Osteoarthritis and cartilage2007; 16(6); 708-714; doi: 10.1016/j.joca.2007.10.001

Solute transport in the deep and calcified zones of articular cartilage.

Abstract: (1) To establish whether the tidemark and calcified cartilage are permeable to low molecular weight solutes, thereby providing a potential pathway for nutrition of cells in the deep cartilage. (2) To investigate transport from the subchondral microcirculation into calcified cartilage in an intact perfused joint and the effects on transport of static loading. Methods: The permeability of the tidemark and calcified cartilage was investigated in plugs of cartilage and subchondral bone which formed the membrane of a diffusion cell. Transport from the subchondral microcirculation and the effects of load were studied in an intact perfused joint. Both preparations used the metacarpophalangeal joints of mature horses and fluorescein and rhodamine (m.w. approximately 400 Da) were employed as tracers, assayed by quantitative fluorescence microscopy on histological sections. Results: Calcified cartilage was permeable to both solutes, both from the superficial and the subchondral sides. The effective diffusivity of both solutes was of the order of 9 x 10(-9) cm(2) s(-1), fivefold less than in the uncalcified cartilage. The calcified zone was heterogeneous, with high uptake of both tracers in the vicinity of the tidemark. The distribution volume of rhodamine B was higher than for fluorescein, consistent with a significant anionic charge in the calcified matrix. Static loading of the intact joint did not affect the transport of rhodamine B but caused a significant decrease in concentration of fluorescein both in the surface and deep zones of the tissue. Conclusions: Calcified cartilage is permeable to small solutes and the subchondral circulation may make a significant contribution to the nutrition of deep cartilage in the mature horse. Static loading reduces the uptake of small anionic solutes in the intact joint.
Publication Date: 2007-11-19 PubMed ID: 18023368DOI: 10.1016/j.joca.2007.10.001Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article
  • Research Support
  • Non-U.S. Gov't

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

This research article investigates the permeability of the tidemark and calcified cartilage, areas of mature horse joints, to small solutes. The study discovers that calcified cartilage is permeable to these solutes, suggesting that the subchondral circulation could contribute to the nourishment of deep cartilage in mature horses.

Article Objectives

The study primarily aimed to:

  • Determine if tidemark (an interphase line in cartilage) and calcified cartilage are permeable to low molecular weight solutes. This provides a pathway for nutrition of cells in the deeper parts of cartilage.
  • Investigate the transport process from the subchondral microcirculation into the calcified cartilage in a fully functional joint, and the effect of static loading on this transport.

Methodology

The investigation involved two preparations:

  • The permeability of the tidemark and calcified cartilage was tested using plugs of cartilage and subchondral bone which were used as the membrane of a diffusion cell.
  • The subchondral microcirculation’s transport process and its reaction to load were studied in a fully functional, perfused joint.

Both setups used metacarpophalangeal joints of mature horses. Fluorescein and rhodamine, which have a molecular weight of about 400 Da, served as tracers. The tracers were tracked by quantitative fluorescence microscopy on histological sections.

Results

The study found that:

  • Calcified cartilage is permeable to both solutes from both the superficial and subchondral sides. The effective diffusivity of both solutes was about 9 x 10(-9) cm(2) s(-1), which is five times lesser than in uncacified cartilage.
  • The calcified zone had an irregular uptake of the tracers, with increased uptake around the tidemark area.
  • The volume of rhodamine B distribution was higher than for fluorescein, which suggests an anionic charge present in the calcified matrix.
  • Static loading in a fully functional joint did not alter the transportation of rhodamine B but resulted in a significant reduction in the concentration of fluorescein in both the surface and deep sections of the tissue.

Conclusions

The study concluded that calcified cartilage is permeable to small solutes and the subchondral circulation can significantly contribute to the nutrition of deep cartilage in mature horses. Moreover, static loading lessens the uptake of small anionic solutes in an intact joint.

Cite This Article

APA
Arkill KP, Winlove CP. (2007). Solute transport in the deep and calcified zones of articular cartilage. Osteoarthritis Cartilage, 16(6), 708-714. https://doi.org/10.1016/j.joca.2007.10.001

Publication

ISSN: 1063-4584
NlmUniqueID: 9305697
Country: England
Language: English
Volume: 16
Issue: 6
Pages: 708-714

Researcher Affiliations

Arkill, K P
  • Biophysics Group, School of Physics, University of Exeter, UK. k.p.arkill@ex.ac.uk
Winlove, C P

    MeSH Terms

    • Animals
    • Biological Transport / physiology
    • Calcification, Physiologic / physiology
    • Cartilage, Articular / metabolism
    • Cartilage, Articular / physiology
    • Diffusion
    • Diffusion Chambers, Culture
    • Fluorescein / pharmacokinetics
    • Horses
    • Permeability
    • Rhodamines / pharmacokinetics
    • Stress, Mechanical

    Citations

    This article has been cited 56 times.
    1. Zecca PA, Reguzzoni M, Borgese M, Protasoni M, Filibian M, Raspanti M. Investigating the interfaces of the epiphyseal plate: An integrated approach of histochemistry, microtomography and SEM.. J Anat 2023 Nov;243(5):870-877.
      doi: 10.1111/joa.13924pubmed: 37391907google scholar: lookup
    2. Shen P, Lu00f6hning M. Insights into osteoarthritis development from single-cell RNA sequencing of subchondral bone.. RMD Open 2022 Dec;8(2).
      doi: 10.1136/rmdopen-2022-002617pubmed: 36598005google scholar: lookup
    3. Oprita EI, Iosageanu A, Craciunescu O. Progress in Composite Hydrogels and Scaffolds Enriched with Icariin for Osteochondral Defect Healing.. Gels 2022 Oct 12;8(10).
      doi: 10.3390/gels8100648pubmed: 36286148google scholar: lookup
    4. Wang W, Ye R, Xie W, Zhang Y, An S, Li Y, Zhou Y. Roles of the calcified cartilage layer and its tissue engineering reconstruction in osteoarthritis treatment.. Front Bioeng Biotechnol 2022;10:911281.
      doi: 10.3389/fbioe.2022.911281pubmed: 36131726google scholar: lookup
    5. Hinton PV, Genoud KJ, Early JO, O'Brien FJ, Kennedy OD. Impact of Fluid Flow Shear Stress on Osteoblast Differentiation and Cross-Talk with Articular Chondrocytes.. Int J Mol Sci 2022 Aug 22;23(16).
      doi: 10.3390/ijms23169505pubmed: 36012760google scholar: lookup
    6. Evans LAE, Pitsillides AA. Structural clues to articular calcified cartilage function: Au00a0descriptive review of this crucial interface tissue.. J Anat 2022 Oct;241(4):875-895.
      doi: 10.1111/joa.13728pubmed: 35866709google scholar: lookup
    7. Chen Y, Miao Y, Liu K, Xue F, Zhu B, Zhang C, Li G. Evolutionary course of the femoral head osteonecrosis: Histopathological - radiologic characteristics and clinical staging systems.. J Orthop Translat 2022 Jan;32:28-40.
      doi: 10.1016/j.jot.2021.07.004pubmed: 35591937google scholar: lookup
    8. Choe R, Devoy E, Kuzemchak B, Sherry M, Jabari E, Packer JD, Fisher JP. Computational investigation of interface printing patterns within 3D printed multilayered scaffolds for osteochondral tissue engineering.. Biofabrication 2022 Feb 23;14(2).
      doi: 10.1088/1758-5090/ac5220pubmed: 35120345google scholar: lookup
    9. Hopkins T, Wright KT, Kuiper NJ, Roberts S, Jermin P, Gallacher P, Kuiper JH. An In Vitro System to Study the Effect of Subchondral Bone Health on Articular Cartilage Repair in Humans.. Cells 2021 Jul 27;10(8).
      doi: 10.3390/cells10081903pubmed: 34440671google scholar: lookup
    10. Ching K, Houard X, Berenbaum F, Wen C. Hypertension meets osteoarthritis - revisiting the vascular aetiology hypothesis.. Nat Rev Rheumatol 2021 Sep;17(9):533-549.
      doi: 10.1038/s41584-021-00650-xpubmed: 34316066google scholar: lookup
    11. Gonu00e7alves AM, Moreira A, Weber A, Williams GR, Costa PF. Osteochondral Tissue Engineering: The Potential of Electrospinning and Additive Manufacturing.. Pharmaceutics 2021 Jun 29;13(7).
      doi: 10.3390/pharmaceutics13070983pubmed: 34209671google scholar: lookup
    12. Wei W, Dai H. Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges.. Bioact Mater 2021 Dec;6(12):4830-4855.
    13. Partain BD, Zhang Q, Unni M, Aldrich J, Rinaldi-Ramos CM, Narayanan S, Allen KD. Spatially-resolved nanometer-scale measurement of cartilage extracellular matrix mobility.. Osteoarthritis Cartilage 2021 Sep;29(9):1351-1361.
      doi: 10.1016/j.joca.2021.05.059pubmed: 34052396google scholar: lookup
    14. Fan X, Wu X, Crawford R, Xiao Y, Prasadam I. Macro, Micro, and Molecular. Changes of the Osteochondral Interface in Osteoarthritis Development.. Front Cell Dev Biol 2021;9:659654.
      doi: 10.3389/fcell.2021.659654pubmed: 34041240google scholar: lookup
    15. Zhen G, Guo Q, Li Y, Wu C, Zhu S, Wang R, Guo XE, Kim BC, Huang J, Hu Y, Dan Y, Wan M, Ha T, An S, Cao X. Mechanical stress determines the configuration of TGFu03b2 activation in articular cartilage.. Nat Commun 2021 Mar 17;12(1):1706.
      doi: 10.1038/s41467-021-21948-0pubmed: 33731712google scholar: lookup
    16. Patil ND, El Ghait HA, Boehm C, Boehm H. Evaluation of Spinal Fusion in Thoracic and Thoracolumbar Spine on Standard X-Rays: A New Grading System for Spinal Interbody Fusion.. Global Spine J 2022 Sep;12(7):1481-1494.
      doi: 10.1177/2192568220983796pubmed: 33583224google scholar: lookup
    17. Oliveira Silva M, Gregory JL, Ansari N, Stok KS. Molecular Signaling Interactions and Transport at the Osteochondral Interface: A Review.. Front Cell Dev Biol 2020;8:750.
      doi: 10.3389/fcell.2020.00750pubmed: 32974333google scholar: lookup
    18. Huang Y, Chen C, Wang F, Chen G, Cheng S, Tang Z, Li Z, Gong X, Yang L. Observation of Solute Transport between Articular Cartilage and Subchondral Bone in Live Mice.. Cartilage 2021 Dec;13(2_suppl):398S-407S.
      doi: 10.1177/1947603520951627pubmed: 32840114google scholar: lookup
    19. Kazemi M, Williams JL. Properties of Cartilage-Subchondral Bone Junctions: A Narrative Review with Specific Focus on the Growth Plate.. Cartilage 2021 Dec;13(2_suppl):16S-33S.
      doi: 10.1177/1947603520924776pubmed: 32458695google scholar: lookup
    20. Meng H, Quan Q, Yuan X, Zheng Y, Peng J, Guo Q, Wang A, Lu S. Diffusion of neutral solutes within human osteoarthritic cartilage: Effect of loading patterns.. J Orthop Translat 2020 May;22:58-66.
      doi: 10.1016/j.jot.2019.10.013pubmed: 32440500google scholar: lookup
    21. Lin Z, Li Z, Li EN, Li X, Del Duke CJ, Shen H, Hao T, O'Donnell B, Bunnell BA, Goodman SB, Alexander PG, Tuan RS, Lin H. Osteochondral Tissue Chip Derived From iPSCs: Modeling OA Pathologies and Testing Drugs.. Front Bioeng Biotechnol 2019;7:411.
      doi: 10.3389/fbioe.2019.00411pubmed: 31921815google scholar: lookup
    22. Berthelot JM, Sellam J, Maugars Y, Berenbaum F. Cartilage-gut-microbiome axis: a new paradigm for novel therapeutic opportunities in osteoarthritis.. RMD Open 2019;5(2):e001037.
      doi: 10.1136/rmdopen-2019-001037pubmed: 31673418google scholar: lookup
    23. Deng C, Chang J, Wu C. Bioactive scaffolds for osteochondral regeneration.. J Orthop Translat 2019 Apr;17:15-25.
      doi: 10.1016/j.jot.2018.11.006pubmed: 31194079google scholar: lookup
    24. Lepage SIM, Robson N, Gilmore H, Davis O, Hooper A, St John S, Kamesan V, Gelis P, Carvajal D, Hurtig M, Koch TG. Beyond Cartilage Repair: The Role of the Osteochondral Unit in Joint Health and Disease.. Tissue Eng Part B Rev 2019 Apr;25(2):114-125.
      doi: 10.1089/ten.TEB.2018.0122pubmed: 30638141google scholar: lookup
    25. Wang HC, Lin YT, Lin TH, Chang NJ, Lin CC, Hsu HC, Yeh ML. Intra-articular injection of N-acetylglucosamine and hyaluronic acid combined with PLGA scaffolds for osteochondral repair in rabbits.. PLoS One 2018;13(12):e0209747.
      doi: 10.1371/journal.pone.0209747pubmed: 30596714google scholar: lookup
    26. Tamaddon M, Wang L, Liu Z, Liu C. Osteochondral tissue repair in osteoarthritic joints: clinical challenges and opportunities in tissue engineering.. Biodes Manuf 2018;1(2):101-114.
      doi: 10.1007/s42242-018-0015-0pubmed: 30533248google scholar: lookup
    27. Lin AH, Zitnay JL, Li Y, Yu SM, Weiss JA. Microplate assay for denatured collagen using collagen hybridizing peptides.. J Orthop Res 2019 Feb;37(2):431-438.
      doi: 10.1002/jor.24185pubmed: 30474872google scholar: lookup
    28. Selvarajah L, Curtis AM, Kennedy OD. Bone Microdamage in Acute Knee Injury.. Curr Rheumatol Rep 2018 Nov 21;20(12):89.
      doi: 10.1007/s11926-018-0791-8pubmed: 30465302google scholar: lookup
    29. Ngo L, Knothe LE, Knothe Tate ML. Knee Joint Tissues Effectively Separate Mixed Sized Molecules Delivered in a Single Bolus to the Heart.. Sci Rep 2018 Jul 6;8(1):10254.
      doi: 10.1038/s41598-018-28228-wpubmed: 29980695google scholar: lookup
    30. Pirosa A, Gottardi R, Alexander PG, Tuan RS. Engineering in-vitro stem cell-based vascularized bone models for drug screening and predictive toxicology.. Stem Cell Res Ther 2018 Apr 20;9(1):112.
      doi: 10.1186/s13287-018-0847-8pubmed: 29678192google scholar: lookup
    31. Touraine S, Bouhadoun H, Engelke K, Laredo JD, Chappard C. Influence of meniscus on cartilage and subchondral bone features of knees from older individuals: A cadaver study.. PLoS One 2017;12(8):e0181956.
      doi: 10.1371/journal.pone.0181956pubmed: 28797093google scholar: lookup
    32. Aaron RK, Racine J, Dyke JP. Contribution of Circulatory Disturbances in Subchondral Bone to the Pathophysiology of Osteoarthritis.. Curr Rheumatol Rep 2017 Aug;19(8):49.
      doi: 10.1007/s11926-017-0660-xpubmed: 28718064google scholar: lookup
    33. Arbabi V, Pouran B, Zadpoor AA, Weinans H. An Experimental and Finite Element Protocol to Investigate the Transport of Neutral and Charged Solutes across Articular Cartilage.. J Vis Exp 2017 Apr 23;(122).
      doi: 10.3791/54984pubmed: 28518064google scholar: lookup
    34. Janune D, Abd El Kader T, Aoyama E, Nishida T, Tabata Y, Kubota S, Takigawa M. Novel role of CCN3 that maintains the differentiated phenotype of articular cartilage.. J Bone Miner Metab 2017 Nov;35(6):582-597.
      doi: 10.1007/s00774-016-0793-4pubmed: 27853940google scholar: lookup
    35. Findlay DM, Kuliwaba JS. Bone-cartilage crosstalk: a conversation for understanding osteoarthritis.. Bone Res 2016;4:16028.
      doi: 10.1038/boneres.2016.28pubmed: 27672480google scholar: lookup
    36. Bagi CM, Berryman E, Zakur DE, Wilkie D, Andresen CJ. Effect of antiresorptive and anabolic bone therapy on development of osteoarthritis in a posttraumatic rat model of OA.. Arthritis Res Ther 2015 Nov 6;17:315.
      doi: 10.1186/s13075-015-0829-5pubmed: 26542671google scholar: lookup
    37. Mittelstaedt D, Xia Y. Depth-Dependent Glycosaminoglycan Concentration in Articular Cartilage by Quantitative Contrast-Enhanced Micro-Computed Tomography.. Cartilage 2015 Oct;6(4):216-25.
      doi: 10.1177/1947603515596418pubmed: 26425259google scholar: lookup
    38. Silvast TS, Jurvelin JS, Tiitu V, Quinn TM, Tu00f6yru00e4s J. Bath Concentration of Anionic Contrast Agents Does Not Affect Their Diffusion and Distribution in Articular Cartilage In Vitro.. Cartilage 2013 Jan;4(1):42-51.
      doi: 10.1177/1947603512451023pubmed: 26069649google scholar: lookup
    39. Nieminen HJ, Ylitalo T, Karhula S, Suuronen JP, Kauppinen S, Serimaa R, Hu00e6ggstru00f6m E, Pritzker KP, Valkealahti M, Lehenkari P, Finnilu00e4 M, Saarakkala S. Determining collagen distribution in articular cartilage using contrast-enhanced micro-computed tomography.. Osteoarthritis Cartilage 2015 Sep;23(9):1613-21.
      doi: 10.1016/j.joca.2015.05.004pubmed: 26003951google scholar: lookup
    40. Schultz M, Molligan J, Schon L, Zhang Z. Pathology of the calcified zone of articular cartilage in post-traumatic osteoarthritis in rat knees.. PLoS One 2015;10(3):e0120949.
      doi: 10.1371/journal.pone.0120949pubmed: 25807537google scholar: lookup
    41. Dyke JP, Synan M, Ezell P, Ballon D, Racine J, Aaron RK. Characterization of bone perfusion by dynamic contrast-enhanced magnetic resonance imaging and positron emission tomography in the Dunkin-Hartley guinea pig model of advanced osteoarthritis.. J Orthop Res 2015 Mar;33(3):366-72.
      doi: 10.1002/jor.22768pubmed: 25410523google scholar: lookup
    42. Wang Y, Meng H, Yuan X, Peng J, Guo Q, Lu S, Wang A. Fabrication and in vitro evaluation of an articular cartilage extracellular matrix-hydroxyapatite bilayered scaffold with low permeability for interface tissue engineering.. Biomed Eng Online 2014 Jun 20;13:80.
      doi: 10.1186/1475-925X-13-80pubmed: 24950704google scholar: lookup
    43. Khanarian NT, Boushell MK, Spalazzi JP, Pleshko N, Boskey AL, Lu HH. FTIR-I compositional mapping of the cartilage-to-bone interface as a function of tissue region and age.. J Bone Miner Res 2014 Dec;29(12):2643-52.
      doi: 10.1002/jbmr.2284pubmed: 24839262google scholar: lookup
    44. Matsuo T, Kita K, Mae T, Yonetani Y, Miyamoto S, Yoshikawa H, Nakata K. Bone substitutes and implantation depths for subchondral bone repair in osteochondral defects of porcine knee joints.. Knee Surg Sports Traumatol Arthrosc 2015 May;23(5):1401-9.
      doi: 10.1007/s00167-014-2853-4pubmed: 24488222google scholar: lookup
    45. Serrat MA, Efaw ML, Williams RM. Hindlimb heating increases vascular access of large molecules to murine tibial growth plates measured by in vivo multiphoton imaging.. J Appl Physiol (1985) 2014 Feb 15;116(4):425-38.
    46. Villalvilla A, Gu00f3mez R, Largo R, Herrero-Beaumont G. Lipid transport and metabolism in healthy and osteoarthritic cartilage.. Int J Mol Sci 2013 Oct 16;14(10):20793-808.
      doi: 10.3390/ijms141020793pubmed: 24135873google scholar: lookup
    47. Staines KA, Pollard AS, McGonnell IM, Farquharson C, Pitsillides AA. Cartilage to bone transitions in health and disease.. J Endocrinol 2013 Oct;219(1):R1-R12.
      doi: 10.1530/JOE-13-0276pubmed: 23959079google scholar: lookup
    48. Zhang Y, Wang F, Tan H, Chen G, Guo L, Yang L. Analysis of the mineral composition of the human calcified cartilage zone.. Int J Med Sci 2012;9(5):353-60.
      doi: 10.7150/ijms.4276pubmed: 22811609google scholar: lookup
    49. Wang Y, Wei L, Zeng L, He D, Wei X. Nutrition and degeneration of articular cartilage.. Knee Surg Sports Traumatol Arthrosc 2013 Aug;21(8):1751-62.
      doi: 10.1007/s00167-012-1977-7pubmed: 22476522google scholar: lookup
    50. Mansfield JC, Winlove CP. A multi-modal multiphoton investigation of microstructure in the deep zone and calcified cartilage.. J Anat 2012 Apr;220(4):405-16.
    51. Lee JI, Sato M, Ushida K, Mochida J. Measurement of diffusion in articular cartilage using fluorescence correlation spectroscopy.. BMC Biotechnol 2011 Mar 2;11:19.
      doi: 10.1186/1472-6750-11-19pubmed: 21366913google scholar: lookup
    52. Heinegu00e5rd D, Saxne T. The role of the cartilage matrix in osteoarthritis.. Nat Rev Rheumatol 2011 Jan;7(1):50-6.
      doi: 10.1038/nrrheum.2010.198pubmed: 21119607google scholar: lookup
    53. Travascio F, Gu WY. Simultaneous measurement of anisotropic solute diffusivity and binding reaction rates in biological tissues by FRAP.. Ann Biomed Eng 2011 Jan;39(1):53-65.
      doi: 10.1007/s10439-010-0138-8pubmed: 20686922google scholar: lookup
    54. Madry H, van Dijk CN, Mueller-Gerbl M. The basic science of the subchondral bone.. Knee Surg Sports Traumatol Arthrosc 2010 Apr;18(4):419-33.
      doi: 10.1007/s00167-010-1054-zpubmed: 20119671google scholar: lookup
    55. Serrat MA, Williams RM, Farnum CE. Temperature alters solute transport in growth plate cartilage measured by in vivo multiphoton microscopy.. J Appl Physiol (1985) 2009 Jun;106(6):2016-25.
    56. Pan J, Zhou X, Li W, Novotny JE, Doty SB, Wang L. In situ measurement of transport between subchondral bone and articular cartilage.. J Orthop Res 2009 Oct;27(10):1347-52.
      doi: 10.1002/jor.20883pubmed: 19360842google scholar: lookup