Journal of virology1991; 65(6); 2910-2920; doi: 10.1128/JVI.65.6.2910-2920.1991

Equine arteritis virus is not a togavirus but belongs to the coronaviruslike superfamily.

Abstract: The nucleotide sequence of the genome of equine arteritis virus (EAV) was determined from a set of overlapping cDNA clones and was found to contain eight open reading frames (ORFs). ORFs 2 through 7 are expressed from six 3'-coterminal subgenomic mRNAs, which are transcribed from the 3'-terminal quarter of the viral genome. A number of these ORFs are predicted to encode structural EAV proteins. The organization and expression of the 3' part of the EAV genome are remarkably similar to those of coronaviruses and toroviruses. The 5'-terminal three-quarters of the genome contain the putative EAV polymerase gene, which also shares a number of features with the corresponding gene of corona- and toroviruses. The gene contains two large ORFs, ORF1a and ORF1b, with an overlap region of 19 nucleotides. The presence of a "shifty" heptanucleotide sequence in this region and a downstream RNA pseudoknot structure indicate that ORF1b is probably expressed by ribosomal frameshifting. The frameshift-directing potential of the ORF1a/ORF1b overlap region was demonstrated by using a reporter gene. Moreover, the predicted ORF1b product was found to contain four domains which have been identified in the same relative positions in coronavirus and torovirus ORF1b products. The sequences of the EAV and coronavirus ORF1a proteins were found to be much more diverged. The EAV ORF1a product contains a putative trypsinlike serine protease motif. Our data indicate that EAV, presently considered a togavirus, is evolutionarily related to viruses from the coronaviruslike superfamily.
Publication Date: 1991-06-01 PubMed ID: 1851863PubMed Central: PMC240924DOI: 10.1128/JVI.65.6.2910-2920.1991Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article
  • Research Support
  • Non-U.S. Gov't

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

The research article focuses on discovering the characteristics and the structure of the equine arteritis virus (EAV). This study turns the common belief about taxonomy of EAV upside down – rather than being part of the Togaviridae family, it claims that EAV fits better within the superfamily the coronaviruses belong to.

Determining the Genome Sequence

Researchers were able to determine the nucleotide sequence of EAV’s genome using overlapping cDNA clones. Through this, they discovered that the genome contained eight open reading frames (ORFs), proteins that potentially encode for other proteins.

  • ORFs 2 through 7 are expressed from six 3′-coterminal subgenomic mRNAs.
  • These mRNAs are transcribed from the 3′-terminal quarter of the EAV genome.
  • Several of these ORFs, expressed from the 3′-terminal quarter, are anticipated to encode structural EAV proteins.

Similarities with Coronaviruses

The organization and expression patterns found in the 3′ part of the EAV genome are strikingly similar to those of coronaviruses and toroviruses.

  • The 5′-terminal three-quarters of the genome contain the presumed EAV polymerase gene, which also has similarities with the corresponding gene of corona- and toroviruses in several aspects.
  • The gene contains two large ORFs, ORF1a and ORF1b, with overlapping regions of 19 nucleotides.
  • A “shifty” heptanucleotide sequence in this region, together with a downstream RNA pseudoknot structure, suggests that ORF1b is likely expressed by ribosomal frameshifting.
  • The possibility of frameshift was then demonstrated by using a reporter gene.

In addition to these points, researchers found that the derived product of ORF1b contains four domains appearing in the same relative positions as in coronavirus and torovirus ORF1b products.

Divergence in Protein Sequences

Though there are several similarities, one divergence was found in sequences of EAV and coronavirus’ ORF1a proteins, which were discovered to be significantly different from each other.

  • EAV ORF1a product contains a putative trypsinlike serine protease motif.

This research implies an evolutionary link between EAV and the coronavirus superfamily, indicating that EAV likely does not belong to the togavirus family as traditionally thought.

Cite This Article

APA
den Boon JA, Snijder EJ, Chirnside ED, de Vries AA, Horzinek MC, Spaan WJ. (1991). Equine arteritis virus is not a togavirus but belongs to the coronaviruslike superfamily. J Virol, 65(6), 2910-2920. https://doi.org/10.1128/JVI.65.6.2910-2920.1991

Publication

ISSN: 0022-538X
NlmUniqueID: 0113724
Country: United States
Language: English
Volume: 65
Issue: 6
Pages: 2910-2920

Researcher Affiliations

den Boon, J A
  • Department of Virology, Faculty of Medicine, Leiden University, The Netherlands.
Snijder, E J
    Chirnside, E D
      de Vries, A A
        Horzinek, M C
          Spaan, W J

            MeSH Terms

            • Amino Acid Sequence
            • Base Sequence
            • Biological Evolution
            • Coronaviridae / genetics
            • DNA, Viral / chemistry
            • DNA-Directed RNA Polymerases / genetics
            • Equartevirus / genetics
            • Equartevirus / growth & development
            • Gene Expression
            • HeLa Cells / microbiology
            • Humans
            • Molecular Sequence Data
            • Open Reading Frames
            • RNA, Messenger / biosynthesis
            • Ribosomes / metabolism
            • Serine Endopeptidases / chemistry
            • Serine Endopeptidases / genetics
            • Togaviridae / genetics
            • Virion / genetics
            • Virus Replication

            References

            This article includes 50 references
            1. Lee HJ, Shieh CK, Gorbalenya AE, Koonin EV, La Monica N, Tuler J, Bagdzhadzhyan A, Lai MM. The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase.. Virology 1991 Feb;180(2):567-82.
              pubmed: 1846489doi: 10.1016/0042-6822(91)90071-igoogle scholar: lookup
            2. van Berlo MF, Rottier PJ, Horzinek MC, van der Zeijst BA. Intracellular equine arteritis virus (EAV)-specific RNAs contain common sequences.. Virology 1986 Jul 30;152(2):492-6.
              pubmed: 3014727doi: 10.1016/0042-6822(86)90154-6google scholar: lookup
            3. Snijder EJ, Den Boon JA, Spaan WJ, Weiss M, Horzinek MC. Primary structure and post-translational processing of the Berne virus peplomer protein.. Virology 1990 Oct;178(2):355-63.
              pubmed: 2219698doi: 10.1016/0042-6822(90)90332-lgoogle scholar: lookup
            4. Snijder EJ, Ederveen J, Spaan WJ, Weiss M, Horzinek MC. Characterization of Berne virus genomic and messenger RNAs.. J Gen Virol 1988 Sep;69 ( Pt 9):2135-44.
              pubmed: 3411297doi: 10.1099/0022-1317-69-9-2135google scholar: lookup
            5. Pearson WR, Lipman DJ. Improved tools for biological sequence comparison.. Proc Natl Acad Sci U S A 1988 Apr;85(8):2444-8.
              pubmed: 3162770doi: 10.1073/pnas.85.8.2444google scholar: lookup
            6. Gorbalenya AE, Koonin EV, Donchenko AP, Blinov VM. Coronavirus genome: prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis.. Nucleic Acids Res 1989 Jun 26;17(12):4847-61.
              pubmed: 2526320doi: 10.1093/nar/17.12.4847google scholar: lookup
            7. Gorbalenya AE, Donchenko AP, Koonin EV, Blinov VM. N-terminal domains of putative helicases of flavi- and pestiviruses may be serine proteases.. Nucleic Acids Res 1989 May 25;17(10):3889-97.
              pubmed: 2543956doi: 10.1093/nar/17.10.3889google scholar: lookup
            8. Bazan JF, Fletterick RJ. Detection of a trypsin-like serine protease domain in flaviviruses and pestiviruses.. Virology 1989 Aug;171(2):637-9.
              pubmed: 2548336doi: 10.1016/0042-6822(89)90639-9google scholar: lookup
            9. Gorbalenya AE, Donchenko AP, Blinov VM, Koonin EV. Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold.. FEBS Lett 1989 Jan 30;243(2):103-14.
              pubmed: 2645167doi: 10.1016/0014-5793(89)80109-7google scholar: lookup
            10. Bazan JF, Fletterick RJ. Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications.. Proc Natl Acad Sci U S A 1988 Nov;85(21):7872-6.
              pubmed: 3186696doi: 10.1073/pnas.85.21.7872google scholar: lookup
            11. Poch O, Sauvaget I, Delarue M, Tordo N. Identification of four conserved motifs among the RNA-dependent polymerase encoding elements.. EMBO J 1989 Dec 1;8(12):3867-74.
            12. Kamphuis IG, Drenth J, Baker EN. Thiol proteases. Comparative studies based on the high-resolution structures of papain and actinidin, and on amino acid sequence information for cathepsins B and H, and stem bromelain.. J Mol Biol 1985 Mar 20;182(2):317-29.
              pubmed: 3889350doi: 10.1016/0022-2836(85)90348-1google scholar: lookup
            13. Habili N, Symons RH. Evolutionary relationship between luteoviruses and other RNA plant viruses based on sequence motifs in their putative RNA polymerases and nucleic acid helicases.. Nucleic Acids Res 1989 Dec 11;17(23):9543-55.
              pubmed: 2557586doi: 10.1093/nar/17.23.9543google scholar: lookup
            14. Fuerst TR, Niles EG, Studier FW, Moss B. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase.. Proc Natl Acad Sci U S A 1986 Nov;83(21):8122-6.
              pubmed: 3095828doi: 10.1073/pnas.83.21.8122google scholar: lookup
            15. Boursnell ME, Brown TD, Foulds IJ, Green PF, Tomley FM, Binns MM. Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus.. J Gen Virol 1987 Jan;68 ( Pt 1):57-77.
              pubmed: 3027249doi: 10.1099/0022-1317-68-1-57google scholar: lookup
            16. Timoney PJ, McCollum WH, Roberts AW, Murphy TW. Demonstration of the carrier state in naturally acquired equine arteritis virus infection in the stallion.. Res Vet Sci 1986 Sep;41(2):279-80.
              pubmed: 3022363
            17. Westaway EG, Brinton MA, Gaidamovich SYa, Horzinek MC, Igarashi A, Ku00e4u00e4riu00e4inen L, Lvov DK, Porterfield JS, Russell PK, Trent DW. Togaviridae.. Intervirology 1985;24(3):125-39.
              pubmed: 2999027doi: 10.1159/000149632google scholar: lookup
            18. Goldbach R, Wellink J. Evolution of plus-strand RNA viruses.. Intervirology 1988;29(5):260-7.
              pubmed: 3058643doi: 10.1159/000150054google scholar: lookup
            19. Spaan W, Cavanagh D, Horzinek MC. Coronaviruses: structure and genome expression.. J Gen Virol 1988 Dec;69 ( Pt 12):2939-52.
              pubmed: 3058868doi: 10.1099/0022-1317-69-12-2939google scholar: lookup
            20. Golnik W, Moraillon A, Golnik J. Identification and antigenic comparison of equine arteritis virus isolated from an outbreak of epidemic abortion of mares.. Zentralbl Veterinarmed B 1986 Aug;33(6):413-7.
            21. Gorbalenya AE, Koonin EV. Viral proteins containing the purine NTP-binding sequence pattern.. Nucleic Acids Res 1989 Nov 11;17(21):8413-40.
              pubmed: 2555771doi: 10.1093/nar/17.21.8413google scholar: lookup
            22. Sethna PB, Hung SL, Brian DA. Coronavirus subgenomic minus-strand RNAs and the potential for mRNA replicons.. Proc Natl Acad Sci U S A 1989 Jul;86(14):5626-30.
              pubmed: 2546161doi: 10.1073/pnas.86.14.5626google scholar: lookup
            23. Hardy WR, Strauss JH. Processing the nonstructural polyproteins of sindbis virus: nonstructural proteinase is in the C-terminal half of nsP2 and functions both in cis and in trans.. J Virol 1989 Nov;63(11):4653-64.
            24. Brierley I, Digard P, Inglis SC. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot.. Cell 1989 May 19;57(4):537-47.
              pubmed: 2720781doi: 10.1016/0092-8674(89)90124-4google scholar: lookup
            25. Hodgman TC. A new superfamily of replicative proteins.. Nature 1988 May 5;333(6168):22-3.
              pubmed: 3362205doi: 10.1038/333022b0google scholar: lookup
            26. Staden R. The current status and portability of our sequence handling software.. Nucleic Acids Res 1986 Jan 10;14(1):217-31.
              pubmed: 3511446doi: 10.1093/nar/14.1.217google scholar: lookup
            27. Horzinek MC, Ederveen J, Kaeffer B, de Boer D, Weiss M. The peplomers of Berne virus.. J Gen Virol 1986 Nov;67 ( Pt 11):2475-83.
              pubmed: 3783129doi: 10.1099/0022-1317-67-11-2475google scholar: lookup
            28. Pleij CW, Rietveld K, Bosch L. A new principle of RNA folding based on pseudoknotting.. Nucleic Acids Res 1985 Mar 11;13(5):1717-31.
              pubmed: 4000943doi: 10.1093/nar/13.5.1717google scholar: lookup
            29. Snijder EJ, den Boon JA, Bredenbeek PJ, Horzinek MC, Rijnbrand R, Spaan WJ. The carboxyl-terminal part of the putative Berne virus polymerase is expressed by ribosomal frameshifting and contains sequence motifs which indicate that toro- and coronaviruses are evolutionarily related.. Nucleic Acids Res 1990 Aug 11;18(15):4535-42.
              pubmed: 2388833doi: 10.1093/nar/18.15.4535google scholar: lookup
            30. de Vries AA, Chirnside ED, Bredenbeek PJ, Gravestein LA, Horzinek MC, Spaan WJ. All subgenomic mRNAs of equine arteritis virus contain a common leader sequence.. Nucleic Acids Res 1990 Jun 11;18(11):3241-7.
              pubmed: 2162519doi: 10.1093/nar/18.11.3241google scholar: lookup
            31. Bredenbeek PJ, Pachuk CJ, Noten AF, Charitu00e9 J, Luytjes W, Weiss SR, Spaan WJ. The primary structure and expression of the second open reading frame of the polymerase gene of the coronavirus MHV-A59; a highly conserved polymerase is expressed by an efficient ribosomal frameshifting mechanism.. Nucleic Acids Res 1990 Apr 11;18(7):1825-32.
              pubmed: 2159623doi: 10.1093/nar/18.7.1825google scholar: lookup
            32. Sawicki SG, Sawicki DL. Coronavirus transcription: subgenomic mouse hepatitis virus replicative intermediates function in RNA synthesis.. J Virol 1990 Mar;64(3):1050-6.
            33. ten Dam EB, Pleij CW, Bosch L. RNA pseudoknots: translational frameshifting and readthrough on viral RNAs.. Virus Genes 1990 Jul;4(2):121-36.
              pubmed: 2402881doi: 10.1007/BF00678404google scholar: lookup
            34. Godeny EK, Speicher DW, Brinton MA. Map location of lactate dehydrogenase-elevating virus (LDV) capsid protein (Vp1) gene.. Virology 1990 Aug;177(2):768-71.
              pubmed: 2371780doi: 10.1016/0042-6822(90)90546-4google scholar: lookup
            35. Snijder EJ, Horzinek MC, Spaan WJ. A 3'-coterminal nested set of independently transcribed mRNAs is generated during Berne virus replication.. J Virol 1990 Jan;64(1):331-8.
              pubmed: 2293666doi: 10.1128/JVI.64.1.331-338.1990google scholar: lookup
            36. van Berlo MF, Horzinek MC, van der Zeijst BA. Equine arteritis virus-infected cells contain six polyadenylated virus-specific RNAs.. Virology 1982 Apr 30;118(2):345-52.
              pubmed: 6283728doi: 10.1016/0042-6822(82)90354-3google scholar: lookup
            37. Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis programs for the VAX.. Nucleic Acids Res 1984 Jan 11;12(1 Pt 1):387-95.
              pubmed: 6546423doi: 10.1093/nar/12.1part1.387google scholar: lookup
            38. BRYANS JT, DOLL ER, KNAPPENBERGER RE. An outbreak of abortion caused by the equine arteritis virus.. Cornell Vet 1957 Jan;47(1):69-75.
              pubmed: 13397180
            39. BRYANS JT, CROWE ME, DOLL ER, MCCOLLUM WH. Isolation of a filterable agent causing arteritis of horses and abortion by mares; its differentiation from the equine abortion (influenza) virus.. Cornell Vet 1957 Jan;47(1):3-41.
              pubmed: 13397177
            40. Weiss M, Steck F, Horzinek MC. Purification and partial characterization of a new enveloped RNA virus (Berne virus).. J Gen Virol 1983 Sep;64 (Pt 9):1849-58.
              pubmed: 6886677doi: 10.1099/0022-1317-64-9-1849google scholar: lookup
            41. Siddell S, Wege H, ter Meulen V. The structure and replication of coronaviruses.. Curr Top Microbiol Immunol 1982;99:131-63.
              pubmed: 7047085doi: 10.1007/978-3-642-68528-6_4google scholar: lookup
            42. Porterfield JS, Casals J, Chumakov MP, Gaidamovich SY, Hannoun C, Holmes IH, Horzinek MC, Mussgay M, Oker-Blom N, Russell PK, Trent DW. Togaviridae.. Intervirology 1978;9(3):129-48.
              pubmed: 618831doi: 10.1159/000148930google scholar: lookup
            43. Horzinek M, Maess J, Laufs R. Studies on the substructure of togaviruses. II. Analysis of equine arteritis, rubella, bovine viral diarrhea, and hog cholera viruses.. Arch Gesamte Virusforsch 1971;33(3):306-18.
              pubmed: 4107033
            44. Hyllseth B. Structural proteins of equine arteritis virus.. Arch Gesamte Virusforsch 1973;40(3):177-88.
              pubmed: 4633581doi: 10.1007/BF01242536google scholar: lookup
            45. Zeegers JJ, Van der Zeijst BA, Horzinek MC. The structural proteins of equine arteritis virus.. Virology 1976 Aug;73(1):200-5.
              pubmed: 183352doi: 10.1016/0042-6822(76)90074-xgoogle scholar: lookup
            46. van der Zeijst BA, Horzinek MC. The genome of equine arteritis virus.. Virology 1975 Dec;68(2):418-25.
              pubmed: 173077doi: 10.1016/0042-6822(75)90283-4google scholar: lookup
            47. Brierley I, Boursnell ME, Binns MM, Bilimoria B, Blok VC, Brown TD, Inglis SC. An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV.. EMBO J 1987 Dec 1;6(12):3779-85.
            48. van Berlo MF, Rottier PJ, Spaan WJ, Horzinek MC. Equine arteritis virus-induced polypeptide synthesis.. J Gen Virol 1986 Aug;67 ( Pt 8):1543-9.
              pubmed: 2426393doi: 10.1099/0022-1317-67-8-1543google scholar: lookup
            49. Jacks T, Madhani HD, Masiarz FR, Varmus HE. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region.. Cell 1988 Nov 4;55(3):447-58.
              pubmed: 2846182doi: 10.1016/0092-8674(88)90031-1google scholar: lookup
            50. Lau00edn S, Riechmann JL, Garcu00eda JA. RNA helicase: a novel activity associated with a protein encoded by a positive strand RNA virus.. Nucleic Acids Res 1990 Dec 11;18(23):7003-6.
              pubmed: 2263459doi: 10.1093/nar/18.23.7003google scholar: lookup

            Citations

            This article has been cited 200 times.