BioMed research international2015; 2015; 678084; doi: 10.1155/2015/678084

A High-Performance Multiplex Immunoassay for Serodiagnosis of Flavivirus-Associated Neurological Diseases in Horses.

Abstract: West Nile virus (WNV), Japanese encephalitis virus (JEV), and tick-borne encephalitis virus (TBEV) are flaviviruses responsible for severe neuroinvasive infections in humans and horses. The confirmation of flavivirus infections is mostly based on rapid serological tests such as enzyme-linked immunosorbent assays (ELISAs). These tests suffer from poor specificity, mainly due to antigenic cross-reactivity among flavivirus members. Robust diagnosis therefore needs to be validated through virus neutralisation tests (VNTs) which are time-consuming and require BSL3 facilities. The flavivirus envelope (E) glycoprotein ectodomain is composed of three domains (D) named DI, DII, and DIII, with EDIII containing virus-specific epitopes. In order to improve the serological differentiation of flavivirus infections, the recombinant soluble ectodomain of WNV E (WNV.sE) and EDIIIs (rEDIIIs) of WNV, JEV, and TBEV were synthesised using the Drosophila S2 expression system. Purified antigens were covalently bonded to fluorescent beads. The microspheres coupled to WNV.sE or rEDIIIs were assayed with about 300 equine immune sera from natural and experimental flavivirus infections and 172 nonimmune equine sera as negative controls. rEDIII-coupled microspheres captured specific antibodies against WNV, TBEV, or JEV in positive horse sera. This innovative multiplex immunoassay is a powerful alternative to ELISAs and VNTs for veterinary diagnosis of flavivirus-related diseases.
Publication Date: 2015-09-17 PubMed ID: 26457301PubMed Central: PMC4589573DOI: 10.1155/2015/678084Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article
  • Research Support
  • Non-U.S. Gov't

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

This research study focuses on developing a high-performance multiplex immunoassay for the accurate serodiagnosis of diseases related to flaviviruses (like West Nile virus, Japanese encephalitis virus, and tick-borne encephalitis virus) in horses. This immunoassay appears to be a better alternative to traditional tests like ELISAs and virus neutralisation tests, as it can distinguish between different flavivirus infections more effectively.

About Flaviviruses and Existing Diagnostic Methods

Flaviviruses are a group of diseases caused by singlestranded RNA viruses, which include West Nile virus (WNV), Japanese encephalitis virus (JEV), and tick-borne encephalitis virus (TBEV). These diseases cause damaging neurological infections in both humans and horses.

Their detection and confirmation usually depend on rapid serological tests, like enzyme-linked immunosorbent assays (ELISAs). However, these tests suffer from inadequate specificity because of the antigenic cross-reactivity among different members of the flavivirus family.

To ensure precision in diagnosis, these tests need to be validated through virus neutralisation tests (VNTs), which are not ideal because they are time-consuming and need BSL3 (Biosafety Level 3) facilities.

The Research Methodology: A Multiplex Immunoassay

  • The researchers synthesized the recombinant soluble ectodomain of WNV E (WNV.sE) and the EDIIIs (the portion that contains virus-specific epitopes) of WNV, JEV, and TBEV using the Drosophila S2 expression system.
  • These purified antigens were then covalently bonded to fluorescent particles or beads.
  • About 300 equine immune sera from both natural and experimental flavivirus infections were tested, in addition to 172 nonimmune equine sera as negative controls.

Findings and Conclusion

The rEDIII-coupled microspheres were successful in capturing specific antibodies against WNV, TBEV, or JEV in positive horse sera.

Based on these results, the innovative multiplex immunoassay demonstrates potential as a robust alternative to traditional methods like ELISAs and VNTs for the veterinary diagnosis of flavivirus-related diseases.

One of the major advantages of this method lies in its ability to differentiate between various flavivirus infections, improving the accuracy of serodiagnosis in horses.

Cite This Article

APA
Beck C, Despru00e8s P, Paulous S, Vanhomwegen J, Lowenski S, Nowotny N, Durand B, Garnier A, Blaise-Boisseau S, Guitton E, Yamanaka T, Zientara S, Lecollinet S. (2015). A High-Performance Multiplex Immunoassay for Serodiagnosis of Flavivirus-Associated Neurological Diseases in Horses. Biomed Res Int, 2015, 678084. https://doi.org/10.1155/2015/678084

Publication

ISSN: 2314-6141
NlmUniqueID: 101600173
Country: United States
Language: English
Volume: 2015
Pages: 678084
PII: 678084

Researcher Affiliations

Beck, Cu00e9cile
  • UMR 1161 of Virology, ANSES, INRA, ENVA, ANSES Animal Health Laboratory, EU-RL on Equine Diseases, UPE, 94701 Maisons-Alfort, France.
Despru00e8s, Philippe
  • UMR PIMIT (I2T Team), INSERM U1187, CNRS 9192, IRD 249, Technology Platform CYROI, University of Reunion, 97491 Saint-Clotilde, Ru00e9union ; Department of Infections and Epidemiology, Institut Pasteur, 75724 Paris, France.
Paulous, Sylvie
  • Department of Infections and Epidemiology, Institut Pasteur, 75724 Paris, France.
Vanhomwegen, Jessica
  • Department of Infections and Epidemiology, Institut Pasteur, 75724 Paris, France.
Lowenski, Steeve
  • UMR 1161 of Virology, ANSES, INRA, ENVA, ANSES Animal Health Laboratory, EU-RL on Equine Diseases, UPE, 94701 Maisons-Alfort, France.
Nowotny, Norbert
  • Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria ; Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, 123 Al-Khoudh, Oman.
Durand, Benoit
  • UMR 1161 of Virology, ANSES, INRA, ENVA, ANSES Animal Health Laboratory, EU-RL on Equine Diseases, UPE, 94701 Maisons-Alfort, France.
Garnier, Annabelle
  • UMR 1161 of Virology, ANSES, INRA, ENVA, ANSES Animal Health Laboratory, EU-RL on Equine Diseases, UPE, 94701 Maisons-Alfort, France.
Blaise-Boisseau, Sandra
  • UMR 1161 of Virology, ANSES, INRA, ENVA, ANSES Animal Health Laboratory, EU-RL on Equine Diseases, UPE, 94701 Maisons-Alfort, France.
Guitton, Edouard
  • INRA UE 1277, Plate-Forme d'Infectiologie Expu00e9rimentale, 37380 Nouzilly, France.
Yamanaka, Takashi
  • Equine Research Institute, Japan Racing Association, Tochigi 329-0412, Japan.
Zientara, Stu00e9phan
  • UMR 1161 of Virology, ANSES, INRA, ENVA, ANSES Animal Health Laboratory, EU-RL on Equine Diseases, UPE, 94701 Maisons-Alfort, France.
Lecollinet, Sylvie
  • UMR 1161 of Virology, ANSES, INRA, ENVA, ANSES Animal Health Laboratory, EU-RL on Equine Diseases, UPE, 94701 Maisons-Alfort, France.

MeSH Terms

  • Animals
  • Antibodies, Viral / immunology
  • Cross Reactions / immunology
  • Flavivirus / immunology
  • Flavivirus Infections / immunology
  • Flavivirus Infections / virology
  • Horse Diseases / immunology
  • Horse Diseases / virology
  • Horses / immunology
  • Horses / virology
  • Immunoassay / methods
  • Nervous System Diseases / immunology
  • Nervous System Diseases / virology
  • Serologic Tests / methods

References

This article includes 55 references
  1. Hubu00e1lek Z, Halouzka J. West Nile fever--a reemerging mosquito-borne viral disease in Europe.. Emerg Infect Dis 1999 Sep-Oct;5(5):643-50.
    doi: 10.3201/eid0505.990505pmc: PMC2627720pubmed: 10511520google scholar: lookup
  2. Su00fcss J. Tick-borne encephalitis 2010: epidemiology, risk areas, and virus strains in Europe and Asia-an overview.. Ticks Tick Borne Dis 2011 Mar;2(1):2-15.
    doi: 10.1016/j.ttbdis.2010.10.007pubmed: 21771531google scholar: lookup
  3. Hills SL, Phillips DC. Past, present, and future of Japanese encephalitis.. Emerg Infect Dis 2009 Aug;15(8):1333.
    doi: 10.3201/eid1508.090149pmc: PMC2815973pubmed: 19751614google scholar: lookup
  4. Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, Hunsperger E, Kroeger A, Margolis HS, Martu00ednez E, Nathan MB, Pelegrino JL, Simmons C, Yoksan S, Peeling RW. Dengue: a continuing global threat.. Nat Rev Microbiol 2010 Dec;8(12 Suppl):S7-16.
    doi: 10.1038/nrmicro2460pmc: PMC4333201pubmed: 21079655google scholar: lookup
  5. Kuno G, Chang GJ, Tsuchiya KR, Karabatsos N, Cropp CB. Phylogeny of the genus Flavivirus.. J Virol 1998 Jan;72(1):73-83.
    pmc: PMC109351pubmed: 9420202doi: 10.1128/JVI.72.1.73-83.1998google scholar: lookup
  6. Beck C, Jimenez-Clavero MA, Leblond A, Durand B, Nowotny N, Leparc-Goffart I, Zientara S, Jourdain E, Lecollinet S. Flaviviruses in Europe: complex circulation patterns and their consequences for the diagnosis and control of West Nile disease.. Int J Environ Res Public Health 2013 Nov 12;10(11):6049-83.
    doi: 10.3390/ijerph10116049pmc: PMC3863887pubmed: 24225644google scholar: lookup
  7. De Madrid AT, Porterfield JS. The flaviviruses (group B arboviruses): a cross-neutralization study.. J Gen Virol 1974 Apr;23(1):91-6.
    doi: 10.1099/0022-1317-23-1-91pubmed: 4833603google scholar: lookup
  8. Ghosh D, Basu A. Japanese encephalitis-a pathological and clinical perspective.. PLoS Negl Trop Dis 2009 Sep 29;3(9):e437.
  9. Sejvar JJ. Clinical manifestations and outcomes of West Nile virus infection.. Viruses 2014 Feb 6;6(2):606-23.
    doi: 10.3390/v6020606pmc: PMC3939474pubmed: 24509812google scholar: lookup
  10. Gould EA. Evolution of the Japanese encephalitis serocomplex viruses.. Curr Top Microbiol Immunol 2002;267:391-404.
    pubmed: 12082999doi: 10.1007/978-3-642-59403-8_19google scholar: lookup
  11. Sonnleitner S. T., Simeoni J., Baumgartner R., et al. The spreading of flaviviruses over the continental divide: a challenge for serological diagnostics. Journal of Medical Microbiology & Diagnosis. 2013;3, article 002 doi: 10.4172/2161-0703.S3-002.
    doi: 10.4172/2161-0703.S3-002google scholar: lookup
  12. Papa A, Karabaxoglou D, Kansouzidou A. Acute West Nile virus neuroinvasive infections: cross-reactivity with dengue virus and tick-borne encephalitis virus.. J Med Virol 2011 Oct;83(10):1861-5.
    doi: 10.1002/jmv.22180pubmed: 21837806google scholar: lookup
  13. Dauphin G, Zientara S. West Nile virus: recent trends in diagnosis and vaccine development.. Vaccine 2007 Jul 26;25(30):5563-76.
    doi: 10.1016/j.vaccine.2006.12.005pubmed: 17292514google scholar: lookup
  14. Nash D, Mostashari F, Fine A, Miller J, O'Leary D, Murray K, Huang A, Rosenberg A, Greenberg A, Sherman M, Wong S, Layton M. The outbreak of West Nile virus infection in the New York City area in 1999.. N Engl J Med 2001 Jun 14;344(24):1807-14.
    doi: 10.1056/nejm200106143442401pubmed: 11407341google scholar: lookup
  15. Tamba M, Bonilauri P, Bellini R, Calzolari M, Albieri A, Sambri V, Dottori M, Angelini P. Detection of Usutu virus within a West Nile virus surveillance program in Northern Italy.. Vector Borne Zoonotic Dis 2011 May;11(5):551-7.
    doi: 10.1089/vbz.2010.0055pubmed: 20849275google scholar: lookup
  16. Vazquez A, Jimenez-Clavero M, Franco L, Donoso-Mantke O, Sambri V, Niedrig M, Zeller H, Tenorio A. Usutu virus: potential risk of human disease in Europe.. Euro Surveill 2011 Aug 4;16(31).
    pubmed: 21871214
  17. Calzolari M, Gaibani P, Bellini R, Defilippo F, Pierro A, Albieri A, Maioli G, Luppi A, Rossini G, Balzani A, Tamba M, Galletti G, Gelati A, Carrieri M, Poglayen G, Cavrini F, Natalini S, Dottori M, Sambri V, Angelini P, Bonilauri P. Mosquito, bird and human surveillance of West Nile and Usutu viruses in Emilia-Romagna Region (Italy) in 2010.. PLoS One 2012;7(5):e38058.
  18. Oliphant T, Nybakken GE, Austin SK, Xu Q, Bramson J, Loeb M, Throsby M, Fremont DH, Pierson TC, Diamond MS. Induction of epitope-specific neutralizing antibodies against West Nile virus.. J Virol 2007 Nov;81(21):11828-39.
    doi: 10.1128/jvi.00643-07pmc: PMC2168772pubmed: 17715236google scholar: lookup
  19. Lobigs M, Diamond MS. Feasibility of cross-protective vaccination against flaviviruses of the Japanese encephalitis serocomplex.. Expert Rev Vaccines 2012 Feb;11(2):177-87.
    doi: 10.1586/erv.11.180pmc: PMC3337329pubmed: 22309667google scholar: lookup
  20. Beasley DW, Holbrook MR, Travassos Da Rosa AP, Coffey L, Carrara AS, Phillippi-Falkenstein K, Bohm RP Jr, Ratterree MS, Lillibridge KM, Ludwig GV, Estrada-Franco J, Weaver SC, Tesh RB, Shope RE, Barrett AD. Use of a recombinant envelope protein subunit antigen for specific serological diagnosis of West Nile virus infection.. J Clin Microbiol 2004 Jun;42(6):2759-65.
  21. Holbrook MR, Shope RE, Barrett AD. Use of recombinant E protein domain III-based enzyme-linked immunosorbent assays for differentiation of tick-borne encephalitis serocomplex flaviviruses from mosquito-borne flaviviruses.. J Clin Microbiol 2004 Sep;42(9):4101-10.
  22. Ludolfs D, Niedrig M, Paweska JT, Schmitz H. Reverse ELISA for the detection of anti West Nile virus IgG antibodies in humans.. Eur J Clin Microbiol Infect Dis 2007 Jul;26(7):467-73.
    doi: 10.1007/s10096-007-0309-1pubmed: 17554572google scholar: lookup
  23. Bhardwaj S, Holbrook M, Shope RE, Barrett AD, Watowich SJ. Biophysical characterization and vector-specific antagonist activity of domain III of the tick-borne flavivirus envelope protein.. J Virol 2001 Apr;75(8):4002-7.
  24. Chu JJH, Rajamanonmani R, Li J, Bhuvanakantham R, Lescar J, Ng ML. Inhibition of West Nile virus entry by using a recombinant domain III from the envelope glycoprotein.. J Gen Virol 2005 Feb;86(Pt 2):405-412.
    doi: 10.1099/vir.0.80411-0pubmed: 15659760google scholar: lookup
  25. Su00e1nchez MD, Pierson TC, Degrace MM, Mattei LM, Hanna SL, Del Piero F, Doms RW. The neutralizing antibody response against West Nile virus in naturally infected horses.. Virology 2007 Mar 15;359(2):336-48.
    doi: 10.1016/j.virol.2006.08.047pubmed: 17055550google scholar: lookup
  26. Oliphant T, Engle M, Nybakken GE, Doane C, Johnson S, Huang L, Gorlatov S, Mehlhop E, Marri A, Chung KM, Ebel GD, Kramer LD, Fremont DH, Diamond MS. Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus.. Nat Med 2005 May;11(5):522-30.
    doi: 10.1038/nm1240pmc: PMC1458527pubmed: 15852016google scholar: lookup
  27. Beasley DW, Barrett AD. Identification of neutralizing epitopes within structural domain III of the West Nile virus envelope protein.. J Virol 2002 Dec;76(24):13097-100.
  28. Nybakken GE, Oliphant T, Johnson S, Burke S, Diamond MS, Fremont DH. Structural basis of West Nile virus neutralization by a therapeutic antibody.. Nature 2005 Sep 29;437(7059):764-9.
    doi: 10.1038/nature03956pmc: PMC7095628pubmed: 16193056google scholar: lookup
  29. Wahala WM, Kraus AA, Haymore LB, Accavitti-Loper MA, de Silva AM. Dengue virus neutralization by human immune sera: role of envelope protein domain III-reactive antibody.. Virology 2009 Sep 15;392(1):103-13.
    doi: 10.1016/j.virol.2009.06.037pmc: PMC2746956pubmed: 19631955google scholar: lookup
  30. Danecek P, Lu W, Schein CH. PCP consensus sequences of flaviviruses: correlating variance with vector competence and disease phenotype.. J Mol Biol 2010 Feb 26;396(3):550-63.
    doi: 10.1016/j.jmb.2009.11.070pmc: PMC2822003pubmed: 19969003google scholar: lookup
  31. Au00f1ez G, Men R, Eckels KH, Lai CJ. Passage of dengue virus type 4 vaccine candidates in fetal rhesus lung cells selects heparin-sensitive variants that result in loss of infectivity and immunogenicity in rhesus macaques.. J Virol 2009 Oct;83(20):10384-94.
    doi: 10.1128/jvi.01083-09pmc: PMC2753127pubmed: 19656873google scholar: lookup
  32. Nickells M, Chambers TJ. Neuroadapted yellow fever virus 17D: determinants in the envelope protein govern neuroinvasiveness for SCID mice.. J Virol 2003 Nov;77(22):12232-42.
  33. Mandl CW, Allison SL, Holzmann H, Meixner T, Heinz FX. Attenuation of tick-borne encephalitis virus by structure-based site-specific mutagenesis of a putative flavivirus receptor binding site.. J Virol 2000 Oct;74(20):9601-9.
  34. Hiramatsu K, Tadano M, Men R, Lai CJ. Mutational analysis of a neutralization epitope on the dengue type 2 virus (DEN2) envelope protein: monoclonal antibody resistant DEN2/DEN4 chimeras exhibit reduced mouse neurovirulence.. Virology 1996 Oct 15;224(2):437-45.
    doi: 10.1006/viro.1996.0550pubmed: 8874504google scholar: lookup
  35. van der Wal FJ, Achterberg RP, de Boer SM, Boshra H, Brun A, Maassen CB, Kortekaas J. Bead-based suspension array for simultaneous detection of antibodies against the Rift Valley fever virus nucleocapsid and Gn glycoprotein.. J Virol Methods 2012 Aug;183(2):99-105.
  36. Wong SJ, Demarest VL, Boyle RH, Wang T, Ledizet M, Kar K, Kramer LD, Fikrig E, Koski RA. Detection of human anti-flavivirus antibodies with a west nile virus recombinant antigen microsphere immunoassay.. J Clin Microbiol 2004 Jan;42(1):65-72.
    doi: 10.1128/jcm.42.1.65-72.2004pmc: PMC321652pubmed: 14715733google scholar: lookup
  37. Chen TH, Lee F, Lin YL, Pan CH, Shih CN, Lee MC, Tsai HJ. Development of a Luminex assay for the detection of swine antibodies to non-structural proteins of foot-and-mouth disease virus.. J Immunol Methods 2013 Oct 31;396(1-2):87-95.
    doi: 10.1016/j.jim.2013.08.002pmc: PMC7127766pubmed: 23962586google scholar: lookup
  38. Su00e1nchez-Matamoros A, Beck C, Kukielka D, Lecollinet S, Blaise-Boisseau S, Garnier A, Rueda P, Zientara S, Su00e1nchez-Vizcau00edno JM. Development of a Microsphere-based Immunoassay for Serological Detection of African Horse Sickness Virus and Comparison with Other Diagnostic Techniques.. Transbound Emerg Dis 2016 Dec;63(6):e270-e277.
    doi: 10.1111/tbed.12340pubmed: 25693720google scholar: lookup
  39. Koraka P, Zeller H, Niedrig M, Osterhaus AD, Groen J. Reactivity of serum samples from patients with a flavivirus infection measured by immunofluorescence assay and ELISA.. Microbes Infect 2002 Oct;4(12):1209-15.
    doi: 10.1016/S1286-4579(02)01647-7pubmed: 12467761google scholar: lookup
  40. Hirota J, Nishi H, Matsuda H, Tsunemitsu H, Shimiz S. Cross-reactivity of Japanese encephalitis virus-vaccinated horse sera in serodiagnosis of West Nile virus.. J Vet Med Sci 2010 Mar;72(3):369-72.
    doi: 10.1292/jvms.09-0311pubmed: 19996564google scholar: lookup
  41. Rushton JO, Lecollinet S, Hubu00e1lek Z, Svobodovu00e1 P, Lussy H, Nowotny N. Tick-borne encephalitis virus in horses, Austria, 2011.. Emerg Infect Dis 2013 Apr;19(4):635-7.
    doi: 10.3201/eid1904.121450pmc: PMC3647421pubmed: 23631894google scholar: lookup
  42. Klaus C, Hu00f6ru00fcgel U, Hoffmann B, Beer M. Tick-borne encephalitis virus (TBEV) infection in horses: clinical and laboratory findings and epidemiological investigations.. Vet Microbiol 2013 May 3;163(3-4):368-72.
    doi: 10.1016/j.vetmic.2012.12.041pubmed: 23395291google scholar: lookup
  43. Sikutovu00e1 S, Hornok S, Hubu00e1lek Z, Dolezu00e1lkovu00e1 I, Juricovu00e1 Z, Rudolf I. Serological survey of domestic animals for tick-borne encephalitis and Bhanja viruses in northeastern Hungary.. Vet Microbiol 2009 Mar 30;135(3-4):267-71.
    doi: 10.1016/j.vetmic.2008.09.082pubmed: 19036537google scholar: lookup
  44. Bru00e9hin AC, Rubrecht L, Navarro-Sanchez ME, Maru00e9chal V, Frenkiel MP, Lapalud P, Laune D, Sall AA, Despru00e8s P. Production and characterization of mouse monoclonal antibodies reactive to Chikungunya envelope E2 glycoprotein.. Virology 2008 Feb 5;371(1):185-95.
    doi: 10.1016/j.virol.2007.09.028pubmed: 17949772google scholar: lookup
  45. Faresju00f6 M. A useful guide for analysis of immune markers by fluorochrome (Luminex) technique.. Methods Mol Biol 2014;1172:87-96.
    doi: 10.1007/978-1-4939-0928-5_7pubmed: 24908296google scholar: lookup
  46. Klaus C, Ziegler U, Kalthoff D, Hoffmann B, Beer M. Tick-borne encephalitis virus (TBEV) - findings on cross reactivity and longevity of TBEV antibodies in animal sera.. BMC Vet Res 2014 Apr 1;10:78.
    doi: 10.1186/1746-6148-10-78pmc: PMC3978054pubmed: 24690234google scholar: lookup
  47. Arnal A, Gu00f3mez-Du00edaz E, Cerdu00e0-Cuu00e9llar M, Lecollinet S, Pearce-Duvet J, Busquets N, Garcu00eda-Bocanegra I, Pagu00e8s N, Vittecoq M, Hammouda A, Samraoui B, Garnier R, Ramos R, Selmi S, Gonzu00e1lez-Solu00eds J, Jourdain E, Boulinier T. Circulation of a Meaban-like virus in yellow-legged gulls and seabird ticks in the western Mediterranean basin.. PLoS One 2014;9(3):e89601.
  48. Bargaoui R, Lecollinet S, Lancelot R. Mapping the serological prevalence rate of West Nile fever in equids, Tunisia.. Transbound Emerg Dis 2015 Feb;62(1):55-66.
    doi: 10.1111/tbed.12077pubmed: 23906318google scholar: lookup
  49. Farfu00e1n-Ale JA, Blitvich BJ, Marlenee NL, Lorou00f1o-Pino MA, Puerto-Manzano F, Garcu00eda-Reju00f3n JE, Rosado-Paredes EP, Flores-Flores LF, Ortega-Salazar A, Chu00e1vez-Medina J, Cremieux-Grimaldi JC, Correa-Morales F, Hernu00e1ndez-Gaona G, Mu00e9ndez-Galvu00e1n JF, Beaty BJ. Antibodies to West Nile virus in asymptomatic mammals, birds, and reptiles in the Yucatan Peninsula of Mexico.. Am J Trop Med Hyg 2006 May;74(5):908-14.
    pubmed: 16687701
  50. Yeh JY, Lee JH, Park JY, Seo HJ, Moon JS, Cho IS, Kim HP, Yang YJ, Ahn KM, Kyung SG, Choi IS, Lee JB. A diagnostic algorithm to serologically differentiate West Nile virus from Japanese encephalitis virus infections and its validation in field surveillance of poultry and horses.. Vector Borne Zoonotic Dis 2012 May;12(5):372-9.
    doi: 10.1089/vbz.2011.0709pmc: PMC3353748pubmed: 22217162google scholar: lookup
  51. Zohaib A, Saqib M, Beck C, Hussain MH, Lowenski S, Lecollinet S, Sial A, Asi MN, Mansoor MK, Saqalein M, Sajid MS, Ashfaq K, Muhammad G, Cao S. High prevalence of West Nile virus in equines from the two provinces of Pakistan.. Epidemiol Infect 2015 Jul;143(9):1931-5.
    doi: 10.1017/s0950268814002878pubmed: 25358382google scholar: lookup
  52. Pradier S, Sandoz A, Paul MC, Lefebvre G, Tran A, Maingault J, Lecollinet S, Leblond A. Importance of wetlands management for West Nile Virus circulation risk, Camargue, Southern France.. Int J Environ Res Public Health 2014 Aug 4;11(8):7740-54.
    pmc: PMC4143830pubmed: 25093652doi: 10.3390/ijerph110807740google scholar: lookup
  53. Chu00e1vez JH, Silva JR, Amarilla AA, Moraes Figueiredo LT. Domain III peptides from flavivirus envelope protein are useful antigens for serologic diagnosis and targets for immunization.. Biologicals 2010 Nov;38(6):613-8.
  54. Mathengtheng L, Burt FJ. Use of envelope domain III protein for detection and differentiation of flaviviruses in the Free State Province, South Africa.. Vector Borne Zoonotic Dis 2014 Apr;14(4):261-71.
    doi: 10.1089/vbz.2013.1407pubmed: 24689894google scholar: lookup
  55. Wong SJ, Boyle RH, Demarest VL, Woodmansee AN, Kramer LD, Li H, Drebot M, Koski RA, Fikrig E, Martin DA, Shi PY. Immunoassay targeting nonstructural protein 5 to differentiate West Nile virus infection from dengue and St. Louis encephalitis virus infections and from flavivirus vaccination.. J Clin Microbiol 2003 Sep;41(9):4217-23.

Citations

This article has been cited 33 times.
  1. Septfons A, Rigaud E, Bu00e9nu00e9zet L, Velay A, Zilliox L, Baldinger L, Gonzalez G, Figoni J, de Valk H, Deffontaines G, Desenclos JC, Jaulhac B. Seroprevalence for Borrelia burgdorferi sensu lato and tick-borne encephalitis virus antibodies and associated risk factors among forestry workers in northern France, 2019 to 2020.. Euro Surveill 2023 Aug;28(32).
  2. Gaspar-Castillo C, Rodru00edguez MH, Ortiz-Navarrete V, Alpuche-Aranda CM, Martinez-Barnetche J. Structural and immunological basis of cross-reactivity between dengue and Zika infections: Implications in serosurveillance in endemic regions.. Front Microbiol 2023;14:1107496.
    doi: 10.3389/fmicb.2023.1107496pubmed: 37007463google scholar: lookup
  3. M'ghirbi Y, Mousson L, Moutailler S, Lecollinet S, Amaral R, Beck C, Aounallah H, Amara M, Chabchoub A, Rhim A, Failloux AB, Bouattour A. West Nile, Sindbis and Usutu Viruses: Evidence of Circulation in Mosquitoes and Horses in Tunisia.. Pathogens 2023 Feb 21;12(3).
    doi: 10.3390/pathogens12030360pubmed: 36986282google scholar: lookup
  4. Trozzi G, Adjadj NR, Vervaeke M, Matthijs S, Sohier C, De Regge N. Comparison of Serological Methods for Tick-Borne Encephalitis Virus-Specific Antibody Detection in Wild Boar and Sheep: Impact of the Screening Approach on the Estimated Seroprevalence.. Viruses 2023 Feb 6;15(2).
    doi: 10.3390/v15020459pubmed: 36851673google scholar: lookup
  5. Ndiaye O, Diagne CT, Abd El Wahed A, Dia F, Dia M, Faye A, Leal SDV, Dos Santos M, Lima Mendonu00e7a MDL, da Silva Leite CC, Bouh Boye CS, Bryant JE, Despru00e8s P, Faye O, Sall AA, Faye O. Use of Envelope Domain III Protein for the Detection of IgG Type Antibodies Specific to Zika Virus by Indirect ELISA.. Diagnostics (Basel) 2023 Jan 26;13(3).
    doi: 10.3390/diagnostics13030462pubmed: 36766567google scholar: lookup
  6. Constant O, Gil P, Barthelemy J, Bolloru00e9 K, Foulongne V, Desmetz C, Leblond A, Desjardins I, Pradier S, Jouliu00e9 A, Sandoz A, Amaral R, Boisseau M, Rakotoarivony I, Baldet T, Marie A, Frances B, Reboul Salze F, Tinto B, Van de Perre P, Salinas S, Beck C, Lecollinet S, Gutierrez S, Simonin Y. One Health surveillance of West Nile and Usutu viruses: a repeated cross-sectional study exploring seroprevalence and endemicity in Southern France, 2016 to 2020.. Euro Surveill 2022 Jun;27(25).
  7. Lim JK, Ridde V, Agnandji ST, Lell B, Yaro S, Yang JS, Hoinard D, Weaver SC, Vanhomwegen J, Salje H, Yoon IK. Seroepidemiological Reconstruction of Long-term Chikungunya Virus Circulation in Burkina Faso and Gabon.. J Infect Dis 2023 Jan 11;227(2):261-267.
    doi: 10.1093/infdis/jiac246pubmed: 35710849google scholar: lookup
  8. Garcia K, Weakley M, Do T, Mir S. Current and Future Molecular Diagnostics of Tick-Borne Diseases in Cattle.. Vet Sci 2022 May 21;9(5).
    doi: 10.3390/vetsci9050241pubmed: 35622769google scholar: lookup
  9. Gonzalez G, Bournez L, Moraes RA, Marine D, Galon C, Vorimore F, Cochin M, Nougairu00e8de A, Hennechart-Collette C, Perelle S, Leparc-Goffart I, Durand GA, Grard G, Bu00e9net T, Danjou N, Blanchin M, Lacour SA, Franck B, Chenut G, Mainguet C, Simon C, Bru00e9mont L, Zientara S, Moutailler S, Martin-Latil S, Dheilly NM, Beck C, Lecollinet S. A One-Health Approach to Investigating an Outbreak of Alimentary Tick-Borne Encephalitis in a Non-endemic Area in France (Ain, Eastern France): A Longitudinal Serological Study in Livestock, Detection in Ticks, and the First Tick-Borne Encephalitis Virus Isolation and Molecular Characterisation.. Front Microbiol 2022;13:863725.
    doi: 10.3389/fmicb.2022.863725pubmed: 35479640google scholar: lookup
  10. Verney M, Gautron M, Lemans C, Rincu00e9 A, Hans A, Hu00e9bert L. Development of a microsphere-based immunoassay for the serological diagnosis of equine trypanosomosis.. Sci Rep 2022 Jan 25;12(1):1308.
    doi: 10.1038/s41598-022-05356-ypubmed: 35079068google scholar: lookup
  11. Napp S, Llorente F, Beck C, Jose-Cunilleras E, Soler M, Pailler-Garcu00eda L, Amaral R, Aguilera-Sepu00falveda P, Pifarru00e9 M, Molina-Lu00f3pez R, Obu00f3n E, Nicolu00e1s O, Lecollinet S, Jimu00e9nez-Clavero Mu00c1, Busquets N. Widespread Circulation of Flaviviruses in Horses and Birds in Northeastern Spain (Catalonia) between 2010 and 2019.. Viruses 2021 Nov 30;13(12).
    doi: 10.3390/v13122404pubmed: 34960673google scholar: lookup
  12. de Heus P, Kolodziejek J, Hubu00e1lek Z, Dimmel K, Racher V, Nowotny N, Cavalleri JV. West Nile Virus and Tick-Borne Encephalitis Virus Are Endemic in Equids in Eastern Austria.. Viruses 2021 Sep 19;13(9).
    doi: 10.3390/v13091873pubmed: 34578454google scholar: lookup
  13. Bailly S, Rousset D, Fritzell C, Hozu00e9 N, Ben Achour S, Berthelot L, Enfissi A, Vanhomwegen J, Salje H, Fernandes-Pellerin S, Saout M, Lavergne A, Manuguerra JC, Carod JF, Djossou F, Cauchemez S, Flamand C. Spatial Distribution and Burden of Emerging Arboviruses in French Guiana.. Viruses 2021 Jul 2;13(7).
    doi: 10.3390/v13071299pubmed: 34372505google scholar: lookup
  14. Pedarrieu A, El Mellouli F, Khallouki H, Zro K, Sebbar G, Sghaier S, Madani H, Bouayed N, Lo MM, Diop M, Ould El Mamy AB, Barry Y, Dakouo M, Traore A, Gagara H, Souley MM, Acha S, Mapaco L, Chang'a J, Nyakilinga D, Lubisi BA, Tshabalala T, Filippone C, Heraud JM, Chamassy SB, Achiraffi A, Keck N, Grard G, Mohammed KAA, Alrizqi AM, Cetre-Sossah C. External quality assessment of Rift Valley fever diagnosis in countries at risk of the disease: African, Indian Ocean and Middle-East regions.. PLoS One 2021;16(5):e0251263.
    doi: 10.1371/journal.pone.0251263pubmed: 34010292google scholar: lookup
  15. Nicholls CMR, Sevvana M, Kuhn RJ. Structure-guided paradigm shifts in flavivirus assembly and maturation mechanisms.. Adv Virus Res 2020;108:33-83.
    doi: 10.1016/bs.aivir.2020.08.003pubmed: 33837721google scholar: lookup
  16. Beck C, Leparc Goffart I, Franke F, Gonzalez G, Dumarest M, Lowenski S, Blanchard Y, Lucas P, Lamballerie X, Grard G, Durand GA, Zientara S, Tapprest J, L'Ambert G, Durand B, Desvaux S, Lecollinet S. Contrasted Epidemiological Patterns of West Nile Virus Lineages 1 and 2 Infections in France from 2015 to 2019.. Pathogens 2020 Oct 30;9(11).
    doi: 10.3390/pathogens9110908pubmed: 33143300google scholar: lookup
  17. Bakhshi H, Beck C, Lecollinet S, Monier M, Mousson L, Zakeri S, Raz A, Arzamani K, Nourani L, Dinparast-Djadid N, Failloux AB. Serological evidence of West Nile virus infection among birds and horses in some geographical locations of Iran.. Vet Med Sci 2021 Jan;7(1):204-209.
    doi: 10.1002/vms3.342pubmed: 32858762google scholar: lookup
  18. Bournez L, Umhang G, Moinet M, Richomme C, Demerson JM, Caillot C, Devillers E, Boucher JM, Hansmann Y, Bouu00e9 F, Moutailler S. Tick-Borne Encephalitis Virus: Seasonal and Annual Variation of Epidemiological Parameters Related to Nymph-to-Larva Transmission and Exposure of Small Mammals.. Pathogens 2020 Jun 27;9(7).
    doi: 10.3390/pathogens9070518pubmed: 32605114google scholar: lookup
  19. Fares M, Cochet-Bernoin M, Gonzalez G, Montero-Menei CN, Blanchet O, Benchoua A, Boissart C, Lecollinet S, Richardson J, Haddad N, Coulpier M. Pathological modeling of TBEV infection reveals differential innate immune responses in human neurons and astrocytes that correlate with their susceptibility to infection.. J Neuroinflammation 2020 Mar 3;17(1):76.
    doi: 10.1186/s12974-020-01756-xpubmed: 32127025google scholar: lookup
  20. Lecollinet S, Pronost S, Coulpier M, Beck C, Gonzalez G, Leblond A, Tritz P. Viral Equine Encephalitis, a Growing Threat to the Horse Population in Europe?. Viruses 2019 Dec 24;12(1).
    doi: 10.3390/v12010023pubmed: 31878129google scholar: lookup
  21. Bournez L, Umhang G, Faure E, Boucher JM, Bouu00e9 F, Jourdain E, Sarasa M, Llorente F, Jimu00e9nez-Clavero MA, Moutailler S, Lacour SA, Lecollinet S, Beck C. Exposure of Wild Ungulates to the Usutu and Tick-Borne Encephalitis Viruses in France in 2009-2014: Evidence of Undetected Flavivirus Circulation a Decade Ago.. Viruses 2019 Dec 19;12(1).
    doi: 10.3390/v12010010pubmed: 31861683google scholar: lookup
  22. Denis J, Attoumani S, Gravier P, Tenebray B, Garnier A, Briolant S, de Laval F, Chastres V, Grard G, Leparc-Goffart I, Coutard B, Badaut C. High specificity and sensitivity of Zika EDIII-based ELISA diagnosis highlighted by a large human reference panel.. PLoS Negl Trop Dis 2019 Sep;13(9):e0007747.
    doi: 10.1371/journal.pntd.0007747pubmed: 31539394google scholar: lookup
  23. Flamand C, Bailly S, Fritzell C, Berthelot L, Vanhomwegen J, Salje H, Paireau J, Matheus S, Enfissi A, Fernandes-Pellerin S, Djossou F, Linares S, Carod JF, Kazanji M, Manuguerra JC, Cauchemez S, Rousset D. Impact of Zika Virus Emergence in French Guiana: A Large General Population Seroprevalence Survey.. J Infect Dis 2019 Nov 6;220(12):1915-1925.
    doi: 10.1093/infdis/jiz396pubmed: 31418012google scholar: lookup
  24. Beck C, Leparc-Goffart I, Desoutter D, Debergu00e9 E, Bichet H, Lowenski S, Dumarest M, Gonzalez G, Mignu00e9 C, Vanhomwegen J, Zientara S, Durand B, Lecollinet S. Serological evidence of infection with dengue and Zika viruses in horses on French Pacific Islands.. PLoS Negl Trop Dis 2019 Feb;13(2):e0007162.
    doi: 10.1371/journal.pntd.0007162pubmed: 30730887google scholar: lookup
  25. Johnson N, Fernu00e1ndez de Marco M, Giovannini A, Ippoliti C, Danzetta ML, Svartz G, Erster O, Groschup MH, Ziegler U, Mirazimi A, Monteil V, Beck C, Gonzalez G, Lecollinet S, Attoui H, Moutailler S. Emerging Mosquito-Borne Threats and the Response from European and Eastern Mediterranean Countries.. Int J Environ Res Public Health 2018 Dec 7;15(12).
    doi: 10.3390/ijerph15122775pubmed: 30544521google scholar: lookup
  26. Rebollo B, Sarraseca J, Lecollinet S, Abouchoaib N, Alonso J, Garcu00eda-Bocanegra I, Sanz AJ, Venteo u00c1, Jimu00e9nez-Clavero MA. Monitoring Anti-NS1 Antibodies in West Nile Virus-Infected and Vaccinated Horses.. Biomed Res Int 2018;2018:8309816.
    doi: 10.1155/2018/8309816pubmed: 30356362google scholar: lookup
  27. Simon O, Acket B, Forfait C, Girault D, Gourinat AC, Millon P, Daures M, Vanhomwegen J, Billot S, Biron A, Hoinard D, Descloux E, Guyon D, Manuguerra JC, Laumond S, Molko N, Dupont-Rouzeyrol M. Zika virus outbreak in New Caledonia and Guillain-Barru00e9 syndrome: a case-control study.. J Neurovirol 2018 Jun;24(3):362-368.
    doi: 10.1007/s13365-018-0621-9pubmed: 29594985google scholar: lookup
  28. Lim JK, Carabali M, Lee JS, Lee KS, Namkung S, Lim SK, Ridde V, Fernandes J, Lell B, Matendechero SH, Esen M, Andia E, Oyembo N, Barro A, Bonnet E, Njenga SM, Agnandji ST, Yaro S, Alexander N, Yoon IK. Evaluating dengue burden in Africa in passive fever surveillance and seroprevalence studies: protocol of field studies of the Dengue Vaccine Initiative.. BMJ Open 2018 Jan 21;8(1):e017673.
    doi: 10.1136/bmjopen-2017-017673pubmed: 29358421google scholar: lookup
  29. Zhang X, Jia R, Shen H, Wang M, Yin Z, Cheng A. Structures and Functions of the Envelope Glycoprotein in Flavivirus Infections.. Viruses 2017 Nov 13;9(11).
    doi: 10.3390/v9110338pubmed: 29137162google scholar: lookup
  30. Beck C, Lowenski S, Durand B, Bahuon C, Zientara S, Lecollinet S. Improved reliability of serological tools for the diagnosis of West Nile fever in horses within Europe.. PLoS Negl Trop Dis 2017 Sep;11(9):e0005936.
    doi: 10.1371/journal.pntd.0005936pubmed: 28915240google scholar: lookup
  31. Ayadi T, Hammouda A, Poux A, Boulinier T, Lecollinet S, Selmi S. Evidence of exposure of laughing doves (Spilopelia senegalensis) to West Nile and Usutu viruses in southern Tunisian oases.. Epidemiol Infect 2017 Oct;145(13):2808-2816.
    doi: 10.1017/S0950268817001789pubmed: 28803560google scholar: lookup
  32. Cao-Lormeau VM, Blake A, Mons S, Lastu00e8re S, Roche C, Vanhomwegen J, Dub T, Baudouin L, Teissier A, Larre P, Vial AL, Decam C, Choumet V, Halstead SK, Willison HJ, Musset L, Manuguerra JC, Despres P, Fournier E, Mallet HP, Musso D, Fontanet A, Neil J, Ghawchu00e9 F. Guillain-Barru00e9 Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study.. Lancet 2016 Apr 9;387(10027):1531-1539.
    doi: 10.1016/S0140-6736(16)00562-6pubmed: 26948433google scholar: lookup
  33. Durand B, Haskouri H, Lowenski S, Vachiery N, Beck C, Lecollinet S. Seroprevalence of West Nile and Usutu viruses in military working horses and dogs, Morocco, 2012: dog as an alternative WNV sentinel species?. Epidemiol Infect 2016 Jul;144(9):1857-64.
    doi: 10.1017/S095026881600011Xpubmed: 26838515google scholar: lookup