Genes2022; 13(5); 928; doi: 10.3390/genes13050928

Major Histocompatibility Complex (MHC) Diversity of the Reintroduction Populations of Endangered Przewalski’s Horse.

Abstract: Major histocompatibility complex (MHC) genes are the most polymorphic in vertebrates and the high variability in many MHC genes is thought to play a crucial role in pathogen recognition. The MHC class II locus DQA polymorphism was analyzed in the endangered Przewalski's horse, , a species that has been extinct in the wild and all the current living individuals descend from 12 founders. We used the polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) to detect the polymorphism within the MHC DQA in 31 Przewalski's horses from two reintroduced populations. Consequently, only seven alleles were identified, with only four presenting in each population. In comparison with other mammals, the Przewalski's horse demonstrated less MHC variation. The nucleotide genetic distance of the seven ELA-DQA alleles was between 0.012 and 0.161. The Poisson corrected amino acid genetic distance of the founded alleles was 0.01-0.334. The allele and genotype frequencies of both reintroduced populations of Przewalski's horse deviated from the Hardy-Weinberg equilibrium. Specific MHC DQA alleles may have been lost during the extreme bottleneck event that this species underwent throughout history. We suggest the necessity to detect the genetic background of individuals prior to performing the reintroduction project.
Publication Date: 2022-05-23 PubMed ID: 35627313PubMed Central: PMC9140943DOI: 10.3390/genes13050928Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article
  • Research Support
  • Non-U.S. Gov't

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

The research article is a study about the genetic diversity of an endangered species, the Przewalski’s horse, paying close attention to the Major Histocompatibility Complex (MHC) genes essential for immunity.

Research Methodology

  • The researchers analyzed the MHC class II locus DQA polymorphism of the endangered Przewalski’s horse. This species has been extinct in the wild, and all current living members are descendants from 12 originals.
  • They employed a technique known as polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) to detect differences within the MHC DQA in 31 Przewalski’s horses from two reintroduced populations.

Research Findings

  • From their analysis, only seven alleles (kinds of genes) were found, with each population hosting only four.
  • In comparison, other mammal species exhibit a larger variety in their MHC genes. This suggests that the Przewalski’s horse has less MHC variation.
  • The DNA genetic distance of the located seven ELA-DQA alleles ranged from 0.012 to 0.161. This indicates the degree of genetic variation present.
  • The amino acid genetic distance of the founded alleles, after correction using the Poisson method, ranged from 0.01 to 0.334.
  • The allele and genotype frequencies for these genes deviated from the Hardy-Weinberg equilibrium. This equilibrium is a principle suggesting that in a stable population, the allele and genotype frequencies should remain constant from generation to generation unless influenced by specific genetic factors.

Research Implication

  • The research points out that specific MHC DQA alleles might have been lost during the drastic reduction in population (also known as a bottleneck event) that the Przewalski’s horse experienced throughout history.
  • This underscores the need to conduct a genetic background check of individuals before reintroducing them into the wild.
  • Such information will be crucial to insure the success of reintroduction projects by ensuring a broader base of genetic diversity and, consequently, greater resilience of the reintroduced population.

Cite This Article

APA
Tang Y, Liu G, Zhao S, Li K, Zhang D, Liu S, Hu D. (2022). Major Histocompatibility Complex (MHC) Diversity of the Reintroduction Populations of Endangered Przewalski’s Horse. Genes (Basel), 13(5), 928. https://doi.org/10.3390/genes13050928

Publication

ISSN: 2073-4425
NlmUniqueID: 101551097
Country: Switzerland
Language: English
Volume: 13
Issue: 5
PII: 928

Researcher Affiliations

Tang, Yongqing
  • College of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100085, China.
Liu, Gang
  • Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China.
Zhao, Shasha
  • College of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100085, China.
Li, Kai
  • College of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100085, China.
Zhang, Dong
  • College of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100085, China.
Liu, Shuqiang
  • College of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100085, China.
Hu, Defu
  • College of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100085, China.

MeSH Terms

  • Alleles
  • Animals
  • Histocompatibility Antigens Class II / genetics
  • Horses / genetics
  • Major Histocompatibility Complex / genetics
  • Mammals / genetics
  • Polymorphism, Single-Stranded Conformational

Conflict of Interest Statement

The authors declare no conflict of interest.

References

This article includes 46 references
  1. Bernatchez L, Landry C. MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years?. J Evol Biol 2003 May;16(3):363-77.
  2. Rhodes DA, Trowsdale J. Genetics and molecular genetics of the MHC.. Rev Immunogenet 1999;1(1):21-31.
    pubmed: 11256569
  3. Radwan J, Babik W, Kaufman J, Lenz TL, Winternitz J. Advances in the Evolutionary Understanding of MHC Polymorphism.. Trends Genet 2020 Apr;36(4):298-311.
    doi: 10.1016/j.tig.2020.01.008pubmed: 32044115google scholar: lookup
  4. Martinsohn JT, Sousa AB, Guethlein LA, Howard JC. The gene conversion hypothesis of MHC evolution: a review.. Immunogenetics 1999 Nov;50(3-4):168-200.
    doi: 10.1007/s002510050593pubmed: 10602879google scholar: lookup
  5. Eizaguirre C, Lenz TL, Kalbe M, Milinski M. Rapid and adaptive evolution of MHC genes under parasite selection in experimental vertebrate populations.. Nat Commun 2012 Jan 10;3:621.
    doi: 10.1038/ncomms1632pmc: PMC3272583pubmed: 22233631google scholar: lookup
  6. Sutton JT, Nakagawa S, Robertson BC, Jamieson IG. Disentangling the roles of natural selection and genetic drift in shaping variation at MHC immunity genes.. Mol Ecol 2011 Nov;20(21):4408-20.
  7. Kamiya T, O'Dwyer K, Westerdahl H, Senior A, Nakagawa S. A quantitative review of MHC-based mating preference: the role of diversity and dissimilarity.. Mol Ecol 2014 Nov;23(21):5151-63.
    doi: 10.1111/mec.12934pubmed: 25251264google scholar: lookup
  8. Winternitz J, Abbate JL, Huchard E, Havlu00edu010dek J, Garamszegi LZ. Patterns of MHC-dependent mate selection in humans and nonhuman primates: a meta-analysis.. Mol Ecol 2017 Jan;26(2):668-688.
    doi: 10.1111/mec.13920pubmed: 27859823google scholar: lookup
  9. Ujvari B, Belov K. Major Histocompatibility Complex (MHC) markers in conservation biology.. Int J Mol Sci 2011;12(8):5168-86.
    doi: 10.3390/ijms12085168pmc: PMC3179158pubmed: 21954351google scholar: lookup
  10. Burger D, Thomas S, Aepli H, Dreyer M, Fabre G, Marti E, Sieme H, Robinson MR, Wedekind C. Major histocompatibility complex-linked social signalling affects female fertility.. Proc Biol Sci 2017 Dec 6;284(1868).
    doi: 10.1098/rspb.2017.1824pmc: PMC5740280pubmed: 29212724google scholar: lookup
  11. Gupta P, Robin VV, Dharmarajan G. Towards a more healthy conservation paradigm: integrating disease and molecular ecology to aid biological conservation(u2020).. J Genet 2020;99(1).
    doi: 10.1007/s12041-020-01225-7pmc: PMC7371965pubmed: 33622992google scholar: lookup
  12. Morris K, Austin JJ, Belov K. Low major histocompatibility complex diversity in the Tasmanian devil predates European settlement and may explain susceptibility to disease epidemics.. Biol Lett 2013 Feb 23;9(1):20120900.
    doi: 10.1098/rsbl.2012.0900pmc: PMC3565505pubmed: 23221872google scholar: lookup
  13. Morris KM, Wright B, Grueber CE, Hogg C, Belov K. Lack of genetic diversity across diverse immune genes in an endangered mammal, the Tasmanian devil (Sarcophilus harrisii).. Mol Ecol 2015 Aug;24(15):3860-72.
    doi: 10.1111/mec.13291pubmed: 26119928google scholar: lookup
  14. Belov K. The role of the Major Histocompatibility Complex in the spread of contagious cancers.. Mamm Genome 2011 Feb;22(1-2):83-90.
    doi: 10.1007/s00335-010-9294-2pubmed: 20963591google scholar: lookup
  15. Hohenlohe PA, McCallum HI, Jones ME, Lawrance MF, Hamede RK, Storfer A. Conserving adaptive potential: lessons from Tasmanian devils and their transmissible cancer.. Conserv Genet 2019 Feb;20(1):81-87.
    doi: 10.1007/s10592-019-01157-5pmc: PMC6759055pubmed: 31551664google scholar: lookup
  16. Piertney SB, Oliver MK. The evolutionary ecology of the major histocompatibility complex.. Heredity (Edinb) 2006 Jan;96(1):7-21.
    doi: 10.1038/sj.hdy.6800724pubmed: 16094301google scholar: lookup
  17. Lau AN, Peng L, Goto H, Chemnick L, Ryder OA, Makova KD. Horse domestication and conservation genetics of Przewalski's horse inferred from sex chromosomal and autosomal sequences.. Mol Biol Evol 2009 Jan;26(1):199-208.
    doi: 10.1093/molbev/msn239pubmed: 18931383google scholar: lookup
  18. Liu G, Xu CQ, Cao Q, Zimmermann W, Songer M, Zhao SS, Li K, Hu DF. Mitochondrial and pedigree analysis in Przewalski's horse populations: implications for genetic management and reintroductions.. Mitochondrial DNA 2014 Aug;25(4):313-8.
    doi: 10.3109/19401736.2013.800487pubmed: 23808923google scholar: lookup
  19. Oakenfull EA, Ryder OA. Mitochondrial control region and 12S rRNA variation in Przewalski's horse (Equus przewalskii).. Anim Genet 1998 Dec;29(6):456-9.
  20. Liu G., Shafer A.B., Zimmermann W., Hu D., Wang W., Chu H., Cao J., Zhao C. Evaluating the reintroduction project of Przewalskiu2019s horse in China using genetic and pedigree data. Biol. Conserv. 2014;171:288u2013298. doi: 10.1016/j.biocon.2013.11.022.
  21. Breen M, Downs P, Irvin Z, Bell K. Intrageneric amplification of horse microsatellite markers with emphasis on the Przewalski's horse (E. przewalskii).. Anim Genet 1994 Dec;25(6):401-5.
  22. Der Sarkissian C, Ermini L, Schubert M, Yang MA, Librado P, Fumagalli M, Ju00f3nsson H, Bar-Gal GK, Albrechtsen A, Vieira FG, Petersen B, Ginolhac A, Seguin-Orlando A, Magnussen K, Fages A, Gamba C, Lorente-Galdos B, Polani S, Steiner C, Neuditschko M, Jagannathan V, Feh C, Greenblatt CL, Ludwig A, Abramson NI, Zimmermann W, Schafberg R, Tikhonov A, Sicheritz-Ponten T, Willerslev E, Marques-Bonet T, Ryder OA, McCue M, Rieder S, Leeb T, Slatkin M, Orlando L. Evolutionary Genomics and Conservation of the Endangered Przewalski's Horse.. Curr Biol 2015 Oct 5;25(19):2577-83.
    doi: 10.1016/j.cub.2015.08.032pmc: PMC5104162pubmed: 26412128google scholar: lookup
  23. Gaunitz C, Fages A, Hanghu00f8j K, Albrechtsen A, Khan N, Schubert M, Seguin-Orlando A, Owens IJ, Felkel S, Bignon-Lau O, de Barros Damgaard P, Mittnik A, Mohaseb AF, Davoudi H, Alquraishi S, Alfarhan AH, Al-Rasheid KAS, Crubu00e9zy E, Benecke N, Olsen S, Brown D, Anthony D, Massy K, Pitulko V, Kasparov A, Brem G, Hofreiter M, Mukhtarova G, Baimukhanov N, Lu00f5ugas L, Onar V, Stockhammer PW, Krause J, Boldgiv B, Undrakhbold S, Erdenebaatar D, Lepetz S, Mashkour M, Ludwig A, Wallner B, Merz V, Merz I, Zaibert V, Willerslev E, Librado P, Outram AK, Orlando L. Ancient genomes revisit the ancestry of domestic and Przewalski's horses.. Science 2018 Apr 6;360(6384):111-114.
    doi: 10.1126/science.aao3297pubmed: 29472442google scholar: lookup
  24. Hedrick PW, Parker KM, Miller EL, Miller PS. Major histocompatibility complex variation in the endangered Przewalski's horse.. Genetics 1999 Aug;152(4):1701-10.
    doi: 10.1093/genetics/152.4.1701pmc: PMC1460696pubmed: 10430594google scholar: lookup
  25. Bowling AT, Zimmermann W, Ryder O, Penado C, Peto S, Chemnick L, Yasinetskaya N, Zharkikh T. Genetic variation in Przewalski's horses, with special focus on the last wild caught mare, 231 Orlitza III.. Cytogenet Genome Res 2003;102(1-4):226-34.
    doi: 10.1159/000075754pubmed: 14970708google scholar: lookup
  26. Sambrook J, Russell DW. Isolation of High-molecular-weight DNA from Mammalian Cells Using Proteinase K and Phenol.. CSH Protoc 2006 Jun 1;2006(1).
    doi: 10.1101/pdb.prot4036pubmed: 22485456google scholar: lookup
  27. Natkaniec M, Potaczek DP, Sanak M. Single-stranded conformation polymorphism (SSCP)-driven indirect sequencing in detection of short deletion.. Mol Biol Rep 2009 Jul;36(6):1545-7.
    doi: 10.1007/s11033-008-9347-8pubmed: 18781403google scholar: lookup
  28. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. Clustal W and Clustal X version 2.0.. Bioinformatics 2007 Nov 1;23(21):2947-8.
    doi: 10.1093/bioinformatics/btm404pubmed: 17846036google scholar: lookup
  29. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.. Mol Biol Evol 2018 Jun 1;35(6):1547-1549.
    doi: 10.1093/molbev/msy096pmc: PMC5967553pubmed: 29722887google scholar: lookup
  30. Rousset F. genepop'007: a complete re-implementation of the genepop software for Windows and Linux.. Mol Ecol Resour 2008 Jan;8(1):103-6.
  31. Paliakasis K, Routsias J, Petratos K, Ouzounis C, Kokkinidis M, Papadopoulos GK. Novel structural features of the human histocompatibility molecules HLA-DQ as revealed by modeling based on the published structure of the related molecule HLA-DR.. J Struct Biol 1996 Sep-Oct;117(2):145-63.
    doi: 10.1006/jsbi.1996.0079pubmed: 8931340google scholar: lookup
  32. Wan QH, Zhu L, Wu H, Fang SG. Major histocompatibility complex class II variation in the giant panda (Ailuropoda melanoleuca).. Mol Ecol 2006 Aug;15(9):2441-50.
  33. Zhang P, Huang K, Zhang B, Dunn DW, Chen D, Li F, Qi X, Guo S, Li B. High polymorphism in MHC-DRB genes in golden snub-nosed monkeys reveals balancing selection in small, isolated populations.. BMC Evol Biol 2018 Mar 13;18(1):29.
    doi: 10.1186/s12862-018-1148-7pmc: PMC5851093pubmed: 29534675google scholar: lookup
  34. Kaczensky P, Ganbaatar O, von Wehrden H, Enksaikhan N, Lkhagvasuren D, Walzer C. Przewalski's Horse (Equus ferus przewalskii) Re-introduction in the Great Gobi B Strictly Protected Area: from Species to Ecosystem Conservation.. Mong J Biol Sci 2007 Dec;5(1-2):13-18.
    pmc: PMC3207201pubmed: 22064815doi: 10.22353/mjbs.2007.05.03google scholar: lookup
  35. Osada N. Genetic diversity in humans and non-human primates and its evolutionary consequences.. Genes Genet Syst 2015;90(3):133-45.
    doi: 10.1266/ggs.90.133pubmed: 26510568google scholar: lookup
  36. Wang W, Zheng Y, Zhao J, Yao M. Low genetic diversity in a critically endangered primate: shallow evolutionary history or recent population bottleneck?. BMC Evol Biol 2019 Jun 26;19(1):134.
    doi: 10.1186/s12862-019-1451-ypmc: PMC6595580pubmed: 31242851google scholar: lookup
  37. Lehnen L, Jan PL, Besnard AL, Fourcy D, Kerth G, Biedermann M, Nyssen P, Schorcht W, Petit EJ, Puechmaille SJ. Genetic diversity in a long-lived mammal is explained by the past's demographic shadow and current connectivity.. Mol Ecol 2021 Oct;30(20):5048-5063.
    doi: 10.1111/mec.16123pubmed: 34402111google scholar: lookup
  38. Jaworska J, Ropka-Molik K, Wocu0142awek-Potocka I, Siemieniuch M. Inter- and intrabreed diversity of the major histocompatibility complex (MHC) in primitive and draft horse breeds.. PLoS One 2020;15(2):e0228658.
  39. Viu013cuma A, Mikko S, Hahn D, Skow L, Andersson G, Bergstru00f6m TF. Genomic structure of the horse major histocompatibility complex class II region resolved using PacBio long-read sequencing technology.. Sci Rep 2017 Mar 31;7:45518.
    doi: 10.1038/srep45518pmc: PMC5374520pubmed: 28361880google scholar: lookup
  40. Tallmadge RL, Campbell JA, Miller DC, Antczak DF. Analysis of MHC class I genes across horse MHC haplotypes.. Immunogenetics 2010 Mar;62(3):159-72.
    doi: 10.1007/s00251-009-0420-9pmc: PMC2872545pubmed: 20099063google scholar: lookup
  41. Ru00fcegg SR, Torgerson PR, Doherr MG, Deplazes P, Bu00f6se R, Robert N, Walzer C. Equine piroplasmoses at the reintroduction site of the Przewalski's horse (Equus ferus przewalskii) in Mongolia.. J Wildl Dis 2006 Jul;42(3):518-26.
    doi: 10.7589/0090-3558-42.3.518pubmed: 17092882google scholar: lookup
  42. Jota Baptista C, Su00f3s E, Szabados T, Kerekes V, Madeira de Carvalho L. Intestinal parasites in Przewalski's horses (Equus ferus przewalskii): a field survey at the Hortobu00e1gy National Park, Hungary.. J Helminthol 2021 Aug 6;95:e39.
    doi: 10.1017/S0022149X21000274pubmed: 34353397google scholar: lookup
  43. Hu D, Chao Y, Zhang B, Wang C, Qi Y, Ente M, Zhang D, Li K, Mok KM. Effects of Gasterophilus pecorum infestation on the intestinal microbiota of the rewilded Przewalski's horses in China.. PLoS One 2021;16(5):e0251512.
  44. Kleinman-Ruiz D, Soriano L, Casas-Marce M, Szychta C, Su00e1nchez I, Fernu00e1ndez J, Godoy JA. Genetic evaluation of the Iberian lynx ex situ conservation programme.. Heredity (Edinb) 2019 Nov;123(5):647-661.
    doi: 10.1038/s41437-019-0217-zpmc: PMC6972747pubmed: 30952964google scholar: lookup
  45. Zhang S, Li C, Li Y, Chen Q, Hu D, Cheng Z, Wang X, Shan Y, Bai J, Liu G. Genetic Differentiation of Reintroduced Pu00e8re David's Deer (Elaphurus davidianus) Based on Population Genomics Analysis.. Front Genet 2021;12:705337.
    doi: 10.3389/fgene.2021.705337pmc: PMC8452920pubmed: 34557217google scholar: lookup
  46. Flesch EP, Graves TA, Thomson JM, Proffitt KM, White PJ, Stephenson TR, Garrott RA. Evaluating wildlife translocations using genomics: A bighorn sheep case study.. Ecol Evol 2020 Dec;10(24):13687-13704.
    doi: 10.1002/ece3.6942pmc: PMC7771163pubmed: 33391673google scholar: lookup

Citations

This article has been cited 2 times.
  1. Vasoya D, Tzelos T, Benedictus L, Karagianni AE, Pirie S, Marr C, Oddsdu00f3ttir C, Fintl C, Connelley T. High-Resolution Genotyping of Expressed Equine MHC Reveals a Highly Complex MHC Structure.. Genes (Basel) 2023 Jul 10;14(7).
    doi: 10.3390/genes14071422pubmed: 37510326google scholar: lookup
  2. Piras FM, Cappelletti E, Abdelgadir WA, Salamon G, Vignati S, Santagostino M, Sola L, Nergadze SG, Giulotto E. A Satellite-Free Centromere in Equus przewalskii Chromosome 10.. Int J Mol Sci 2023 Feb 18;24(4).
    doi: 10.3390/ijms24044134pubmed: 36835543google scholar: lookup