In vitro mesenchymal trilineage differentiation and extracellular matrix production by adipose and bone marrow derived adult equine multipotent stromal cells on a collagen scaffold.
Abstract: Directed differentiation of adult multipotent stromal cells (MSC) is critical for effective treatment strategies. This study was designed to evaluate the capability of equine MSC from bone marrow (BMSC) and adipose tissue (ASC) on a type I collagen (COLI) scaffold to undergo chondrogenic, osteogenic and adipogenic differentiation and form extracellular matrix (ECM) in vitro. Following determination of surface antigen expression, MSC were loaded into scaffolds in a perfusion bioreactor and loading efficiency was quantified. Cell-scaffold constructs were assessed after loading and 7, 14 and 21 days of culture in stromal or induction medium. Cell number was determined with DNA content, cell viability and spatial uniformity with confocal laser microscopy and cell phenotype and matrix production with light and scanning electron microscopy and mRNA levels. The MSC were positive for CD29 (>90 %), CD44 (>99 %), and CD105 (>60 %). Loading efficiencies were >70 %. The ASC and BMSC cell numbers on scaffolds were affected by culture in induction medium differently. Viable cells remained uniformly distributed in scaffolds for up to 21 days and could be directed to differentiate or to maintain an MSC phenotype. Micro- and ultrastructure showed lineage-specific cell and ECM changes. Lineage-specific mRNA levels differed between ASC and BMSC with induction and changed with time. Based on these results, equine ASC and BMSC differentiate into chondrogenic, osteogenic and adipogenic lineages and form ECM similarly on COLI scaffolds. The collected data supports the potential for equine MSC-COLI constructs to support diverse equine tissue formation for controlled biological studies.
Publication Date: 2013-07-31 PubMed ID: 23892935PubMed Central: PMC3834181DOI: 10.1007/s12015-013-9456-1Google Scholar: Lookup The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
- Journal Article
- Research Support
- Non-U.S. Gov't
Summary
This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.
The study focuses on the manipulation of adult multipotent stromal cells (MSC) to produce different tissues and extracellular matrix (ECM) in vitro for effective treatments. This research uses both bone marrow (BMSC) and adipose tissue (ASC) sources from horses to achieve chondrogenic, osteogenic and adipogenic differentiation.
Research Methodology
- The initial phase involved checking the surface antigen expression of the stromal cells. It was observed that the MSC were positive for CD29 (>90%), CD44 (>99%), and CD105 (>60%).
- The MSC were then loaded into a type I collagen (COLI) scaffold within a perfusion bioreactor, with loading efficiencies noted to be greater than 70%.
- These cell-scaffold constructs were evaluated over three time intervals of 7, 14 and 21 days, under standard stroma or the specific induction that stimulated the MSC towards different lineages.
- Cell number, viability, uniform distribution over time, phenotype, and matrix production were some of the parameters assessed, using various technical methods such as DNA content, confocal laser microscopy, and light and scanning electron microscopy.
Observations and Results
- Both ASC and BMSC were able to maintain their normal state or be directed into chondrogenic, osteogenic and adipogenic differentiation, albeit with some variance in cell numbers depending on the type of induction medium used.
- Viable cells remained uniformly distributed across the scaffolds until the end of the study period (21 days).
- There were distinctive lineage-specific alterations in both the cells themselves and the ECM, observable on a micro and ultrastructural level.
- Differences in lineage-specific mRNA levels between ASC and BMSC during the time course of the study under different induction conditions were noted. This signifies differences in gene activity for different tissue types.
Conclusion of the Study
- This research provides evidence that equine ASC and BMSC can be effectively differentiated into different lineages and form ECM while housed within a COLI scaffold. These results support the potential for equine MSC-COLI constructs to support diverse equine tissue formation for controlled biological studies.
- It opens up potential avenues in stem cell therapy and tissue regeneration applications in equine medicine.
Cite This Article
APA
Xie L, Zhang N, Marsano A, Vunjak-Novakovic G, Zhang Y, Lopez MJ.
(2013).
In vitro mesenchymal trilineage differentiation and extracellular matrix production by adipose and bone marrow derived adult equine multipotent stromal cells on a collagen scaffold.
Stem Cell Rev Rep, 9(6), 858-872.
https://doi.org/10.1007/s12015-013-9456-1 Publication
Researcher Affiliations
- Laboratory for Equine and Comparative Orthopedic Research, Equine Health Studies Program, Department of Veterinary Clinical Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
MeSH Terms
- Adipose Tissue / cytology
- Animals
- Bioreactors
- Bone Marrow Cells / cytology
- Bone Marrow Cells / drug effects
- Bone Marrow Cells / ultrastructure
- Cattle
- Cell Count
- Cell Differentiation / drug effects
- Cell Differentiation / genetics
- Cell Lineage / drug effects
- Cell Survival / drug effects
- Cell Survival / genetics
- Collagen / pharmacology
- DNA / metabolism
- Extracellular Matrix / drug effects
- Extracellular Matrix / metabolism
- Extracellular Matrix / ultrastructure
- Flow Cytometry
- Gene Expression Regulation / drug effects
- Horses
- Immunophenotyping
- Mesenchymal Stem Cells / cytology
- Mesenchymal Stem Cells / drug effects
- Mesenchymal Stem Cells / ultrastructure
- Microscopy, Confocal
- Multipotent Stem Cells / cytology
- Multipotent Stem Cells / drug effects
- Multipotent Stem Cells / ultrastructure
- RNA, Messenger / genetics
- RNA, Messenger / metabolism
- Tissue Scaffolds
Grant Funding
- P41 EB002520 / NIBIB NIH HHS
- R01 DE016525 / NIDCR NIH HHS
References
This article includes 64 references
- Carstanjen B, Desbois C, Hekmati M, Behr L. Successful engraftment of cultured autologous mesenchymal stem cells in a surgically repaired soft palate defect in an adult horse.. Can J Vet Res 2006 Apr;70(2):143-7.
- Pacini S, Spinabella S, Trombi L, Fazzi R, Galimberti S, Dini F, Carlucci F, Petrini M. Suspension of bone marrow-derived undifferentiated mesenchymal stromal cells for repair of superficial digital flexor tendon in race horses.. Tissue Eng 2007 Dec;13(12):2949-55.
- Colleoni S, Bottani E, Tessaro I, Mari G, Merlo B, Romagnoli N, Spadari A, Galli C, Lazzari G. Isolation, growth and differentiation of equine mesenchymal stem cells: effect of donor, source, amount of tissue and supplementation with basic fibroblast growth factor.. Vet Res Commun 2009 Dec;33(8):811-21.
- Vidal MA, Kilroy GE, Johnson JR, Lopez MJ, Moore RM, Gimble JM. Cell growth characteristics and differentiation frequency of adherent equine bone marrow-derived mesenchymal stromal cells: adipogenic and osteogenic capacity.. Vet Surg 2006 Oct;35(7):601-10.
- Vidal MA, Kilroy GE, Lopez MJ, Johnson JR, Moore RM, Gimble JM. Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells.. Vet Surg 2007 Oct;36(7):613-22.
- Schnabel LV, Lynch ME, van der Meulen MC, Yeager AE, Kornatowski MA, Nixon AJ. Mesenchymal stem cells and insulin-like growth factor-I gene-enhanced mesenchymal stem cells improve structural aspects of healing in equine flexor digitorum superficialis tendons.. J Orthop Res 2009 Oct;27(10):1392-8.
- Mensing N, Gasse H, Hambruch N, Haeger JD, Pfarrer C, Staszyk C. Isolation and characterization of multipotent mesenchymal stromal cells from the gingiva and the periodontal ligament of the horse.. BMC Vet Res 2011 Aug 2;7:42.
- Kon E, Muttini A, Arcangeli E, Delcogliano M, Filardo G, Nicoli Aldini N, Pressato D, Quarto R, Zaffagnini S, Marcacci M. Novel nanostructured scaffold for osteochondral regeneration: pilot study in horses.. J Tissue Eng Regen Med 2010 Jun;4(4):300-8.
- Guaccio A, Guarino V, Perez MA, Cirillo V, Netti PA, Ambrosio L. Influence of electrospun fiber mesh size on hMSC oxygen metabolism in 3D collagen matrices: experimental and theoretical evidences.. Biotechnol Bioeng 2011 Aug;108(8):1965-76.
- Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis.. Biomaterials 2005 Sep;26(27):5474-91.
- Karande TS, Ong JL, Agrawal CM. Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing.. Ann Biomed Eng 2004 Dec;32(12):1728-43.
- Chang SC, Chung HY, Tai CL, Chen PK, Lin TM, Jeng LB. Repair of large cranial defects by hBMP-2 expressing bone marrow stromal cells: comparison between alginate and collagen type I systems.. J Biomed Mater Res A 2010 Aug;94(2):433-41.
- Davidenko N, Campbell JJ, Thian ES, Watson CJ, Cameron RE. Collagen-hyaluronic acid scaffolds for adipose tissue engineering.. Acta Biomater 2010 Oct;6(10):3957-68.
- Akkouch A, Zhang Z, Rouabhia M. A novel collagen/hydroxyapatite/poly(lactide-co-u03b5-caprolactone) biodegradable and bioactive 3D porous scaffold for bone regeneration.. J Biomed Mater Res A 2011 Mar 15;96(4):693-704.
- Chen WC, Yao CL, Wei YH, Chu IM. Evaluating osteochondral defect repair potential of autologous rabbit bone marrow cells on type II collagen scaffold.. Cytotechnology 2011 Jan;63(1):13-23.
- Welsch GH, Mamisch TC, Zak L, Blanke M, Olk A, Marlovits S, Trattnig S. Evaluation of cartilage repair tissue after matrix-associated autologous chondrocyte transplantation using a hyaluronic-based or a collagen-based scaffold with morphological MOCART scoring and biochemical T2 mapping: preliminary results.. Am J Sports Med 2010 May;38(5):934-42.
- Engelhardt EM, Micol LA, Houis S, Wurm FM, Hilborn J, Hubbell JA, Frey P. A collagen-poly(lactic acid-co-u025b-caprolactone) hybrid scaffold for bladder tissue regeneration.. Biomaterials 2011 Jun;32(16):3969-76.
- Shi C, Li Q, Zhao Y, Chen W, Chen B, Xiao Z, Lin H, Nie L, Wang D, Dai J. Stem-cell-capturing collagen scaffold promotes cardiac tissue regeneration.. Biomaterials 2011 Apr;32(10):2508-15.
- Sarkar A, Tatlidede S, Scherer SS, Orgill DP, Berthiaume F. Combination of stromal cell-derived factor-1 and collagen-glycosaminoglycan scaffold delays contraction and accelerates reepithelialization of dermal wounds in wild-type mice.. Wound Repair Regen 2011 Jan-Feb;19(1):71-9.
- Bernemann I, Mueller T, Blasczyk R, Glasmacher B, Hofmann N. Colonization of collagen scaffolds by adipocytes derived from mesenchymal stem cells of the common marmoset monkey.. Biochem Biophys Res Commun 2011 Jul 29;411(2):317-22.
- Koch MA, Vrij EJ, Engel E, Planell JA, Lacroix D. Perfusion cell seeding on large porous PLA/calcium phosphate composite scaffolds in a perfusion bioreactor system under varying perfusion parameters.. J Biomed Mater Res A 2010 Dec 15;95(4):1011-8.
- Wendt D, Marsano A, Jakob M, Heberer M, Martin I. Oscillating perfusion of cell suspensions through three-dimensional scaffolds enhances cell seeding efficiency and uniformity.. Biotechnol Bioeng 2003 Oct 20;84(2):205-14.
- Zhao F, Ma T. Perfusion bioreactor system for human mesenchymal stem cell tissue engineering: dynamic cell seeding and construct development.. Biotechnol Bioeng 2005 Aug 20;91(4):482-93.
- Radisic M, Euloth M, Yang L, Langer R, Freed LE, Vunjak-Novakovic G. High-density seeding of myocyte cells for cardiac tissue engineering.. Biotechnol Bioeng 2003 May 20;82(4):403-14.
- Martin I, Wendt D, Heberer M. The role of bioreactors in tissue engineering.. Trends Biotechnol 2004 Feb;22(2):80-6.
- Vasanjee SC, Paulsen D, Hosgood G, Robinson SO, Lopez MJ. Characterization of normal canine anterior cruciate ligament-associated synoviocytes.. J Orthop Res 2008 Jun;26(6):809-15.
- Maidhof R, Marsano A, Lee EJ, Vunjak-Novakovic G. Perfusion seeding of channeled elastomeric scaffolds with myocytes and endothelial cells for cardiac tissue engineering.. Biotechnol Prog 2010 Mar-Apr;26(2):565-72.
- Gaspar DA, Gomide V, Monteiro FJ. The role of perfusion bioreactors in bone tissue engineering.. Biomatter 2012 Oct-Dec;2(4):167-75.
- Kennedy JP, McCandless SP, Rauf A, Williams LM, Hillam J, Hitchcock RW. Engineered channels enhance cellular density in perfused scaffolds.. Acta Biomater 2011 Nov;7(11):3896-904.
- Rio DC, Ares M Jr, Hannon GJ, Nilsen TW. Purification of RNA using TRIzol (TRI reagent).. Cold Spring Harb Protoc 2010 Jun;2010(6):pdb.prot5439.
- Lee JH, Park Y, Choi JR, Lee EK, Kim HS. Comparisons of three automated systems for genomic DNA extraction in a clinical diagnostic laboratory.. Yonsei Med J 2010 Jan;51(1):104-10.
- Radpour R, Sikora M, Grussenmeyer T, Kohler C, Barekati Z, Holzgreve W, Lefkovits I, Zhong XY. Simultaneous isolation of DNA, RNA, and proteins for genetic, epigenetic, transcriptomic, and proteomic analysis.. J Proteome Res 2009 Nov;8(11):5264-74.
- Haque KA, Pfeiffer RM, Beerman MB, Struewing JP, Chanock SJ, Bergen AW. Performance of high-throughput DNA quantification methods.. BMC Biotechnol 2003 Oct 28;3:20.
- Venugopal B, Fernandez FB, Babu SS, Harikrishnan VS, Varma H, John A. Adipogenesis on biphasic calcium phosphate using rat adipose-derived mesenchymal stem cells: in vitro and in vivo.. J Biomed Mater Res A 2012 Jun;100(6):1427-37.
- Liu F, Malaval L, Aubin JE. Global amplification polymerase chain reaction reveals novel transitional stages during osteoprogenitor differentiation.. J Cell Sci 2003 May 1;116(Pt 9):1787-96.
- Nurminsky D, Shanmugasundaram S, Deasey S, Michaud C, Allen S, Hendig D, Dastjerdi A, Francis-West P, Nurminskaya M. Transglutaminase 2 regulates early chondrogenesis and glycosaminoglycan synthesis.. Mech Dev 2011 Mar-Apr;128(3-4):234-45.
- Steinert AF, Proffen B, Kunz M, Hendrich C, Ghivizzani SC, Nu00f6th U, Rethwilm A, Eulert J, Evans CH. Hypertrophy is induced during the in vitro chondrogenic differentiation of human mesenchymal stem cells by bone morphogenetic protein-2 and bone morphogenetic protein-4 gene transfer.. Arthritis Res Ther 2009;11(5):R148.
- Qian X, Yuan F, Zhimin Z, Anchun M. Dynamic perfusion bioreactor system for 3D culture of rat bone marrow mesenchymal stem cells on nanohydroxyapatite/polyamide 66 scaffold in vitro.. J Biomed Mater Res B Appl Biomater 2013 Aug;101(6):893-901.
- Luo F, Hou TY, Zhang ZH, Xie Z, Wu XH, Xu JZ. Effects of initial cell density and hydrodynamic culture on osteogenic activity of tissue-engineered bone grafts.. PLoS One 2013;8(1):e53697.
- Janssen FW, van Dijkhuizen-Radersma R, Van Oorschot A, Oostra J, de Bruijn JD, Van Blitterswijk CA. Human tissue-engineered bone produced in clinically relevant amounts using a semi-automated perfusion bioreactor system: a preliminary study.. J Tissue Eng Regen Med 2010 Jan;4(1):12-24.
- Gustafsson Y, Haag J, Jungebluth P, Lundin V, Lim ML, Baiguera S, Ajalloueian F, Del Gaudio C, Bianco A, Moll G, Sju00f6qvist S, Lemon G, Teixeira AI, Macchiarini P. Viability and proliferation of rat MSCs on adhesion protein-modified PET and PU scaffolds.. Biomaterials 2012 Nov;33(32):8094-103.
- Murdoch AD, Grady LM, Ablett MP, Katopodi T, Meadows RS, Hardingham TE. Chondrogenic differentiation of human bone marrow stem cells in transwell cultures: generation of scaffold-free cartilage.. Stem Cells 2007 Nov;25(11):2786-96.
- Dexheimer V, Frank S, Richter W. Proliferation as a requirement for in vitro chondrogenesis of human mesenchymal stem cells.. Stem Cells Dev 2012 Aug 10;21(12):2160-9.
- Park SB, Seo KW, So AY, Seo MS, Yu KR, Kang SK, Kang KS. SOX2 has a crucial role in the lineage determination and proliferation of mesenchymal stem cells through Dickkopf-1 and c-MYC.. Cell Death Differ 2012 Mar;19(3):534-45.
- Eilertsen KJ, Floyd Z, Gimble JM. The epigenetics of adult (somatic) stem cells.. Crit Rev Eukaryot Gene Expr 2008;18(3):189-206.
- Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source.. Arthritis Rheum 2005 Aug;52(8):2521-9.
- Pachu00f3n-Peu00f1a G, Yu G, Tucker A, Wu X, Vendrell J, Bunnell BA, Gimble JM. Stromal stem cells from adipose tissue and bone marrow of age-matched female donors display distinct immunophenotypic profiles.. J Cell Physiol 2011 Mar;226(3):843-51.
- Wilke MM, Nydam DV, Nixon AJ. Enhanced early chondrogenesis in articular defects following arthroscopic mesenchymal stem cell implantation in an equine model.. J Orthop Res 2007 Jul;25(7):913-25.
- Fink T, Abildtrup L, Fogd K, Abdallah BM, Kassem M, Ebbesen P, Zachar V. Induction of adipocyte-like phenotype in human mesenchymal stem cells by hypoxia.. Stem Cells 2004;22(7):1346-55.
- Berdasco M, Esteller M. DNA methylation in stem cell renewal and multipotency.. Stem Cell Res Ther 2011 Oct 31;2(5):42.
- Lossdu00f6rfer S, Gu00f6tz W, Ju00e4ger A. PTH(1-34) affects osteoprotegerin production in human PDL cells in vitro.. J Dent Res 2005 Jul;84(7):634-8.
- Lopez MJ, Daigle PR. Adult multipotent stromal cell technology for bone regeneration: a review.. Vet Surg 2013 Jan;42(1):1-11.
- Radcliffe CH, Flaminio MJ, Fortier LA. Temporal analysis of equine bone marrow aspirate during establishment of putative mesenchymal progenitor cell populations.. Stem Cells Dev 2010 Feb;19(2):269-82.
- De Schauwer C, Piepers S, Van de Walle GR, Demeyere K, Hoogewijs MK, Govaere JL, Braeckmans K, Van Soom A, Meyer E. In search for cross-reactivity to immunophenotype equine mesenchymal stromal cells by multicolor flow cytometry.. Cytometry A 2012 Apr;81(4):312-23.
- Lin H, Yang G, Tan J, Tuan RS. Influence of decellularized matrix derived from human mesenchymal stem cells on their proliferation, migration and multi-lineage differentiation potential.. Biomaterials 2012 Jun;33(18):4480-9.
- Ellingsworth LR, DeLustro F, Brennan JE, Sawamura S, McPherson J. The human immune response to reconstituted bovine collagen.. J Immunol 1986 Feb 1;136(3):877-82.
- Bayrak A, Tyralla M, Ladhoff J, Schleicher M, Stock UA, Volk HD, Seifert M. Human immune responses to porcine xenogeneic matrices and their extracellular matrix constituents in vitro.. Biomaterials 2010 May;31(14):3793-803.
- Bayrak A, Pru00fcger P, Stock UA, Seifert M. Absence of immune responses with xenogeneic collagen and elastin.. Tissue Eng Part A 2013 Jul;19(13-14):1592-600.
- Lopez MJ, McIntosh KR, Spencer ND, Borneman JN, Horswell R, Anderson P, Yu G, Gaschen L, Gimble JM. Acceleration of spinal fusion using syngeneic and allogeneic adult adipose derived stem cells in a rat model.. J Orthop Res 2009 Mar;27(3):366-73.
- Muttini A, Valbonetti L, Abate M, Colosimo A, Curini V, Mauro A, Berardinelli P, Russo V, Cocciolone D, Marchisio M, Mattioli M, Tosi U, Podaliri Vulpiani M, Barboni B. Ovine amniotic epithelial cells: in vitro characterization and transplantation into equine superficial digital flexor tendon spontaneous defects.. Res Vet Sci 2013 Feb;94(1):158-69.
- Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine.. J Cell Physiol 2007 Nov;213(2):341-7.
- Bajada S, Mazakova I, Richardson JB, Ashammakhi N. Updates on stem cells and their applications in regenerative medicine.. J Tissue Eng Regen Med 2008 Jun;2(4):169-83.
- Huff NK, Spencer ND, Gimble JM, Bagby GJ, Nelson S, Lopez MJ. Impaired expansion and multipotentiality of adult stromal cells in a rat chronic alcohol abuse model.. Alcohol 2011 Jun;45(4):393-402.
- Erickson IE, Kestle SR, Zellars KH, Dodge GR, Burdick JA, Mauck RL. Improved cartilage repair via in vitro pre-maturation of MSC-seeded hyaluronic acid hydrogels.. Biomed Mater 2012 Apr;7(2):024110.
Citations
This article has been cited 17 times.- Wiu015bniewska J, Sadowska A, Wu00f3jtowicz A, Su0142yszewska M, Szu00f3stek-Mioduchowska A. Perspective on Stem Cell Therapy in Organ Fibrosis: Animal Models and Human Studies.. Life (Basel) 2021 Oct 11;11(10).
- Pereira L, Echarte L, Romero M, Grazioli G, Pu00e9rez-Campos H, Francia A, Vicentino W, Mombru00fa AW, Faccio R, u00c1lvarez I, Touriu00f1o C, Pardo H. Synthesis and characterization of a bovine collagen: GAG scaffold with Uruguayan raw material for tissue engineering.. Cell Tissue Bank 2021 Sep 18;.
- Rajasingh S, Sigamani V, Selvam V, Gurusamy N, Kirankumar S, Vasanthan J, Rajasingh J. Comparative analysis of human induced pluripotent stem cell-derived mesenchymal stem cells and umbilical cord mesenchymal stem cells.. J Cell Mol Med 2021 Sep;25(18):8904-8919.
- Bukowska J, Szu00f3stek-Mioduchowska AZ, Kopcewicz M, Walendzik K, Machciu0144ska S, Gawrou0144ska-Kozak B. Adipose-Derived Stromal/Stem Cells from Large Animal Models: from Basic to Applied Science.. Stem Cell Rev Rep 2021 Jun;17(3):719-738.
- Kim KH, Park TS, Cho BW, Kim TM. Nanoparticles from Equine Fetal Bone Marrow-Derived Cells Enhance the Survival of Injured Chondrocytes.. Animals (Basel) 2020 Sep 23;10(10).
- Silva M, Monteiro GA, Fialho AM, Bernardes N, da Silva CL. Conditioned Medium From Azurin-Expressing Human Mesenchymal Stromal Cells Demonstrates Antitumor Activity Against Breast and Lung Cancer Cell Lines.. Front Cell Dev Biol 2020;8:471.
- Al Naem M, Bourebaba L, Kucharczyk K, Ru00f6cken M, Marycz K. Therapeutic mesenchymal stromal stem cells: Isolation, characterization and role in equine regenerative medicine and metabolic disorders.. Stem Cell Rev Rep 2020 Apr;16(2):301-322.
- Guo T, Lim C, Noshin M, Ringel JP, Fisher JP. 3D Printing Bioactive PLGA Scaffolds Using DMSO as a Removable Solvent.. Bioprinting 2018 Jun;10.
- Yang Q, Pinto VMR, Duan W, Paxton EE, Dessauer JH, Ryan W, Lopez MJ. In vitro Characteristics of Heterogeneous Equine Hoof Progenitor Cell Isolates.. Front Bioeng Biotechnol 2019;7:155.
- Elango J, Rahman SU, Henrotin Y, de Val JEMS, Bao B, Wang S, Li B, Wu W. Parathyroid Hormone-Related Protein (PTHrP) Accelerates Soluble RANKL Signals for Downregulation of Osteogenesis of Bone Mesenchymal Stem Cells.. J Clin Med 2019 Jun 12;8(6).
- Scheinpflug J, Pfeiffenberger M, Damerau A, Schwarz F, Textor M, Lang A, Schulze F. Journey into Bone Models: A Review.. Genes (Basel) 2018 May 10;9(5).
- Duan W, Chen C, Haque M, Hayes D, Lopez MJ. Polymer-mineral scaffold augments in vivo equine multipotent stromal cell osteogenesis.. Stem Cell Res Ther 2018 Mar 9;9(1):60.
- Duan W, Haque M, Kearney MT, Lopez MJ. Collagen and Hydroxyapatite Scaffolds Activate Distinct Osteogenesis Signaling Pathways in Adult Adipose-Derived Multipotent Stromal Cells.. Tissue Eng Part C Methods 2017 Oct;23(10):592-603.
- Liu S, Zhou J, Zhang X, Liu Y, Chen J, Hu B, Song J, Zhang Y. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration.. Int J Mol Sci 2016 Jun 21;17(6).
- Pizzute T, Lynch K, Pei M. Impact of tissue-specific stem cells on lineage-specific differentiation: a focus on the musculoskeletal system.. Stem Cell Rev Rep 2015 Feb;11(1):119-32.
- Barberini DJ, Freitas NP, Magnoni MS, Maia L, Listoni AJ, Heckler MC, Sudano MJ, Golim MA, da Cruz Landim-Alvarenga F, Amorim RM. Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: immunophenotypic characterization and differentiation potential.. Stem Cell Res Ther 2014 Feb 21;5(1):25.
- Zhang Q, Yin L, Li B, Meng R, Dao R, Hu S, Qiu X. Pulmonary adenocarcinoma with osseous metaplasia: a rare occurrence possibly associated with early stage?. Onco Targets Ther 2013;6:1631-4.