Identification of Differentially Expressed Genes after Endurance Runs in Karbadian Horses to Determine Candidates for Stress Indicators and Performance Capability.
Abstract: RNA sequencing makes it possible to uncover genetic mechanisms that underlie certain performance traits. In order to gain a deeper insight into the genetic background and biological processes involved in endurance performance in horses, the changes in the gene expression profiles induced by endurance runs over long (70 km) and short (15 km) distances in the blood of Kabardian horses () were analyzed. For the long-distance runs, we identified 1484 up- and 691 downregulated genes, while after short-distance runs, only 13 up- and 8 downregulated genes (FC > |1.5|; < 0.05) were found. These differentially expressed genes (DEGs) are involved in processes and pathways that are primarily related to stress response (interleukin production, activation of inflammatory system) but also to metabolism (carbohydrate catabolic process, lipid biosynthesis, NADP metabolic process). The most important genes involved in these processes therefore represent good candidates for the monitoring and evaluation of the performance of horses in order to avoid excessive demands when endurance performance is required, like , , , , , , and , on the one hand, and, on the other hand, for assessing the suitability of a horse for endurance races, like , , , , , , , and .
Publication Date: 2023-10-24 PubMed ID: 38002925PubMed Central: PMC10671444DOI: 10.3390/genes14111982Google Scholar: Lookup The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
- Journal Article
Summary
This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.
The research focusses on examining gene expression changes in Kabardian horses following endurance runs of varying distances, to help decipher the genetic factors that influence a horse’s ability to perform over various distances and to better manage the stress on the horses.
Study and Methodology
- In this study, the researchers used RNA sequencing, a method that examines the quantity and types of RNA in a sample at a given moment, to investigate changes in gene expressions in Kabardian horses after undertaking endurance runs of two different lengths: a longer run of 70 kilometers and a shorter run of 15 kilometers.
- By comparing changes in gene expression profiles before and after the runs, the study aimed to provide insights into genetic mechanisms related to endurance performance in horses.
Findings and Significance
- The key finding of the study was the identification of a total of 1484 upregulated and 691 downregulated genes following the longer runs, whereas just 13 upregulated and 8 downregulated genes were noticed after the shorter runs. These differentially expressed genes (DEGs) according to the run length indicated the significant impact of endurance runs on the biological and genetic operations of the horses.
- It was discovered that the main biological processes and pathways influenced by these DEGs were primarily those related to stress response, including interleukin production and the activation of the inflammatory system, as well as those related to metabolism, such as the carbohydrate catabolic process, lipid biosynthesis, and NADP metabolic process.
- This finding is particularly important as the identified genes involved in these processes can be used as markers for monitoring and assessing a horse’s performance on endurance runs. These genetic markers can help to avoid placing excessive demands on horses requiring endurance performance, and in addition, could assist in determining a horse’s suitability for participating in endurance races.
Conclusion
- The research provides a valuable understanding of the stress and performance capabilities in endurance horses from a genetic perspective. Understanding these genetic changes can contribute positively towards better training practices, improved health and welfare of the horses, and a more specified breeding program targeted towards enhancing endurance performance.
Cite This Article
APA
Reiu00dfmann M, Rajavel A, Kokov ZA, Schmitt AO.
(2023).
Identification of Differentially Expressed Genes after Endurance Runs in Karbadian Horses to Determine Candidates for Stress Indicators and Performance Capability.
Genes (Basel), 14(11), 1982.
https://doi.org/10.3390/genes14111982 Publication
Researcher Affiliations
- Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universitu00e4t zu Berlin, Unter den Linden 6, 10099 Berlin, Germany.
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Gu00f6ttingen, Germany.
- Institute of Physics and Mathematics, Kabardino-Balkarian State University, Chernyshevsky 173, Nalchik 360004, Russia.
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Gu00f6ttingen, Germany.
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Gu00f6ttingen, Germany.
MeSH Terms
- Animals
- Horses / genetics
- Transcriptome
- Physical Conditioning, Animal
Grant Funding
- Az.: 85 858 / Volkswagen Stiftung, Germany
Conflict of Interest Statement
The authors declare no conflict of interest.
References
This article includes 90 references
- Metallinos D.L., Bowling A.T., Rine J. A missense mutation in the endothelin-B receptor gene is associated with Lethal White Foal Syndrome: An equine version of Hirschsprung disease. Mamm. Genome. 1998;9:426u2013431. doi: 10.1007/s003359900790.
- Marklund L., Moller M.J., Sandberg K., Andersson L. A missense mutation in the gene for melanocyte-stimulating hormone receptor (MC1R) is associated with the chestnut coat color in horses. Mamm. Genome. 1996;7:895u2013899. doi: 10.1007/s003359900264.
- Morgenthaler C., Diribarne M., Capitan A., Legendre R., Saintilan R., Gilles M., Esquerre D., Juras R., Khanshour A., Schibler L., et al. A missense variant in the coil1A domain of the keratin 25 gene is associated with the dominant curly hair coat trait (Crd) in horse. Genet. Sel. Evol. 2017;49:85. doi: 10.1186/s12711-017-0359-5.
- Littiere T.O., Castro G.H.F., Rodriguez M., Bonafe C.M., Magalhaes A.F.B., Faleiros R.R., Vieira J.I.G., Santos C.G., Verardo L.L. Identification and Functional Annotation of Genes Related to Horsesu2019 Performance: From GWAS to Post-GWAS. Animals. 2020;10:1173. doi: 10.3390/ani10071173.
- Petersen J.L., Mickelson J.R., Rendahl A.K., Valberg S.J., Andersson L.S., Axelsson J., Bailey E., Bannasch D., Binns M.M., Borges A.S., et al. Genome-wide analysis reveals selection for important traits in domestic horse breeds. PLoS Genet. 2013;9:e1003211. doi: 10.1371/journal.pgen.1003211.
- Staiger E.A., Albright J.D., Brooks S.A. Genome-wide association mapping of heritable temperament variation in the Tennessee Walking Horse. Genes. Brain Behav. 2016;15:514u2013526. doi: 10.1111/gbb.12290.
- Hill E.W., McGivney B.A., Gu J., Whiston R., Machugh D.E. A genome-wide SNP-association study confirms a sequence variant (g.66493737C>T) in the equine myostatin (MSTN) gene as the most powerful predictor of optimum racing distance for Thoroughbred racehorses. BMC Genom. 2010;11:552. doi: 10.1186/1471-2164-11-552.
- Tozaki T., Miyake T., Kakoi H., Gawahara H., Sugita S., Hasegawa T., Ishida N., Hirota K., Nakano Y. A genome-wide association study for racing performances in Thoroughbreds clarifies a candidate region near the MSTN gene. Anim. Genet. 2010;41((Suppl. S2)):28u201335. doi: 10.1111/j.1365-2052.2010.02095.x.
- Rooney M.F., Porter R.K., Katz L.M., Hill E.W. Skeletal muscle mitochondrial bioenergetics and associations with myostatin genotypes in the Thoroughbred horse. PLoS ONE. 2017;12:e0186247. doi: 10.1371/journal.pone.0186247.
- Farries G., McGettigan P.A., Gough K.F., McGivney B.A., MacHugh D.E., Katz L.M., Hill E.W. Genetic contributions to precocity traits in racing Thoroughbreds. Anim. Genet. 2018;49:193u2013204. doi: 10.1111/age.12622.
- Tozaki T., Sato F., Hill E.W., Miyake T., Endo Y., Kakoi H., Gawahara H., Hirota K., Nakano Y., Nambo Y., et al. Sequence variants at the myostatin gene locus influence the body composition of Thoroughbred horses. J. Vet. Med. Sci. 2011;73:1617u20131624. doi: 10.1292/jvms.11-0295.
- Fontanel M., Todd E., Drabbe A., Ropka-Molik K., Stefaniuk-Szmukier M., Mycka G., Velie B.D. Variation in the SLC16A1 and the ACOX1 Genes Is Associated with Gallop Racing Performance in Arabian Horses. J. Equine Vet. Sci. 2020;93:103202. doi: 10.1016/j.jevs.2020.103202.
- Pereira G.L., Malheiros J.M., Ospina A.M.T., Chardulo L.A.L., Curi R.A. Exome sequencing in genomic regions related to racing performance of Quarter Horses. J. Appl. Genet. 2019;60:79u201386. doi: 10.1007/s13353-019-00483-1.
- Brard S., Ricard A. Genome-wide association study for jumping performances in French sport horses. Anim. Genet. 2015;46:78u201381. doi: 10.1111/age.12245.
- Andersson L.S., Larhammar M., Memic F., Wootz H., Schwochow D., Rubin C.J., Patra K., Arnason T., Wellbring L., Hjalm G., et al. Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice. Nature. 2012;488:642u2013646. doi: 10.1038/nature11399.
- McGivney B.A., Eivers S.S., MacHugh D.E., MacLeod J.N., Ou2019Gorman G.M., Park S.D., Katz L.M., Hill E.W. Transcriptional adaptations following exercise in thoroughbred horse skeletal muscle highlights molecular mechanisms that lead to muscle hypertrophy. BMC Genom. 2009;10:638. doi: 10.1186/1471-2164-10-638.
- Park K.D., Park J., Ko J., Kim B.C., Kim H.S., Ahn K., Do K.T., Choi H., Kim H.M., Song S., et al. Whole transcriptome analyses of six thoroughbred horses before and after exercise using RNA-Seq. BMC Genom. 2012;13:473. doi: 10.1186/1471-2164-13-473.
- Bao T., Han H., Li B., Zhao Y., Bou G., Zhang X., Du M., Zhao R., Mongke T., Laxima, et al. The distinct transcriptomes of fast-twitch and slow-twitch muscles in Mongolian horses. Comp. Biochem. Physiol. Part D Genom. Proteom. 2020;33:100649. doi: 10.1016/j.cbd.2019.100649.
- Lee H.Y., Kim J.Y., Kim K.H., Jeong S., Cho Y., Kim N. Gene Expression Profile in Similar Tissues Using Transcriptome Sequencing Data of Whole-Body Horse Skeletal Muscle. Genes. 2020;11:1359. doi: 10.3390/genes11111359.
- Stefaniuk-Szmukier M., Szmatola T., Latka J., Dlugosz B., Ropka-Molik K. The Blood and Muscle Expression Pattern of the Equine TCAP Gene during the Race Track Training of Arabian Horses. Animals. 2019;9:574. doi: 10.3390/ani9080574.
- Khummuang S., Lee H.G., Joo S.S., Park J.W., Choi J.Y., Oh J.H., Kim K.H., Youn H.H., Kim M., Cho B.W. Comparison for immunophysiological responses of Jeju and Thoroughbred horses after exercise. Asian-Australas J. Anim. Sci. 2020;33:424u2013435. doi: 10.5713/ajas.19.0260.
- Srikanth K., Kim N.Y., Park W., Kim J.M., Kim K.D., Lee K.T., Son J.H., Chai H.H., Choi J.W., Jang G.W., et al. Comprehensive genome and transcriptome analyses reveal genetic relationship, selection signature, and transcriptome landscape of small-sized Korean native Jeju horse. Sci. Rep. 2019;9:16672. doi: 10.1038/s41598-019-53102-8.
- Gao S., Nanaei H.A., Wei B., Wang Y., Wang X., Li Z., Dai X., Wang Z., Jiang Y., Shao J. Comparative Transcriptome Profiling Analysis Uncovers Novel Heterosis-Related Candidate Genes Associated with Muscular Endurance in Mules. Animals. 2020;10:980. doi: 10.3390/ani10060980.
- Farries G., Bryan K., McGivney C.L., McGettigan P.A., Gough K.F., Browne J.A., MacHugh D.E., Katz L.M., Hill E.W. Expression Quantitative Trait Loci in Equine Skeletal Muscle Reveals Heritable Variation in Metabolism and the Training Responsive Transcriptome. Front. Genet. 2019;10:1215. doi: 10.3389/fgene.2019.01215.
- Mach N., Plancade S., Pacholewska A., Lecardonnel J., Riviere J., Moroldo M., Vaiman A., Morgenthaler C., Beinat M., Nevot A., et al. Integrated mRNA and miRNA expression profiling in blood reveals candidate biomarkers associated with endurance exercise in the horse. Sci. Rep. 2016;6:22932. doi: 10.1038/srep22932.
- Cappelli K., Capomaccio S., Viglino A., Silvestrelli M., Beccati F., Moscati L., Chiaradia E. Circulating miRNAs as Putative Biomarkers of Exercise Adaptation in Endurance Horses. Front. Physiol. 2018;9:429. doi: 10.3389/fphys.2018.00429.
- Horvath S., Haghani A., Peng S., Hales E.N., Zoller J.A., Raj K., Larison B., Robeck T.R., Petersen J.L., Bellone R.R., et al. DNA methylation aging and transcriptomic studies in horses. Nat. Commun. 2022;13:40. doi: 10.1038/s41467-021-27754-y.
- Liu L., Zhang Y., Ma H., Cao H., Liu W. Integrating genome-wide methylation and transcriptome-wide analyses to reveal the genetic mechanism of milk traits in Kazakh horses. Gene. 2023;856:147143. doi: 10.1016/j.gene.2022.147143.
- Gim J.A., Hong C.P., Kim D.S., Moon J.W., Choi Y., Eo J., Kwon Y.J., Lee J.R., Jung Y.D., Bae J.H., et al. Genome-wide analysis of DNA methylation before-and after exercise in the thoroughbred horse with MeDIP-Seq. Mol. Cells. 2015;38:210u2013220. doi: 10.14348/molcells.2015.2138.
- McQueen C.M., Whitfield-Cargile C.M., Konganti K., Blodgett G.P., Dindot S.V., Cohen N.D. TRPM2 SNP genotype previously associated with susceptibility to Rhodococcus equi pneumonia in Quarter Horse foals displays differential gene expression identified using RNA-Seq. BMC Genom. 2016;17:993. doi: 10.1186/s12864-016-3345-3.
- Miyata H., Itoh R., Sato F., Takebe N., Hada T., Tozaki T. Effect of Myostatin SNP on muscle fiber properties in male Thoroughbred horses during training period. J. Physiol. Sci. 2018;68:639u2013646. doi: 10.1007/s12576-017-0575-3.
- McGivney B.A., Browne J.A., Fonseca R.G., Katz L.M., Machugh D.E., Whiston R., Hill E.W. MSTN genotypes in Thoroughbred horses influence skeletal muscle gene expression and racetrack performance. Anim. Genet. 2012;43:810u2013812. doi: 10.1111/j.1365-2052.2012.02329.x.
- Mach N., Ramayo-Caldas Y., Clark A., Moroldo M., Robert C., Barrey E., Lopez J.M., Le Moyec L. Understanding the response to endurance exercise using a systems biology approach: Combining blood metabolomics, transcriptomics and miRNomics in horses. BMC Genom. 2017;18:187. doi: 10.1186/s12864-017-3571-3.
- Klein D.J., Anthony T.G., McKeever K.H. Metabolomics in equine sport and exercise. J. Anim. Physiol. Anim. Nutr. 2021;105:140u2013148. doi: 10.1111/jpn.13384.
- Karagianni A.E., Kurian D., Cillan-Garcia E., Eaton S.L., Wishart T.M., Pirie R.S. Training associated alterations in equine respiratory immunity using a multiomics comparative approach. Sci. Rep. 2022;12:427. doi: 10.1038/s41598-021-04137-3.
- Williams Z.J., Velez-Irizarry D., Gardner K., Valberg S.J. Integrated proteomic and transcriptomic profiling identifies aberrant gene and protein expression in the sarcomere, mitochondrial complex I, and the extracellular matrix in Warmblood horses with myofibrillar myopathy. BMC Genom. 2021;22:438. doi: 10.1186/s12864-021-07758-0.
- Valberg S.J., Velez-Irizarry D., Williams Z.J., Henry M.L., Iglewski H., Herrick K., Fenger C. Enriched Pathways of Calcium Regulation, Cellular/Oxidative Stress, Inflammation, and Cell Proliferation Characterize Gluteal Muscle of Standardbred Horses between Episodes of Recurrent Exertional Rhabdomyolysis. Genes. 2022;13:1853. doi: 10.3390/genes13101853.
- Foury A., Mach N., Ruet A., Lansade L., Moisan M.P. Transcriptomic signature related to poor welfare of sport horses. Compr. Psychoneuroendocrinol. 2023;16:100201. doi: 10.1016/j.cpnec.2023.100201.
- Bou T., Ding W., Ren X., Liu H., Gong W., Jia Z., Zhang X., Dugarjaviin M., Bai D. Muscle Fibre Transition and Transcriptional Changes of Horse Skeletal Muscles during Traditional Mongolian Endurance Training. Equine Vet. J. 2023. Early View .
- Cappelli K., Mecocci S., Capomaccio S., Beccati F., Palumbo A.R., Tognoloni A., Pepe M., Chiaradia E. Circulating Transcriptional Profile Modulation in Response to Metabolic Unbalance Due to Long-Term Exercise in Equine Athletes: A Pilot Study. Genes. 2021;12:1965. doi: 10.3390/genes12121965.
- Sp N., Kang D.Y., Kim D.H., Lee H.G., Park Y.M., Kim I.H., Lee H.K., Cho B.W., Jang K.J., Yang Y.M. Methylsulfonylmethane inhibits cortisol-induced stress through p53-mediated SDHA/HPRT1 expression in racehorse skeletal muscle cells: A primary step against exercise stress. Exp. Ther. Med. 2020;19:214u2013222. doi: 10.3892/etm.2019.8196.
- Witkowska-Pilaszewicz O., Baska P., Czopowicz M., Zmigrodzka M., Szarska E., Szczepaniak J., Nowak Z., Winnicka A., Cywinska A. Anti-Inflammatory State in Arabian Horses Introduced to the Endurance Training. Animals. 2019;9:616. doi: 10.3390/ani9090616.
- Taylor S.D., Ivester K.M., Stewart C., Page A.E., Horohov D.W., Couetil L.L. The effect of lower airway inflammation on inflammatory cytokine gene expression in bronchoalveolar lavage fluid and whole blood in racing Thoroughbreds. Vet. Immunol. Immunopathol. 2021;237:110266. doi: 10.1016/j.vetimm.2021.110266.
- Hale J.N., Hughes K.J., Hall S., Labens R. The effect of exercise on cytokine concentration in equine autologous conditioned serum. Equine Vet. J. 2023;55:551u2013556. doi: 10.1111/evj.13586.
- Arfuso F., Giudice E., Panzera M., Rizzo M., Fazio F., Piccione G., Giannetto C. Interleukin-1Ra (Il-1Ra) and serum cortisol level relationship in horse as dynamic adaptive response during physical exercise. Vet. Immunol. Immunopathol. 2022;243:110368. doi: 10.1016/j.vetimm.2021.110368.
- Plisak U., Szczepaniak J., Zmigrodzka M., Giercuszkiewicz-Hecold B., Witkowska-Pilaszewicz O. Changes in novel anti-infalmmatory cytokine concetration in the bood of endurance and race horses at different levels of training. Comput. Struct. Biotechnol. J. 2023;21:418u2013424. doi: 10.1016/j.csbj.2022.12.016.
- Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15u201321. doi: 10.1093/bioinformatics/bts635.
- Anders S., Pyl P.T., Huber W. HTSequ2014A Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166u2013169. doi: 10.1093/bioinformatics/btu638.
- Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8.
- Black M.B., Andersen M.E., Pendse S.N., Borghoff S.J., Streicker M., McMullen P.D. RNA-sequencing (transcriptomic) data collected in liver and lung of male and female B6C3F1 mice exposed to various dose levels of 4-methylimidazole for 2, 5, or 28 days. Data Brief. 2021;38:107420. doi: 10.1016/j.dib.2021.107420.
- Ropka-Molik K., Stefaniuk-Szmukier M., Zukowski K., Piorkowska K., Gurgul A., Bugno-Poniewierska M. Transcriptome profiling of Arabian horse blood during training regimens. BMC Genet. 2017;18:31. doi: 10.1186/s12863-017-0499-1.
- Kumar S., Jung J.K., Kim Y. Characterization of joining sites of a viral histone H4 on host insect chromosomes. PLoS ONE. 2017;12:e0177066. doi: 10.1371/journal.pone.0177066.
- Capomaccio S., Vitulo N., Verini-Supplizi A., Barcaccia G., Albiero A., Du2019Angelo M., Campagna D., Valle G., Felicetti M., Silvestrelli M., et al. RNA sequencing of the exercise transcriptome in equine athletes. PLoS ONE. 2013;8:e83504. doi: 10.1371/journal.pone.0083504.
- Raudvere U., Kolberg L., Kuzmin I., Arak T., Adler P., Peterson H., Vilo J. g:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update) Nucleic Acids Res. 2019;47:W191u2013W198. doi: 10.1093/nar/gkz369.
- Liburt N.R., Adams A.A., Betancourt A., Horohov D.W., McKeever K.H. Exercise-induced increases in inflammatory cytokines in muscle and blood of horses. Equine Vet. J. Suppl. 2010;42:280u2013288. doi: 10.1111/j.2042-3306.2010.00275.x.
- Page A.E., Stewart J.C., Fielding C.L., Horohov D.W. The Effect of a 160-Kilometer Competitive Endurance Ride on Inflammatory Marker mRNA Expression in Horses. J. Equine Vet. Sci. 2019;79:45u201349. doi: 10.1016/j.jevs.2019.05.017.
- Wilson J., De Donato M., Appelbaum B., Garcia C.T., Peters S. Differential Expression of Innate and Adaptive Immune Genes during Acute Physical Exercise in American Quarter Horses. Animals. 2023;13:308. doi: 10.3390/ani13020308.
- Cappelli K., Felicetti M., Capomaccio S., Nocelli C., Silvestrelli M., Verini-Supplizi A. Effect of training status on immune defence related gene expression in Thoroughbred: Are genes ready for the sprint? Vet. J. 2013;195:373u2013376. doi: 10.1016/j.tvjl.2012.07.021.
- Lee H.G., Choi J.Y., Park J.W., Park T.S., Song K.D., Shin D., Cho B.W. Effects of exercise on myokine gene expression in horse skeletal muscles. Asian-Australas. J. Anim. Sci. 2019;32:350u2013356. doi: 10.5713/ajas.18.0375.
- Donovan D.C., Jackson C.A., Colahan P.T., Norton N., Hurley D.J. Exercise-induced alterations in pro-inflammatory cytokines and prostaglandin F2alpha in horses. Vet. Immunol. Immunopathol. 2007;118:263u2013269. doi: 10.1016/j.vetimm.2007.05.015.
- Donovan D.C., Jackson C.A., Colahan P.T., Norton N.N., Clapper J.L., Moore J.N., Hurley D.J. Assessment of exercise-induced alterations in neutrophil function in horses. Am. J. Vet. Res. 2007;68:1198u20131204. doi: 10.2460/ajvr.68.11.1198.
- Mao T.Y., Fu L.L., Wang J.S. Hypoxic exercise training causes erythrocyte senescence and rheological dysfunction by depressed Gardos channel activity. J. Appl. Physiol. 2011;111:382u2013391. doi: 10.1152/japplphysiol.00096.2011.
- Simon L.S. Role and regulation of cyclooxygenase-2 during inflammation. Am. J. Med. 1999;106:37Su201342S. doi: 10.1016/S0002-9343(99)00115-1.
- Luan Y., Xu W. The function of the selective inhibitors of cyclooxygenase 2. Mini Rev. Med. Chem. 2006;6:1375u20131381. doi: 10.2174/138955706778992969.
- Witkowska-Pilaszewicz O., Pingwara R., Winnicka A. The Effect of Physical Training on Peripheral Blood Mononuclear Cell Ex Vivo Proliferation, Differentiation, Activity, and Reactive Oxygen Species Production in Racehorses. Antioxidants. 2020;9:1155. doi: 10.3390/antiox9111155.
- Mottahedin A., Paidikondala M., Cholleti H., Baule C. NF-kappaB activation by equine arteritis virus is MyD88 dependent and promotes viral replication. Arch. Virol. 2013;158:701u2013705. doi: 10.1007/s00705-012-1515-4.
- Aldemir H., Kilic N. The effect of time of day and exercise on platelet functions and platelet-neutrophil aggregates in healthy male subjects. Mol. Cell Biochem. 2005;280:119u2013124. doi: 10.1007/s11010-005-8238-8.
- Kim D.H., Lee H.G., Sp N., Kang D.Y., Jang K.J., Lee H.K., Cho B.W., Yang Y.M. Validation of exercise-response genes in skeletal muscle cells of Thoroughbred racing horses. Asian-Australas. J. Anim. Sci. 2021;34:134u2013142. doi: 10.5713/ajas.18.0749.
- Kim H., Lee T., Park W., Lee J.W., Kim J., Lee B.Y., Ahn H., Moon S., Cho S., Do K.T., et al. Peeling back the evolutionary layers of molecular mechanisms responsive to exercise-stress in the skeletal muscle of the racing horse. DNA Res. 2013;20:287u2013298. doi: 10.1093/dnares/dst010.
- Park J.W., Kim K.H., Choi J.K., Park T.S., Song K.D., Cho B.W. Regulation of toll-like receptors expression in muscle cells by exercise-induced stress. Anim. Biosci. 2021;34:1590u20131599. doi: 10.5713/ab.20.0484.
- Ahn H., Kim J., Lee H., Lee E., Lee G.S. Characterization of equine inflammasomes and their regulation. Vet. Res. Commun. 2020;44:51u201359. doi: 10.1007/s11259-020-09772-1.
- King C.M., Evans D.L., Rose R.J. Significance for exercise capacity of some electrocardiographic findings in racehorses. Aust. Vet. J. 1994;71:200u2013202. doi: 10.1111/j.1751-0813.1994.tb03401.x.
- Rainger J.E., Evans D.L., Hodgson D.R., Rose R.J. Distribution of lactate in plasma and erythrocytes during and after exercise in horses. Br. Vet. J. 1995;151:299u2013310. doi: 10.1016/S0007-1935(95)80180-4.
- Grzedzicka J., Dabrowska I., Malin K., Witkowska-Pilaszewicz O. Exercise-related changes in the anabolic index (testosterone to cortisol ratio) and serum amyloid A concentration in endurance and racehorses at different fitness levels. Front. Vet. Sci. 2023;10:1148990. doi: 10.3389/fvets.2023.1148990.
- Barrey E., Mucher E., Robert C., Amiot F., Gidrol X. Gene expression profiling in blood cells of endurance horses completing competition or disqualified due to metabolic disorder. Equine Vet. J. Suppl. 2006;38:43u201349. doi: 10.1111/j.2042-3306.2006.tb05511.x.
- Ropka-Molik K., Stefaniuk-Szmukier M., Zu02d9ukowski K., Piu00f3rkowska K., Bugno-Poniewierska M. Exercise-induced modification of the skeletal muscle transcriptome in Arabian horses. Physiol. Genom. 2017;49:318u2013326. doi: 10.1152/physiolgenomics.00130.2016.
- Miglio A., Falcinelli E., Mezzasoma A.M., Cappelli K., Mecocci S., Gresele P., Antognoni M.T. Effect of First Long-Term Training on Whole Blood Count and Blood Clotting Parameters in Thoroughbreds. Animals. 2021;11:447. doi: 10.3390/ani11020447.
- Bussolino D.F., Guido M.E., Gil G.A., Borioli G.A., Renner M.L., Grabois V.R., Conde C.B., Caputto B.L. c-Fos associates with the endoplasmic reticulum and activates phospholipid metabolism. FASEB J. 2001;15:556u2013558. doi: 10.1096/fj.00-0446fje.
- Papin S., Cuenin S., Agostini L., Martinon F., Werner S., Beer H.D., Grutter C., Grutter M., Tschopp J. The SPRY domain of Pyrin, mutated in familial Mediterranean fever patients, interacts with inflammasome components and inhibits proIL-1beta processing. Cell Death Differ. 2007;14:1457u20131466. doi: 10.1038/sj.cdd.4402142.
- Kimura T., Jain A., Choi S.W., Mandell M.A., Schroder K., Johansen T., Deretic V. TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity. J. Cell Biol. 2015;210:973u2013989. doi: 10.1083/jcb.201503023.
- Liu W., Ramagopal U., Cheng H., Bonanno J.B., Toro R., Bhosle R., Zhan C., Almo S.C. Crystal Structure of the Complex of Human FasL and Its Decoy Receptor DcR3. Structure. 2016;24:2016u20132023. doi: 10.1016/j.str.2016.09.009.
- Mancina R.M., Sasidharan K., Lindblom A., Wei Y., Ciociola E., Jamialahmadi O., Pingitore P., Andreasson A.C., Pellegrini G., Baselli G., et al. PSD3 downregulation confers protection against fatty liver disease. Nat. Metab. 2022;4:60u201375. doi: 10.1038/s42255-021-00518-0.
- Schroder W., Klostermann A., Distl O. Candidate genes for physical performance in the horse. Vet. J. 2011;190:39u201348. doi: 10.1016/j.tvjl.2010.09.029.
- Ghosh M., Cho H.W., Park J.W., Choi J.Y., Chung Y.H., Sharma N., Singh A.K., Kim N.E., Mongre R.K., Huynh D., et al. Comparative Transcriptomic Analyses by RNA-seq to Elucidate Differentially Expressed Genes in the Muscle of Korean Thoroughbred Horses. Appl. Biochem. Biotechnol. 2016;180:588u2013608. doi: 10.1007/s12010-016-2118-4.
- Obach M., Navarro-Sabate A., Caro J., Kong X., Duran J., Gomez M., Perales J.C., Ventura F., Rosa J.L., Bartrons R. 6-Phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia. J. Biol. Chem. 2004;279:53562u201353570. doi: 10.1074/jbc.M406096200.
- Eivers S.S., McGivney B.A., Fonseca R.G., MacHugh D.E., Menson K., Park S.D., Rivero J.L., Taylor C.T., Katz L.M., Hill E.W. Alterations in oxidative gene expression in equine skeletal muscle following exercise and training. Physiol. Genom. 2010;40:83u201393. doi: 10.1152/physiolgenomics.00041.2009.
- Eivers S.S., McGivney B.A., Gu J., MacHugh D.E., Katz L.M., Hill E.W. PGC-1alpha encoded by the PPARGC1A gene regulates oxidative energy metabolism in equine skeletal muscle during exercise. Anim. Genet. 2012;43:153u2013162. doi: 10.1111/j.1365-2052.2011.02238.x.
- Semenova E.A., Hall E.C.R., Ahmetov I.I. Genes and Athletic Performance: The 2023 Update. Genes. 2023;14:1235. doi: 10.3390/genes14061235.
- Ricard A., Robert C., Blouin C., Baste F., Torquet G., Morgenthaler C., Riviere J., Mach N., Mata X., Schibler L., et al. Endurance Exercise Ability in the Horse: A Trait with Complex Polygenic Determinism. Front. Genet. 2017;8:89. doi: 10.3389/fgene.2017.00089.
- Le Moyec L., Robert C., Triba M.N., Billat V.L., Mata X., Schibler L., Barrey E. Protein catabolism and high lipid metabolism associated with long-distance exercise are revealed by plasma NMR metabolomics in endurance horses. PLoS ONE. 2014;9:e90730. doi: 10.1371/journal.pone.0090730.