.
    doi: 10.1186/s13287-023-03626-8pmc: PMC10773078pubmed: 38185673google scholar: lookup
  78. Kowalczuk A., Marycz K., Kornicka J., Groborz S., Meissner J., Mularczyk M. Tetrahydrocannabivarin (THCV) Protects Adipose-Derived Mesenchymal Stem Cells (ASC) against Endoplasmic Reticulum Stress Development and Reduces Inflammation during Adipogenesis. Int. J. Mol. Sci. 2023;24:7120. doi: 10.3390/ijms24087120.
    doi: 10.3390/ijms24087120pmc: PMC10138341pubmed: 37108282google scholar: lookup
  79. Abdelwahid E., Li H., Wu J., Irioda A.C., de Carvalho K.A.T., Luo X. Endoplasmic Reticulum (ER) Stress Triggers Hax1-Dependent Mitochondrial Apoptotic Events in Cardiac Cells. Apoptosis Int. J. Program. Cell Death. 2016;21:1227u20131239. doi: 10.1007/s10495-016-1286-6.
    doi: 10.1007/s10495-016-1286-6pmc: PMC5189665pubmed: 27654581google scholar: lookup
  80. Jackisch L., Murphy A.M., Kumar S., Randeva H., Tripathi G., McTernan P.G. Tunicamycin-Induced Endoplasmic Reticulum Stress Mediates Mitochondrial Dysfunction in Human Adipocytes. J. Clin. Endocrinol. Metab. 2020;105:dgaa258. doi: 10.1210/clinem/dgaa258.
    doi: 10.1210/clinem/dgaa258pubmed: 32413131google scholar: lookup
  81. Tiganis T., Leaver D.D., Ham K., Friedhuber A., Stewart P., Dziadek M. Functional and Morphological Changes Induced by Tunicamycin in Dividing and Confluent Endothelial Cells. Exp. Cell Res. 1992;198:191u2013200. doi: 10.1016/0014-4827(92)90371-E.
    doi: 10.1016/0014-4827(92)90371-Epubmed: 1309501google scholar: lookup
  82. Zheng H. Partnership in Action: The Endoplasmic Reticulum Regulates the Cytoskeleton. J. Plant Physiol. 2021;266:153540. doi: 10.1016/j.jplph.2021.153540.
    doi: 10.1016/j.jplph.2021.153540pubmed: 34619556google scholar: lookup
  83. Plummer C.E. Corneal Response to Injury and Infection in the Horse. Vet. Clin. N. Am. Equine Pract. 2017;33:439u2013463. doi: 10.1016/j.cveq.2017.07.002.
    doi: 10.1016/j.cveq.2017.07.002pubmed: 28985985google scholar: lookup
  84. Willmann D., Fu L., Melanson S.W. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2022. Corneal Injury.
    pubmed: 29083785
  85. Barrientez B., Nicholas S.E., Whelchel A., Sharif R., Hjortdal J., Karamichos D. Corneal Injury: Clinical and Molecular Aspects. Exp. Eye Res. 2019;186:107709. doi: 10.1016/j.exer.2019.107709.
    doi: 10.1016/j.exer.2019.107709pmc: PMC6703935pubmed: 31238077google scholar: lookup
  86. Kratochvu00edlovu00e1 K., Moru00e1u0148 L., Pau010fourovu00e1 S., Stejskal S., Tesau0159ovu00e1 L., u0160imara P., Hampl A., Koutnu00e1 I., Vau0148hara P. The Role of the Endoplasmic Reticulum Stress in Stemness, Pluripotency and Development. Eur. J. Cell Biol. 2016;95:115u2013123. doi: 10.1016/j.ejcb.2016.02.002.
    doi: 10.1016/j.ejcb.2016.02.002pubmed: 26905505google scholar: lookup
  87. Dana R. Comparison of Topical Interleukin-1 vs. Tumor Necrosis Factor-Alpha Blockade with Corticosteroid Therapy on Murine Corneal Inflammation, Neovascularization, and Transplant Survival (an American Ophthalmological Society Thesis) Trans. Am. Ophthalmol. Soc. 2007;105:330u2013343.
    pmc: PMC2258099pubmed: 18427620
  88. Wilson S.E., Esposito A. Focus on Molecules: Interleukin-1: A Master Regulator of the Corneal Response to Injury. Exp. Eye Res. 2009;89:124u2013125. doi: 10.1016/j.exer.2009.02.011.
    doi: 10.1016/j.exer.2009.02.011pmc: PMC2768564pubmed: 19254714google scholar: lookup
  89. Mohan R.R., Mohan R.R., Kim W.-J., Wilson S.E. Modulation of TNF-u03b1u2013Induced Apoptosis in Corneal Fibroblasts by Transcription Factor NF-u03baB. Investig. Ophthalmol. Vis. Sci. 2000;41:1327u20131336.
    pubmed: 10798647
  90. Fujita S., Saika S., Kao W.W.-Y., Fujita K., Miyamoto T., Ikeda K., Nakajima Y., Ohnishi Y. Endogenous TNFu03b1 Suppression of Neovascularization in Corneal Stroma in Mice. Investig. Ophthalmol. Vis. Sci. 2007;48:3051u20133055. doi: 10.1167/iovs.06-1083.
    doi: 10.1167/iovs.06-1083pubmed: 17591872google scholar: lookup
  91. Mahesh G., Biswas R. MicroRNA-155: A Master Regulator of Inflammation. J. Interferon Cytokine Res. 2019;39:321u2013330. doi: 10.1089/jir.2018.0155.
    doi: 10.1089/jir.2018.0155pmc: PMC6591773pubmed: 30998423google scholar: lookup
  92. Mann M., Mehta A., Zhao J.L., Lee K., Marinov G.K., Garcia-Flores Y., Lu L.-F., Rudensky A.Y., Baltimore D. An NF-u03baB-microRNA Regulatory Network Tunes Macrophage Inflammatory Responses. Nat. Commun. 2017;8:851. doi: 10.1038/s41467-017-00972-z.
    doi: 10.1038/s41467-017-00972-zpmc: PMC5636846pubmed: 29021573google scholar: lookup
  93. Mohan R.R., Liang Q., Kim W.J., Helena M.C., Baerveldt F., Wilson S.E. Apoptosis in the Cornea: Further Characterization of Fas/Fas Ligand System. Exp. Eye Res. 1997;65:575u2013589. doi: 10.1006/exer.1997.0371.
    doi: 10.1006/exer.1997.0371pubmed: 9464190google scholar: lookup
  94. Taganov K.D., Boldin M.P., Chang K.-J., Baltimore D. NF-kappaB-Dependent Induction of microRNA miR-146, an Inhibitor Targeted to Signaling Proteins of Innate Immune Responses. Proc. Natl. Acad. Sci. USA. 2006;103:12481u201312486. doi: 10.1073/pnas.0605298103.
    doi: 10.1073/pnas.0605298103pmc: PMC1567904pubmed: 16885212google scholar: lookup
  95. Zhuang Z., Qin X., Hu H., Tian S., Lu Z., Zhang T., Bai Y. Down-Regulation of microRNA-155 Attenuates Retinal Neovascularization via the PI3K/Akt Pathway. Mol. Vis. 2015;21:1173u20131184.
    pmc: PMC4605754pubmed: 26539029
  96. Pulkkinen K.H., Ylu00e4-Herttuala S., Levonen A.-L. Heme Oxygenase 1 Is Induced by miR-155 via Reduced BACH1 Translation in Endothelial Cells. Free Radic. Biol. Med. 2011;51:2124u20132131. doi: 10.1016/j.freeradbiomed.2011.09.014.
  97. Testa U., Pelosi E., Castelli G., Labbaye C. miR-146 and miR-155: Two Key Modulators of Immune Response and Tumor Development. Non-Coding RNA. 2017;3:22. doi: 10.3390/ncrna3030022.
    doi: 10.3390/ncrna3030022pmc: PMC5831915pubmed: 29657293google scholar: lookup
  98. Atarod S., Ahmed M.M., Lendrem C., Pearce K.F., Cope W., Norden J., Wang X.-N., Collin M., Dickinson A.M. miR-146a and miR-155 Expression Levels in Acute Graft-Versus-Host Disease Incidence. Front. Immunol. 2016;7:156430. doi: 10.3389/fimmu.2016.00056.
    doi: 10.3389/fimmu.2016.00056pmc: PMC4782155pubmed: 27014257google scholar: lookup
  99. Chipurupalli S., Samavedam U., Robinson N. Crosstalk Between ER Stress, Autophagy and Inflammation. Front. Med. 2021;8:758311. doi: 10.3389/fmed.2021.758311.
    doi: 10.3389/fmed.2021.758311pmc: PMC8602556pubmed: 34805224google scholar: lookup
  100. Suh J.H., Joo H.S., Hong E.B., Lee H.J., Lee J.M. Therapeutic Application of Exosomes in Inflammatory Diseases. Int. J. Mol. Sci. 2021;22:1144. doi: 10.3390/ijms22031144.
    doi: 10.3390/ijms22031144pmc: PMC7865921pubmed: 33498928google scholar: lookup
  101. Lo Sicco C., Reverberi D., Balbi C., Ulivi V., Principi E., Pascucci L., Becherini P., Bosco M.C., Varesio L., Franzin C., et al. Mesenchymal Stem Cell-Derived Extracellular Vesicles as Mediators of Anti-Inflammatory Effects: Endorsement of Macrophage Polarization. Stem Cells Transl. Med. 2017;6:1018u20131028. doi: 10.1002/sctm.16-0363.
    doi: 10.1002/sctm.16-0363pmc: PMC5442783pubmed: 28186708google scholar: lookup
  102. Li S., Li B., Jiang H., Wang Y., Qu M., Duan H., Zhou Q., Shi W. Macrophage Depletion Impairs Corneal Wound Healing after Autologous Transplantation in Mice. PLoS ONE. 2013;8:e61799. doi: 10.1371/journal.pone.0061799.
  103. Fini M. Keratocyte and Fibroblast Phenotypes in the Repairing Cornea. Prog. Retin. Eye Res. 1999;18:529u2013551. doi: 10.1016/S1350-9462(98)00033-0.
    doi: 10.1016/S1350-9462(98)00033-0pubmed: 10217482google scholar: lookup
  104. Zhang C., Wang H., Chan G.C.F., Zhou Y., Lai X., Lian M. Extracellular Vesicles Derived from Human Umbilical Cord Mesenchymal Stromal Cells Protect Cardiac Cells Against Hypoxia/Reoxygenation Injury by Inhibiting Endoplasmic Reticulum Stress via Activation of the PI3K/Akt Pathway. Cell Transplant. 2020;29:096368972094567. doi: 10.1177/0963689720945677.
    doi: 10.1177/0963689720945677pmc: PMC7563023pubmed: 32864999google scholar: lookup
  105. Bitirim C.V., Ozer Z.B., Aydos D., Genc K., Demirsoy S., Akcali K.C., Turan B. Cardioprotective Effect of Extracellular Vesicles Derived from Ticagrelor-Pretreated Cardiomyocyte on Hyperglycemic Cardiomyocytes through Alleviation of Oxidative and Endoplasmic Reticulum Stress. Sci. Rep. 2022;12:5651. doi: 10.1038/s41598-022-09627-6.
    doi: 10.1038/s41598-022-09627-6pmc: PMC8983723pubmed: 35383227google scholar: lookup
  106. Chong W., Shastri M., Eri R. Endoplasmic Reticulum Stress and Oxidative Stress: A Vicious Nexus Implicated in Bowel Disease Pathophysiology. Int. J. Mol. Sci. 2017;18:771. doi: 10.3390/ijms18040771.
    doi: 10.3390/ijms18040771pmc: PMC5412355pubmed: 28379196google scholar: lookup
  107. Victor P., Sarada D., Ramkumar K.M. Crosstalk between Endoplasmic Reticulum Stress and Oxidative Stress: Focus on Protein Disulfide Isomerase and Endoplasmic Reticulum Oxidase 1. Eur. J. Pharmacol. 2021;892:173749. doi: 10.1016/j.ejphar.2020.173749.
    doi: 10.1016/j.ejphar.2020.173749pubmed: 33245896google scholar: lookup
  108. Dutra Silva J., Su Y., Calfee C.S., Delucchi K.L., Weiss D., McAuley D.F., Ou2019Kane C., Krasnodembskaya A.D. Mesenchymal Stromal Cell Extracellular Vesicles Rescue Mitochondrial Dysfunction and Improve Barrier Integrity in Clinically Relevant Models of ARDS. Eur. Respir. J. 2021;58:2002978. doi: 10.1183/13993003.02978-2020.
    doi: 10.1183/13993003.02978-2020pmc: PMC8318599pubmed: 33334945google scholar: lookup
  109. Ryu Y., Hwang J.S., Bo Noh K., Park S.H., Seo J.H., Shin Y.J. Adipose Mesenchymal Stem Cell-Derived Exosomes Promote the Regeneration of Corneal Endothelium Through Ameliorating Senescence. Investig. Ophthalmol. Vis. Sci. 2023;64:29. doi: 10.1167/iovs.64.13.29.
    doi: 10.1167/iovs.64.13.29pmc: PMC10593138pubmed: 37850944google scholar: lookup
  110. Saccu G., Menchise V., Gai C., Bertolin M., Ferrari S., Giordano C., Manco M., Dastru00f9 W., Tolosano E., Bussolati B., et al. Bone Marrow Mesenchymal Stromal/Stem Cell-Derived Extracellular Vesicles Promote Corneal Wound Repair by Regulating Inflammation and Angiogenesis. Cells. 2022;11:3892. doi: 10.3390/cells11233892.
    doi: 10.3390/cells11233892pmc: PMC9736484pubmed: 36497151google scholar: lookup

Citations

This article has been cited 0 times.