Multiparametric Flow Cytometry for Determination of Viability, Caspase 3 and 7 Activity, and Lipid Peroxidation Adduct (4-Hydroxynonenal) in Equine Spermatozoa.
- Journal Article
Summary
This scientific research paper presents the application of multiparametric flow cytometry for analyzing equine spermatozoa. It examines the viability and determination of activities of caspase 3 and 7 and the detection of lipid peroxidation, which contribute to the understanding of spermatozoa conditions and fertility estimation.
Introduction to Flow Cytometry
In this study, flow cytometry, a sophistical technique used for analyzing cell samples at a single-cell level, is the main tool employed. It’s particularly useful in studying multipopulations like spermatozoa. The advent of multiparametric cytometers has greatly enhanced this analysis, enabling the examination of various cellular features that include:
- Protein expression
- DNA analysis
- Mitochondrial activity
These cytometers employ either traditional fluorescent dyes or fluorophore-conjugated antibodies to individually stain each cell or cellular component. Following high-speed analysis, the resulting data is displayed and interpreted using a dot-plot system.
Study Methodology
In this research, the team used multiparametric flow cytometry to analyze equine spermatoza. The research utilized three sources of excitation and polychromatic flow cytometry. The parameters analyzed include:
- 4HNE detection – a lipid peroxidation adduct assessed using an anti-4HNE antibody
- Assessing apoptotic markers – measured by caspase 3 and 7 activity
- Examining live and nonviable spermatozoa- determined by using ethidium-homodimer
To exclude debris during the analysis, the team used Hoechst 33342 staining and gating.
Implication of the Multiparametric Analysis
The multiparametric analysis performed in this study allows for simultaneous detection of diverse spermatic parameters. This aligned detection offers valuable information that can be used in characterizing seminal samples as well as estimating fertility. It essentially gives a comprehensive understanding of the sperm quality, important for both natural conception and assisted reproduction techniques. This application thus provides a valuable contribution to the field of veterinary reproductive biology and medicine.
Cite This Article
Publication
Researcher Affiliations
- Polytechnic Institute of Portalegre, Agrarian School of Elvas, Elvas, Portugal.
- VALORIZA, Research Centre for Endogenous Resources Valorization, Polytechnic Institute of Portalegre, Portalegre, Portugal.
- Laboratory of Equine Reproduction and Equine Spermatology, Universidad de Extremadura, Cu00e1ceres, Spain.
- Laboratory of Equine Reproduction and Equine Spermatology, Universidad de Extremadura, Cu00e1ceres, Spain.
- Laboratory of Equine Reproduction and Equine Spermatology, Universidad de Extremadura, Cu00e1ceres, Spain.
MeSH Terms
- Male
- Animals
- Horses
- Caspase 3
- Flow Cytometry
- Lipid Peroxidation
- Fluorescent Dyes
- Spermatozoa
References
- Adams, J. M., & Cory, S. (2002). Apoptosomes: Engines for caspase activation. Current Opinion in Cell Biology, 14(6), 715-720. https://doi.org/10.1016/S0955-0674(02)00381-2
- Aitken, R. (1995). Free radicals, lipid peroxidation and sperm function. Reproduction, Fertility and Development, 7(4), 659. https://doi.org/10.1071/RD9950659
- Aitken, R. J., Findlay, J. K., Hutt, K. J., & Kerr, J. B. (2011). Apoptosis in the germ line. Reproduction, 141(2), 139-150. https://doi.org/10.1530/REP-10-0232
- Aitken, R. J., Smith, T. B., Lord, T., Kuczera, L., Koppers, A. J., Naumovski, N., Connaughton, H., Baker, M. A., & de Iuliis, G. N. (2013). On methods for the detection of reactive oxygen species generation by human spermatozoa: Analysis of the cellular responses to catechol oestrogen, lipid aldehyde, menadione and arachidonic acid. Andrology, 1(2), 192-205. https://doi.org/10.1111/j.2047-2927.2012.00056.x
- Aitken, R. J., Whiting, S., de Iuliis, G. N., McClymont, S., Mitchell, L. A., & Baker, M. A. (2012). Electrophilic aldehydes generated by sperm metabolism activate mitochondrial reactive oxygen species generation and apoptosis by targeting succinate dehydrogenase. Journal of Biological Chemistry, 287(39), 33048-33060. https://doi.org/10.1074/jbc.M112.366690
- Ayala, A., Muu00f1oz, M. F., & Argu00fcelles, S. (2014). Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Medicine and Cellular Longevity, 2014, 1-31. https://doi.org/10.1155/2014/360438
- Balao da Silva, C. M., Ortega Ferrusola, C., Morillo Rodriguez, A., Gallardo Bolau00f1os, J. M., Plaza Du00e1vila, M., Morrell, J. M., Rodriguez Martu00ednez, H., Tapia, J. A., Aparicio, I. M., & Peu00f1a, F. J. (2013). Sex sorting increases the permeability of the membrane of stallion spermatozoa. Animal Reproduction Science, 138(3-4), 241-251. https://doi.org/10.1016/j.anireprosci.2013.02.021
- Balao da Silva, C., Ortega-Ferrusola, C., Morrell, J., Rodriguez Martu00ednez, H., & Peu00f1a, F. (2016). Flow cytometric chromosomal sex sorting of stallion spermatozoa induces oxidative stress on mitochondria and genomic DNA. Reproduction in Domestic Animals, 51(1), 18-25. https://doi.org/10.1111/rda.12640
- Baraibar, M. A., & Friguet, B. (2013). Oxidative proteome modifications target specific cellular pathways during oxidative stress, cellular senescence and aging. Experimental Gerontology, 48(7), 620-625. https://doi.org/10.1016/j.exger.2012.10.007
- Benchaib, M. (2003). Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Human Reproduction, 18(5), 1023-1028. https://doi.org/10.1093/humrep/deg228
- Brugnon, F., Ouchchane, L., Verheyen, G., Communal, Y., van der Elst, J., Tournaye, H., Janny, L., & Grizard, G. (2009). Fluorescence microscopy and flow cytometry in measuring activated caspases in human spermatozoa. International Journal of Andrology, 32(3), 265-273. https://doi.org/10.1111/j.1365-2605.2007.00847.x
- Cafe, S. L., Nixon, B., Dun, M. D., Roman, S. D., Bernstein, I. R., & Bromfield, E. G. (2020). Oxidative stress dysregulates protein homeostasis within the male germ line. Antioxidants & Redox Signaling, 32(8), 487-503. https://doi.org/10.1089/ars.2019.7832
- Caselles, A., Miro-Moran, A., Morillo Rodriguez, A., Gallardo Bolau00f1os, J., Ortega-Ferrusola, C., Salido, G., Peu00f1a, F., Tapia, J., & Aparicio, I. (2014). Identification of apoptotic bodies in equine semen. Reproduction in Domestic Animals, 49(2), 254-262. https://doi.org/10.1111/rda.12264
- Castleton, P. E., Deluao, J. C., Sharkey, D. J., & McPherson, N. O. (2022). Measuring reactive oxygen species in semen for male preconception care: A scientist perspective. Antioxidants, 11(2), 264. https://doi.org/10.3390/antiox11020264
- Denault, J.-B., & Salvesen, G. S. (2002). Caspases: Keys in the ignition of cell death. Chemical Reviews, 102(12), 4489-4500. https://doi.org/10.1021/cr010183n
- Esterbauer, H., Schaur, R. J., & Zollner, H. (1991). Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radical Biology and Medicine, 11(1), 81-128. https://doi.org/10.1016/0891-5849(91)90192-6
- Gallardo Bolau00f1os, J., Balao da Silva, C., Martu00edn Muu00f1oz, P., Plaza Du00e1vila, M., Ezquerra, J., Aparicio, I., Tapia, J., Ortega Ferrusola, C., & Peu00f1a, F. (2014). Caspase activation, hydrogen peroxide production and Akt dephosphorylation occur during stallion sperm senescence. Reproduction in Domestic Animals, 49(4), 657-664. https://doi.org/10.1111/rda.12343
- Gallardo Bolau00f1os, J. M., Balao da Silva, C. M., Martu00edn Muu00f1oz, P., Morillo Rodru00edguez, A., Plaza Du00e1vila, M., Rodru00edguez-Martu00ednez, H., Aparicio, I. M., Tapia, J. A., Ortega Ferrusola, C., & Peu00f1a, F. J. (2014). Phosphorylated AKT preserves stallion sperm viability and motility by inhibiting caspases 3 and 7. Reproduction, 148(2), 221-235. https://doi.org/10.1530/REP-13-0191
- Garcu00eda Vazquez, S., Aragu00f3n Martu00ednez, A., & Flores-Alonso, J. C. (2012). Confocal microscopy and image analysis indicates a region-specific relation between active caspases and cytoplasm in ejaculated and epididymal sperm. PLoS ONE, 7(4), e35477. https://doi.org/10.1371/journal.pone.0035477
- Gibb, Z., Lambourne, S. R., Curry, B. J., Hall, S. E., & Aitken, R. J. (2016). Aldehyde dehydrogenase plays a pivotal role in the maintenance of stallion sperm Motility1. Biology of Reproduction, 94(6), 133. https://doi.org/10.1095/biolreprod.116.140509
- Grune, T., Jung, T., Merker, K., & Davies, K. J. A. (2004). Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and u2018aggresomesu2019 during oxidative stress, aging, and disease. The International Journal of Biochemistry & Cell Biology, 36(12), 2519-2530. https://doi.org/10.1016/j.biocel.2004.04.020
- Kari, S., Subramanian, K., Altomonte, I. A., Murugesan, A., Yli-Harja, O., & Kandhavelu, M. (2022). Programmed cell death detection methods: A systematic review and a categorical comparison. Apoptosis, 27(7-8), 482-508. https://doi.org/10.1007/s10495-022-01735-y
- Kerr, J. F. R., Wyllie, A. H., & Currie, A. R. (1972). Apoptosis: A basic biological phenomenon with wideranging implications in tissue Kinetics. British Journal of Cancer, 26(4), 239-257. https://doi.org/10.1038/bjc.1972.33
- Koppers, A. J., de Iuliis, G. N., Finnie, J. M., McLaughlin, E. A., & Aitken, R. J. (2008). Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in Spermatozoa. The Journal of Clinical Endocrinology & Metabolism, 93(8), 3199-3207. https://doi.org/10.1210/jc.2007-2616
- Koppers, A. J., Mitchell, L. A., Wang, P., Lin, M., & Aitken, R. J. (2011). Phosphoinositide 3-kinase signalling pathway involvement in a truncated apoptotic cascade associated with motility loss and oxidative DNA damage in human spermatozoa. Biochemical Journal, 436(3), 687-698. https://doi.org/10.1042/BJ20110114
- Lugli, E., Pinti, M., Nasi, M., Troiano, L., Ferraresi, R., Mussi, C., Salvioli, G., Patsekin, V., Robinson, J. P., Durante, C., Cocchi, M., & Cossarizza, A. (2007). Subject classification obtained by cluster analysis and principal component analysis applied to flow cytometric data. Cytometry Part A, 71A(5), 334-344. https://doi.org/10.1002/cyto.a.20387
- Lugli, E., Troiano, L., Ferraresi, R., Roat, E., Prada, N., Nasi, M., Pinti, M., Cooper, E. L., & Cossarizza, A. (2005). Characterization of cells with different mitochondrial membrane potential during apoptosis. Cytometry Part A, 68A(1), 28-35. https://doi.org/10.1002/cyto.a.20188
- MartinMuu00f1oz, P., Ferrusola, C. O., Vizuete, G., Du00e1vila, M. P., Martinez, H. R., & Peu00f1a, F. J. (2015). Depletion of intracellular thiols and increased production of 4-hydroxynonenal that occur during cryopreservation of stallion spermatozoa lead to caspase activation, loss of motility, and Cell Death1. Biology of Reproduction, 93(6), 143. https://doi.org/10.1095/biolreprod.115.132878
- Moazamian, R., Polhemus, A., Connaughton, H., Fraser, B., Whiting, S., Gharagozloo, P., & Aitken, R. J. (2015). Oxidative stress and human spermatozoa: Diagnostic and functional significance of aldehydes generated as a result of lipid peroxidation. MHR: Basic Science of Reproductive Medicine, 21(6), 502-515. https://doi.org/10.1093/molehr/gav014
- Morillo Rodru00edguez, A., Ortega Ferrusola, C., Macu00edas Garcu00eda, B., Morrell, J. M., Rodru00edguez Martu00ednez, H., Tapia, J. A., & Peu00f1a, F. J. (2011). Freezing stallion semen with the new Cu00e1ceres extender improves post thaw sperm quality and diminishes stallion-to-stallion variability. Animal Reproduction Science, 127(1-2), 78-83. https://doi.org/10.1016/j.anireprosci.2011.07.009
- Munoz, P. M., Ferrusola, C. O., Lopez, L. A., delPetre, C., Garcia, M. A., de Paz Cabello, P., Anel, L., & Pena, F. J. (2016). Caspase 3 activity and lipoperoxidative status in raw semen predict the outcome of cryopreservation of stallion spermatozoa. Biology of Reproduction, 95(3), 53-53. https://doi.org/10.1095/biolreprod.116.139444
- Ortega-Ferrusola, C., Anel-Lu00f3pez, L., Martu00edn-Muu00f1oz, P., Ortu00edz-Rodru00edguez, J. M., Gil, M. C., Alvarez, M., de Paz, P., Ezquerra, L. J., Masot, A. J., Redondo, E., Anel, L., & Peu00f1a, F. J. (2017). Computational flow cytometry reveals that cryopreservation induces spermptosis but subpopulations of spermatozoa may experience capacitation-like changes. Reproduction, 153(3), 293-304. https://doi.org/10.1530/REP-16-0539
- Ortega-Ferrusola, C., Anel-Lu00f3pez, L., Ortiz-Rodriguez, J. M., Martin Muu00f1oz, P., Alvarez, M., de Paz, P., Masot, J., Redondo, E., Balao Da Silva, C., Morrell, J. M., Rodriguez Martinez, H., Tapia, J. A., Gil, M. C., Anel, L., & Peu00f1a, F. J. (2017). Stallion spermatozoa surviving freezing and thawing experience membrane depolarization and increased intracellular Na +. Andrology, 5(6), 1174-1182. https://doi.org/10.1111/andr.12419
- Ott, M., Gogvadze, V., Orrenius, S., & Zhivotovsky, B. (2007). Mitochondria, oxidative stress and cell death. Apoptosis, 12(5), 913-922. https://doi.org/10.1007/s10495-007-0756-2
- Park, H. H. (2012). Structural features of caspase-activating complexes. International Journal of Molecular Sciences, 13(4), 4807-4818. https://doi.org/10.3390/ijms13044807
- Peu00f1a, F. J. (2023). Expanding the use of flow cytometry in semen analysis: The rise of flow spermetry. Cytometry. Part A: The Journal of the International Society for Analytical Cytology, 103(6), 465-469. https://doi.org/10.1002/cyto.a.24736
- Peu00f1a, F. J., & Gibb, Z. (2022). Oxidative stress and reproductive function: Oxidative stress and the long-term storage of horse spermatozoa. Reproduction, 164(6), F135-F144. https://doi.org/10.1530/REP-22-0264
- Perfetto, S. P., Ambrozak, D., Nguyen, R., Chattopadhyay, P., & Roederer, M. (2006). Quality assurance for polychromatic flow cytometry. Nature Protocols, 1(3), 1522-1530. https://doi.org/10.1038/nprot.2006.250
- Talarczyk-Desole, J., Kotwicka, M., Jendraszak, M., Pawelczyk, L., Murawski, M., & Ju0119drzejczak, P. (2016). Sperm midpiece apoptotic markers: Impact on fertilizing potential in in vitro fertilization and intracytoplasmic sperm injection. Human Cell, 29(2), 67-75. https://doi.org/10.1007/s13577-015-0129-z
- Troiano, L., Ferraresi, R., Lugli, E., Nemes, E., Roat, E., Nasi, M., Pinti, M., & Cossarizza, A. (2007). Multiparametric analysis of cells with different mitochondrial membrane potential during apoptosis by polychromatic flow cytometry. Nature Protocols, 2(11), 2719-2727. https://doi.org/10.1038/nprot.2007.405
- Walters, J., de Iuliis, G., Nixon, B., & Bromfield, E. (2018). Oxidative stress in the male germline: A review of novel strategies to reduce 4-hydroxynonenal production. Antioxidants, 7(10), 132. https://doi.org/10.3390/antiox7100132
- Winczura, A., Zdu017calik, D., & Tudek, B. (2012). Damage of DNA and proteins by major lipid peroxidation products in genome stability. Free Radical Research, 46(4), 442-459. https://doi.org/10.3109/10715762.2012.658516