Genes2023; 14(11); 1982; doi: 10.3390/genes14111982

Identification of Differentially Expressed Genes after Endurance Runs in Karbadian Horses to Determine Candidates for Stress Indicators and Performance Capability.

Abstract: RNA sequencing makes it possible to uncover genetic mechanisms that underlie certain performance traits. In order to gain a deeper insight into the genetic background and biological processes involved in endurance performance in horses, the changes in the gene expression profiles induced by endurance runs over long (70 km) and short (15 km) distances in the blood of Kabardian horses () were analyzed. For the long-distance runs, we identified 1484 up- and 691 downregulated genes, while after short-distance runs, only 13 up- and 8 downregulated genes (FC > |1.5|; < 0.05) were found. These differentially expressed genes (DEGs) are involved in processes and pathways that are primarily related to stress response (interleukin production, activation of inflammatory system) but also to metabolism (carbohydrate catabolic process, lipid biosynthesis, NADP metabolic process). The most important genes involved in these processes therefore represent good candidates for the monitoring and evaluation of the performance of horses in order to avoid excessive demands when endurance performance is required, like , , , , , , and , on the one hand, and, on the other hand, for assessing the suitability of a horse for endurance races, like , , , , , , , and .
Publication Date: 2023-10-24 PubMed ID: 38002925PubMed Central: PMC10671444DOI: 10.3390/genes14111982Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

The research focusses on examining gene expression changes in Kabardian horses following endurance runs of varying distances, to help decipher the genetic factors that influence a horse’s ability to perform over various distances and to better manage the stress on the horses.

Study and Methodology

  • In this study, the researchers used RNA sequencing, a method that examines the quantity and types of RNA in a sample at a given moment, to investigate changes in gene expressions in Kabardian horses after undertaking endurance runs of two different lengths: a longer run of 70 kilometers and a shorter run of 15 kilometers.
  • By comparing changes in gene expression profiles before and after the runs, the study aimed to provide insights into genetic mechanisms related to endurance performance in horses.

Findings and Significance

  • The key finding of the study was the identification of a total of 1484 upregulated and 691 downregulated genes following the longer runs, whereas just 13 upregulated and 8 downregulated genes were noticed after the shorter runs. These differentially expressed genes (DEGs) according to the run length indicated the significant impact of endurance runs on the biological and genetic operations of the horses.
  • It was discovered that the main biological processes and pathways influenced by these DEGs were primarily those related to stress response, including interleukin production and the activation of the inflammatory system, as well as those related to metabolism, such as the carbohydrate catabolic process, lipid biosynthesis, and NADP metabolic process.
  • This finding is particularly important as the identified genes involved in these processes can be used as markers for monitoring and assessing a horse’s performance on endurance runs. These genetic markers can help to avoid placing excessive demands on horses requiring endurance performance, and in addition, could assist in determining a horse’s suitability for participating in endurance races.

Conclusion

  • The research provides a valuable understanding of the stress and performance capabilities in endurance horses from a genetic perspective. Understanding these genetic changes can contribute positively towards better training practices, improved health and welfare of the horses, and a more specified breeding program targeted towards enhancing endurance performance.

Cite This Article

APA
Reiu00dfmann M, Rajavel A, Kokov ZA, Schmitt AO. (2023). Identification of Differentially Expressed Genes after Endurance Runs in Karbadian Horses to Determine Candidates for Stress Indicators and Performance Capability. Genes (Basel), 14(11), 1982. https://doi.org/10.3390/genes14111982

Publication

ISSN: 2073-4425
NlmUniqueID: 101551097
Country: Switzerland
Language: English
Volume: 14
Issue: 11
PII: 1982

Researcher Affiliations

Reiu00dfmann, Monika
  • Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universitu00e4t zu Berlin, Unter den Linden 6, 10099 Berlin, Germany.
Rajavel, Abirami
  • Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Gu00f6ttingen, Germany.
Kokov, Zaur A
  • Institute of Physics and Mathematics, Kabardino-Balkarian State University, Chernyshevsky 173, Nalchik 360004, Russia.
Schmitt, Armin O
  • Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Gu00f6ttingen, Germany.
  • Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Gu00f6ttingen, Germany.

MeSH Terms

  • Animals
  • Horses / genetics
  • Transcriptome
  • Physical Conditioning, Animal

Grant Funding

  • Az.: 85 858 / Volkswagen Stiftung, Germany

Conflict of Interest Statement

The authors declare no conflict of interest.

References

This article includes 90 references
  1. Metallinos D.L., Bowling A.T., Rine J. A missense mutation in the endothelin-B receptor gene is associated with Lethal White Foal Syndrome: An equine version of Hirschsprung disease. Mamm. Genome. 1998;9:426u2013431. doi: 10.1007/s003359900790.
    doi: 10.1007/s003359900790pubmed: 9585428google scholar: lookup
  2. Marklund L., Moller M.J., Sandberg K., Andersson L. A missense mutation in the gene for melanocyte-stimulating hormone receptor (MC1R) is associated with the chestnut coat color in horses. Mamm. Genome. 1996;7:895u2013899. doi: 10.1007/s003359900264.
    doi: 10.1007/s003359900264pubmed: 8995760google scholar: lookup
  3. Morgenthaler C., Diribarne M., Capitan A., Legendre R., Saintilan R., Gilles M., Esquerre D., Juras R., Khanshour A., Schibler L., et al. A missense variant in the coil1A domain of the keratin 25 gene is associated with the dominant curly hair coat trait (Crd) in horse. Genet. Sel. Evol. 2017;49:85. doi: 10.1186/s12711-017-0359-5.
    doi: 10.1186/s12711-017-0359-5pmc: PMC5686958pubmed: 29141579google scholar: lookup
  4. Littiere T.O., Castro G.H.F., Rodriguez M., Bonafe C.M., Magalhaes A.F.B., Faleiros R.R., Vieira J.I.G., Santos C.G., Verardo L.L. Identification and Functional Annotation of Genes Related to Horsesu2019 Performance: From GWAS to Post-GWAS. Animals. 2020;10:1173. doi: 10.3390/ani10071173.
    doi: 10.3390/ani10071173pmc: PMC7401650pubmed: 32664293google scholar: lookup
  5. Petersen J.L., Mickelson J.R., Rendahl A.K., Valberg S.J., Andersson L.S., Axelsson J., Bailey E., Bannasch D., Binns M.M., Borges A.S., et al. Genome-wide analysis reveals selection for important traits in domestic horse breeds. PLoS Genet. 2013;9:e1003211. doi: 10.1371/journal.pgen.1003211.
  6. Staiger E.A., Albright J.D., Brooks S.A. Genome-wide association mapping of heritable temperament variation in the Tennessee Walking Horse. Genes. Brain Behav. 2016;15:514u2013526. doi: 10.1111/gbb.12290.
    doi: 10.1111/gbb.12290pubmed: 26991152google scholar: lookup
  7. Hill E.W., McGivney B.A., Gu J., Whiston R., Machugh D.E. A genome-wide SNP-association study confirms a sequence variant (g.66493737C>T) in the equine myostatin (MSTN) gene as the most powerful predictor of optimum racing distance for Thoroughbred racehorses. BMC Genom. 2010;11:552. doi: 10.1186/1471-2164-11-552.
    doi: 10.1186/1471-2164-11-552pmc: PMC3091701pubmed: 20932346google scholar: lookup
  8. Tozaki T., Miyake T., Kakoi H., Gawahara H., Sugita S., Hasegawa T., Ishida N., Hirota K., Nakano Y. A genome-wide association study for racing performances in Thoroughbreds clarifies a candidate region near the MSTN gene. Anim. Genet. 2010;41((Suppl. S2)):28u201335. doi: 10.1111/j.1365-2052.2010.02095.x.
  9. Rooney M.F., Porter R.K., Katz L.M., Hill E.W. Skeletal muscle mitochondrial bioenergetics and associations with myostatin genotypes in the Thoroughbred horse. PLoS ONE. 2017;12:e0186247. doi: 10.1371/journal.pone.0186247.
  10. Farries G., McGettigan P.A., Gough K.F., McGivney B.A., MacHugh D.E., Katz L.M., Hill E.W. Genetic contributions to precocity traits in racing Thoroughbreds. Anim. Genet. 2018;49:193u2013204. doi: 10.1111/age.12622.
    doi: 10.1111/age.12622pubmed: 29230835google scholar: lookup
  11. Tozaki T., Sato F., Hill E.W., Miyake T., Endo Y., Kakoi H., Gawahara H., Hirota K., Nakano Y., Nambo Y., et al. Sequence variants at the myostatin gene locus influence the body composition of Thoroughbred horses. J. Vet. Med. Sci. 2011;73:1617u20131624. doi: 10.1292/jvms.11-0295.
    doi: 10.1292/jvms.11-0295pubmed: 21836385google scholar: lookup
  12. Fontanel M., Todd E., Drabbe A., Ropka-Molik K., Stefaniuk-Szmukier M., Mycka G., Velie B.D. Variation in the SLC16A1 and the ACOX1 Genes Is Associated with Gallop Racing Performance in Arabian Horses. J. Equine Vet. Sci. 2020;93:103202. doi: 10.1016/j.jevs.2020.103202.
    doi: 10.1016/j.jevs.2020.103202pubmed: 32972674google scholar: lookup
  13. Pereira G.L., Malheiros J.M., Ospina A.M.T., Chardulo L.A.L., Curi R.A. Exome sequencing in genomic regions related to racing performance of Quarter Horses. J. Appl. Genet. 2019;60:79u201386. doi: 10.1007/s13353-019-00483-1.
    doi: 10.1007/s13353-019-00483-1pubmed: 30666567google scholar: lookup
  14. Brard S., Ricard A. Genome-wide association study for jumping performances in French sport horses. Anim. Genet. 2015;46:78u201381. doi: 10.1111/age.12245.
    doi: 10.1111/age.12245pubmed: 25515185google scholar: lookup
  15. Andersson L.S., Larhammar M., Memic F., Wootz H., Schwochow D., Rubin C.J., Patra K., Arnason T., Wellbring L., Hjalm G., et al. Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice. Nature. 2012;488:642u2013646. doi: 10.1038/nature11399.
    doi: 10.1038/nature11399pmc: PMC3523687pubmed: 22932389google scholar: lookup
  16. McGivney B.A., Eivers S.S., MacHugh D.E., MacLeod J.N., Ou2019Gorman G.M., Park S.D., Katz L.M., Hill E.W. Transcriptional adaptations following exercise in thoroughbred horse skeletal muscle highlights molecular mechanisms that lead to muscle hypertrophy. BMC Genom. 2009;10:638. doi: 10.1186/1471-2164-10-638.
    doi: 10.1186/1471-2164-10-638pmc: PMC2812474pubmed: 20042072google scholar: lookup
  17. Park K.D., Park J., Ko J., Kim B.C., Kim H.S., Ahn K., Do K.T., Choi H., Kim H.M., Song S., et al. Whole transcriptome analyses of six thoroughbred horses before and after exercise using RNA-Seq. BMC Genom. 2012;13:473. doi: 10.1186/1471-2164-13-473.
    doi: 10.1186/1471-2164-13-473pmc: PMC3472166pubmed: 22971240google scholar: lookup
  18. Bao T., Han H., Li B., Zhao Y., Bou G., Zhang X., Du M., Zhao R., Mongke T., Laxima, et al. The distinct transcriptomes of fast-twitch and slow-twitch muscles in Mongolian horses. Comp. Biochem. Physiol. Part D Genom. Proteom. 2020;33:100649. doi: 10.1016/j.cbd.2019.100649.
    doi: 10.1016/j.cbd.2019.100649pubmed: 31869634google scholar: lookup
  19. Lee H.Y., Kim J.Y., Kim K.H., Jeong S., Cho Y., Kim N. Gene Expression Profile in Similar Tissues Using Transcriptome Sequencing Data of Whole-Body Horse Skeletal Muscle. Genes. 2020;11:1359. doi: 10.3390/genes11111359.
    doi: 10.3390/genes11111359pmc: PMC7698552pubmed: 33213000google scholar: lookup
  20. Stefaniuk-Szmukier M., Szmatola T., Latka J., Dlugosz B., Ropka-Molik K. The Blood and Muscle Expression Pattern of the Equine TCAP Gene during the Race Track Training of Arabian Horses. Animals. 2019;9:574. doi: 10.3390/ani9080574.
    doi: 10.3390/ani9080574pmc: PMC6720385pubmed: 31426609google scholar: lookup
  21. Khummuang S., Lee H.G., Joo S.S., Park J.W., Choi J.Y., Oh J.H., Kim K.H., Youn H.H., Kim M., Cho B.W. Comparison for immunophysiological responses of Jeju and Thoroughbred horses after exercise. Asian-Australas J. Anim. Sci. 2020;33:424u2013435. doi: 10.5713/ajas.19.0260.
    doi: 10.5713/ajas.19.0260pmc: PMC7054627pubmed: 31480163google scholar: lookup
  22. Srikanth K., Kim N.Y., Park W., Kim J.M., Kim K.D., Lee K.T., Son J.H., Chai H.H., Choi J.W., Jang G.W., et al. Comprehensive genome and transcriptome analyses reveal genetic relationship, selection signature, and transcriptome landscape of small-sized Korean native Jeju horse. Sci. Rep. 2019;9:16672. doi: 10.1038/s41598-019-53102-8.
    doi: 10.1038/s41598-019-53102-8pmc: PMC6853925pubmed: 31723199google scholar: lookup
  23. Gao S., Nanaei H.A., Wei B., Wang Y., Wang X., Li Z., Dai X., Wang Z., Jiang Y., Shao J. Comparative Transcriptome Profiling Analysis Uncovers Novel Heterosis-Related Candidate Genes Associated with Muscular Endurance in Mules. Animals. 2020;10:980. doi: 10.3390/ani10060980.
    doi: 10.3390/ani10060980pmc: PMC7341310pubmed: 32512843google scholar: lookup
  24. Farries G., Bryan K., McGivney C.L., McGettigan P.A., Gough K.F., Browne J.A., MacHugh D.E., Katz L.M., Hill E.W. Expression Quantitative Trait Loci in Equine Skeletal Muscle Reveals Heritable Variation in Metabolism and the Training Responsive Transcriptome. Front. Genet. 2019;10:1215. doi: 10.3389/fgene.2019.01215.
    doi: 10.3389/fgene.2019.01215pmc: PMC6902038pubmed: 31850069google scholar: lookup
  25. Mach N., Plancade S., Pacholewska A., Lecardonnel J., Riviere J., Moroldo M., Vaiman A., Morgenthaler C., Beinat M., Nevot A., et al. Integrated mRNA and miRNA expression profiling in blood reveals candidate biomarkers associated with endurance exercise in the horse. Sci. Rep. 2016;6:22932. doi: 10.1038/srep22932.
    doi: 10.1038/srep22932pmc: PMC4785432pubmed: 26960911google scholar: lookup
  26. Cappelli K., Capomaccio S., Viglino A., Silvestrelli M., Beccati F., Moscati L., Chiaradia E. Circulating miRNAs as Putative Biomarkers of Exercise Adaptation in Endurance Horses. Front. Physiol. 2018;9:429. doi: 10.3389/fphys.2018.00429.
    doi: 10.3389/fphys.2018.00429pmc: PMC5928201pubmed: 29740341google scholar: lookup
  27. Horvath S., Haghani A., Peng S., Hales E.N., Zoller J.A., Raj K., Larison B., Robeck T.R., Petersen J.L., Bellone R.R., et al. DNA methylation aging and transcriptomic studies in horses. Nat. Commun. 2022;13:40. doi: 10.1038/s41467-021-27754-y.
    doi: 10.1038/s41467-021-27754-ypmc: PMC8748428pubmed: 35013267google scholar: lookup
  28. Liu L., Zhang Y., Ma H., Cao H., Liu W. Integrating genome-wide methylation and transcriptome-wide analyses to reveal the genetic mechanism of milk traits in Kazakh horses. Gene. 2023;856:147143. doi: 10.1016/j.gene.2022.147143.
    doi: 10.1016/j.gene.2022.147143pubmed: 36574934google scholar: lookup
  29. Gim J.A., Hong C.P., Kim D.S., Moon J.W., Choi Y., Eo J., Kwon Y.J., Lee J.R., Jung Y.D., Bae J.H., et al. Genome-wide analysis of DNA methylation before-and after exercise in the thoroughbred horse with MeDIP-Seq. Mol. Cells. 2015;38:210u2013220. doi: 10.14348/molcells.2015.2138.
    doi: 10.14348/molcells.2015.2138pmc: PMC4363720pubmed: 25666347google scholar: lookup
  30. McQueen C.M., Whitfield-Cargile C.M., Konganti K., Blodgett G.P., Dindot S.V., Cohen N.D. TRPM2 SNP genotype previously associated with susceptibility to Rhodococcus equi pneumonia in Quarter Horse foals displays differential gene expression identified using RNA-Seq. BMC Genom. 2016;17:993. doi: 10.1186/s12864-016-3345-3.
    doi: 10.1186/s12864-016-3345-3pmc: PMC5139010pubmed: 27919223google scholar: lookup
  31. Miyata H., Itoh R., Sato F., Takebe N., Hada T., Tozaki T. Effect of Myostatin SNP on muscle fiber properties in male Thoroughbred horses during training period. J. Physiol. Sci. 2018;68:639u2013646. doi: 10.1007/s12576-017-0575-3.
    doi: 10.1007/s12576-017-0575-3pubmed: 29058242google scholar: lookup
  32. McGivney B.A., Browne J.A., Fonseca R.G., Katz L.M., Machugh D.E., Whiston R., Hill E.W. MSTN genotypes in Thoroughbred horses influence skeletal muscle gene expression and racetrack performance. Anim. Genet. 2012;43:810u2013812. doi: 10.1111/j.1365-2052.2012.02329.x.
  33. Mach N., Ramayo-Caldas Y., Clark A., Moroldo M., Robert C., Barrey E., Lopez J.M., Le Moyec L. Understanding the response to endurance exercise using a systems biology approach: Combining blood metabolomics, transcriptomics and miRNomics in horses. BMC Genom. 2017;18:187. doi: 10.1186/s12864-017-3571-3.
    doi: 10.1186/s12864-017-3571-3pmc: PMC5316211pubmed: 28212624google scholar: lookup
  34. Klein D.J., Anthony T.G., McKeever K.H. Metabolomics in equine sport and exercise. J. Anim. Physiol. Anim. Nutr. 2021;105:140u2013148. doi: 10.1111/jpn.13384.
    doi: 10.1111/jpn.13384pubmed: 32511844google scholar: lookup
  35. Karagianni A.E., Kurian D., Cillan-Garcia E., Eaton S.L., Wishart T.M., Pirie R.S. Training associated alterations in equine respiratory immunity using a multiomics comparative approach. Sci. Rep. 2022;12:427. doi: 10.1038/s41598-021-04137-3.
    doi: 10.1038/s41598-021-04137-3pmc: PMC8748960pubmed: 35013475google scholar: lookup
  36. Williams Z.J., Velez-Irizarry D., Gardner K., Valberg S.J. Integrated proteomic and transcriptomic profiling identifies aberrant gene and protein expression in the sarcomere, mitochondrial complex I, and the extracellular matrix in Warmblood horses with myofibrillar myopathy. BMC Genom. 2021;22:438. doi: 10.1186/s12864-021-07758-0.
    doi: 10.1186/s12864-021-07758-0pmc: PMC8194174pubmed: 34112090google scholar: lookup
  37. Valberg S.J., Velez-Irizarry D., Williams Z.J., Henry M.L., Iglewski H., Herrick K., Fenger C. Enriched Pathways of Calcium Regulation, Cellular/Oxidative Stress, Inflammation, and Cell Proliferation Characterize Gluteal Muscle of Standardbred Horses between Episodes of Recurrent Exertional Rhabdomyolysis. Genes. 2022;13:1853. doi: 10.3390/genes13101853.
    doi: 10.3390/genes13101853pmc: PMC9601720pubmed: 36292738google scholar: lookup
  38. Foury A., Mach N., Ruet A., Lansade L., Moisan M.P. Transcriptomic signature related to poor welfare of sport horses. Compr. Psychoneuroendocrinol. 2023;16:100201. doi: 10.1016/j.cpnec.2023.100201.
  39. Bou T., Ding W., Ren X., Liu H., Gong W., Jia Z., Zhang X., Dugarjaviin M., Bai D. Muscle Fibre Transition and Transcriptional Changes of Horse Skeletal Muscles during Traditional Mongolian Endurance Training. Equine Vet. J. 2023. Early View .
    doi: 10.1111/evj.13968pubmed: 37345447google scholar: lookup
  40. Cappelli K., Mecocci S., Capomaccio S., Beccati F., Palumbo A.R., Tognoloni A., Pepe M., Chiaradia E. Circulating Transcriptional Profile Modulation in Response to Metabolic Unbalance Due to Long-Term Exercise in Equine Athletes: A Pilot Study. Genes. 2021;12:1965. doi: 10.3390/genes12121965.
    doi: 10.3390/genes12121965pmc: PMC8701225pubmed: 34946914google scholar: lookup
  41. Sp N., Kang D.Y., Kim D.H., Lee H.G., Park Y.M., Kim I.H., Lee H.K., Cho B.W., Jang K.J., Yang Y.M. Methylsulfonylmethane inhibits cortisol-induced stress through p53-mediated SDHA/HPRT1 expression in racehorse skeletal muscle cells: A primary step against exercise stress. Exp. Ther. Med. 2020;19:214u2013222. doi: 10.3892/etm.2019.8196.
    doi: 10.3892/etm.2019.8196pmc: PMC6909739pubmed: 31853292google scholar: lookup
  42. Witkowska-Pilaszewicz O., Baska P., Czopowicz M., Zmigrodzka M., Szarska E., Szczepaniak J., Nowak Z., Winnicka A., Cywinska A. Anti-Inflammatory State in Arabian Horses Introduced to the Endurance Training. Animals. 2019;9:616. doi: 10.3390/ani9090616.
    doi: 10.3390/ani9090616pmc: PMC6769738pubmed: 31462005google scholar: lookup
  43. Taylor S.D., Ivester K.M., Stewart C., Page A.E., Horohov D.W., Couetil L.L. The effect of lower airway inflammation on inflammatory cytokine gene expression in bronchoalveolar lavage fluid and whole blood in racing Thoroughbreds. Vet. Immunol. Immunopathol. 2021;237:110266. doi: 10.1016/j.vetimm.2021.110266.
    doi: 10.1016/j.vetimm.2021.110266pubmed: 33991760google scholar: lookup
  44. Hale J.N., Hughes K.J., Hall S., Labens R. The effect of exercise on cytokine concentration in equine autologous conditioned serum. Equine Vet. J. 2023;55:551u2013556. doi: 10.1111/evj.13586.
    doi: 10.1111/evj.13586pubmed: 35569120google scholar: lookup
  45. Arfuso F., Giudice E., Panzera M., Rizzo M., Fazio F., Piccione G., Giannetto C. Interleukin-1Ra (Il-1Ra) and serum cortisol level relationship in horse as dynamic adaptive response during physical exercise. Vet. Immunol. Immunopathol. 2022;243:110368. doi: 10.1016/j.vetimm.2021.110368.
    doi: 10.1016/j.vetimm.2021.110368pubmed: 34922262google scholar: lookup
  46. Plisak U., Szczepaniak J., Zmigrodzka M., Giercuszkiewicz-Hecold B., Witkowska-Pilaszewicz O. Changes in novel anti-infalmmatory cytokine concetration in the bood of endurance and race horses at different levels of training. Comput. Struct. Biotechnol. J. 2023;21:418u2013424. doi: 10.1016/j.csbj.2022.12.016.
    doi: 10.1016/j.csbj.2022.12.016pmc: PMC9798135pubmed: 36618977google scholar: lookup
  47. Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15u201321. doi: 10.1093/bioinformatics/bts635.
  48. Anders S., Pyl P.T., Huber W. HTSequ2014A Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166u2013169. doi: 10.1093/bioinformatics/btu638.
  49. Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8.
    doi: 10.1186/s13059-014-0550-8pmc: PMC4302049pubmed: 25516281google scholar: lookup
  50. Black M.B., Andersen M.E., Pendse S.N., Borghoff S.J., Streicker M., McMullen P.D. RNA-sequencing (transcriptomic) data collected in liver and lung of male and female B6C3F1 mice exposed to various dose levels of 4-methylimidazole for 2, 5, or 28 days. Data Brief. 2021;38:107420. doi: 10.1016/j.dib.2021.107420.
    doi: 10.1016/j.dib.2021.107420pmc: PMC8502903pubmed: 34660856google scholar: lookup
  51. Ropka-Molik K., Stefaniuk-Szmukier M., Zukowski K., Piorkowska K., Gurgul A., Bugno-Poniewierska M. Transcriptome profiling of Arabian horse blood during training regimens. BMC Genet. 2017;18:31. doi: 10.1186/s12863-017-0499-1.
    doi: 10.1186/s12863-017-0499-1pmc: PMC5382464pubmed: 28381206google scholar: lookup
  52. Kumar S., Jung J.K., Kim Y. Characterization of joining sites of a viral histone H4 on host insect chromosomes. PLoS ONE. 2017;12:e0177066. doi: 10.1371/journal.pone.0177066.
  53. Capomaccio S., Vitulo N., Verini-Supplizi A., Barcaccia G., Albiero A., Du2019Angelo M., Campagna D., Valle G., Felicetti M., Silvestrelli M., et al. RNA sequencing of the exercise transcriptome in equine athletes. PLoS ONE. 2013;8:e83504. doi: 10.1371/journal.pone.0083504.
  54. Raudvere U., Kolberg L., Kuzmin I., Arak T., Adler P., Peterson H., Vilo J. g:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update) Nucleic Acids Res. 2019;47:W191u2013W198. doi: 10.1093/nar/gkz369.
    doi: 10.1093/nar/gkz369pmc: PMC6602461pubmed: 31066453google scholar: lookup
  55. Liburt N.R., Adams A.A., Betancourt A., Horohov D.W., McKeever K.H. Exercise-induced increases in inflammatory cytokines in muscle and blood of horses. Equine Vet. J. Suppl. 2010;42:280u2013288. doi: 10.1111/j.2042-3306.2010.00275.x.
  56. Page A.E., Stewart J.C., Fielding C.L., Horohov D.W. The Effect of a 160-Kilometer Competitive Endurance Ride on Inflammatory Marker mRNA Expression in Horses. J. Equine Vet. Sci. 2019;79:45u201349. doi: 10.1016/j.jevs.2019.05.017.
    doi: 10.1016/j.jevs.2019.05.017pubmed: 31405499google scholar: lookup
  57. Wilson J., De Donato M., Appelbaum B., Garcia C.T., Peters S. Differential Expression of Innate and Adaptive Immune Genes during Acute Physical Exercise in American Quarter Horses. Animals. 2023;13:308. doi: 10.3390/ani13020308.
    doi: 10.3390/ani13020308pmc: PMC9854435pubmed: 36670847google scholar: lookup
  58. Cappelli K., Felicetti M., Capomaccio S., Nocelli C., Silvestrelli M., Verini-Supplizi A. Effect of training status on immune defence related gene expression in Thoroughbred: Are genes ready for the sprint? Vet. J. 2013;195:373u2013376. doi: 10.1016/j.tvjl.2012.07.021.
    doi: 10.1016/j.tvjl.2012.07.021pubmed: 22990119google scholar: lookup
  59. Lee H.G., Choi J.Y., Park J.W., Park T.S., Song K.D., Shin D., Cho B.W. Effects of exercise on myokine gene expression in horse skeletal muscles. Asian-Australas. J. Anim. Sci. 2019;32:350u2013356. doi: 10.5713/ajas.18.0375.
    doi: 10.5713/ajas.18.0375pmc: PMC6409466pubmed: 30208686google scholar: lookup
  60. Donovan D.C., Jackson C.A., Colahan P.T., Norton N., Hurley D.J. Exercise-induced alterations in pro-inflammatory cytokines and prostaglandin F2alpha in horses. Vet. Immunol. Immunopathol. 2007;118:263u2013269. doi: 10.1016/j.vetimm.2007.05.015.
    doi: 10.1016/j.vetimm.2007.05.015pubmed: 17617470google scholar: lookup
  61. Donovan D.C., Jackson C.A., Colahan P.T., Norton N.N., Clapper J.L., Moore J.N., Hurley D.J. Assessment of exercise-induced alterations in neutrophil function in horses. Am. J. Vet. Res. 2007;68:1198u20131204. doi: 10.2460/ajvr.68.11.1198.
    doi: 10.2460/ajvr.68.11.1198pubmed: 17975974google scholar: lookup
  62. Mao T.Y., Fu L.L., Wang J.S. Hypoxic exercise training causes erythrocyte senescence and rheological dysfunction by depressed Gardos channel activity. J. Appl. Physiol. 2011;111:382u2013391. doi: 10.1152/japplphysiol.00096.2011.
  63. Simon L.S. Role and regulation of cyclooxygenase-2 during inflammation. Am. J. Med. 1999;106:37Su201342S. doi: 10.1016/S0002-9343(99)00115-1.
    doi: 10.1016/S0002-9343(99)00115-1pubmed: 10390126google scholar: lookup
  64. Luan Y., Xu W. The function of the selective inhibitors of cyclooxygenase 2. Mini Rev. Med. Chem. 2006;6:1375u20131381. doi: 10.2174/138955706778992969.
    doi: 10.2174/138955706778992969pubmed: 17168813google scholar: lookup
  65. Witkowska-Pilaszewicz O., Pingwara R., Winnicka A. The Effect of Physical Training on Peripheral Blood Mononuclear Cell Ex Vivo Proliferation, Differentiation, Activity, and Reactive Oxygen Species Production in Racehorses. Antioxidants. 2020;9:1155. doi: 10.3390/antiox9111155.
    doi: 10.3390/antiox9111155pmc: PMC7699811pubmed: 33233549google scholar: lookup
  66. Mottahedin A., Paidikondala M., Cholleti H., Baule C. NF-kappaB activation by equine arteritis virus is MyD88 dependent and promotes viral replication. Arch. Virol. 2013;158:701u2013705. doi: 10.1007/s00705-012-1515-4.
    doi: 10.1007/s00705-012-1515-4pmc: PMC7086945pubmed: 23151818google scholar: lookup
  67. Aldemir H., Kilic N. The effect of time of day and exercise on platelet functions and platelet-neutrophil aggregates in healthy male subjects. Mol. Cell Biochem. 2005;280:119u2013124. doi: 10.1007/s11010-005-8238-8.
    doi: 10.1007/s11010-005-8238-8pubmed: 16311912google scholar: lookup
  68. Kim D.H., Lee H.G., Sp N., Kang D.Y., Jang K.J., Lee H.K., Cho B.W., Yang Y.M. Validation of exercise-response genes in skeletal muscle cells of Thoroughbred racing horses. Asian-Australas. J. Anim. Sci. 2021;34:134u2013142. doi: 10.5713/ajas.18.0749.
    doi: 10.5713/ajas.18.0749pmc: PMC7888507pubmed: 31011008google scholar: lookup
  69. Kim H., Lee T., Park W., Lee J.W., Kim J., Lee B.Y., Ahn H., Moon S., Cho S., Do K.T., et al. Peeling back the evolutionary layers of molecular mechanisms responsive to exercise-stress in the skeletal muscle of the racing horse. DNA Res. 2013;20:287u2013298. doi: 10.1093/dnares/dst010.
    doi: 10.1093/dnares/dst010pmc: PMC3686434pubmed: 23580538google scholar: lookup
  70. Park J.W., Kim K.H., Choi J.K., Park T.S., Song K.D., Cho B.W. Regulation of toll-like receptors expression in muscle cells by exercise-induced stress. Anim. Biosci. 2021;34:1590u20131599. doi: 10.5713/ab.20.0484.
    doi: 10.5713/ab.20.0484pmc: PMC8495349pubmed: 33332945google scholar: lookup
  71. Ahn H., Kim J., Lee H., Lee E., Lee G.S. Characterization of equine inflammasomes and their regulation. Vet. Res. Commun. 2020;44:51u201359. doi: 10.1007/s11259-020-09772-1.
    doi: 10.1007/s11259-020-09772-1pubmed: 32297137google scholar: lookup
  72. King C.M., Evans D.L., Rose R.J. Significance for exercise capacity of some electrocardiographic findings in racehorses. Aust. Vet. J. 1994;71:200u2013202. doi: 10.1111/j.1751-0813.1994.tb03401.x.
  73. Rainger J.E., Evans D.L., Hodgson D.R., Rose R.J. Distribution of lactate in plasma and erythrocytes during and after exercise in horses. Br. Vet. J. 1995;151:299u2013310. doi: 10.1016/S0007-1935(95)80180-4.
    doi: 10.1016/S0007-1935(95)80180-4pubmed: 7640958google scholar: lookup
  74. Grzedzicka J., Dabrowska I., Malin K., Witkowska-Pilaszewicz O. Exercise-related changes in the anabolic index (testosterone to cortisol ratio) and serum amyloid A concentration in endurance and racehorses at different fitness levels. Front. Vet. Sci. 2023;10:1148990. doi: 10.3389/fvets.2023.1148990.
    doi: 10.3389/fvets.2023.1148990pmc: PMC10150884pubmed: 37138908google scholar: lookup
  75. Barrey E., Mucher E., Robert C., Amiot F., Gidrol X. Gene expression profiling in blood cells of endurance horses completing competition or disqualified due to metabolic disorder. Equine Vet. J. Suppl. 2006;38:43u201349. doi: 10.1111/j.2042-3306.2006.tb05511.x.
  76. Ropka-Molik K., Stefaniuk-Szmukier M., Zu02d9ukowski K., Piu00f3rkowska K., Bugno-Poniewierska M. Exercise-induced modification of the skeletal muscle transcriptome in Arabian horses. Physiol. Genom. 2017;49:318u2013326. doi: 10.1152/physiolgenomics.00130.2016.
  77. Miglio A., Falcinelli E., Mezzasoma A.M., Cappelli K., Mecocci S., Gresele P., Antognoni M.T. Effect of First Long-Term Training on Whole Blood Count and Blood Clotting Parameters in Thoroughbreds. Animals. 2021;11:447. doi: 10.3390/ani11020447.
    doi: 10.3390/ani11020447pmc: PMC7915801pubmed: 33572086google scholar: lookup
  78. Bussolino D.F., Guido M.E., Gil G.A., Borioli G.A., Renner M.L., Grabois V.R., Conde C.B., Caputto B.L. c-Fos associates with the endoplasmic reticulum and activates phospholipid metabolism. FASEB J. 2001;15:556u2013558. doi: 10.1096/fj.00-0446fje.
    doi: 10.1096/fj.00-0446fjepubmed: 11259365google scholar: lookup
  79. Papin S., Cuenin S., Agostini L., Martinon F., Werner S., Beer H.D., Grutter C., Grutter M., Tschopp J. The SPRY domain of Pyrin, mutated in familial Mediterranean fever patients, interacts with inflammasome components and inhibits proIL-1beta processing. Cell Death Differ. 2007;14:1457u20131466. doi: 10.1038/sj.cdd.4402142.
    doi: 10.1038/sj.cdd.4402142pubmed: 17431422google scholar: lookup
  80. Kimura T., Jain A., Choi S.W., Mandell M.A., Schroder K., Johansen T., Deretic V. TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity. J. Cell Biol. 2015;210:973u2013989. doi: 10.1083/jcb.201503023.
    doi: 10.1083/jcb.201503023pmc: PMC4576868pubmed: 26347139google scholar: lookup
  81. Liu W., Ramagopal U., Cheng H., Bonanno J.B., Toro R., Bhosle R., Zhan C., Almo S.C. Crystal Structure of the Complex of Human FasL and Its Decoy Receptor DcR3. Structure. 2016;24:2016u20132023. doi: 10.1016/j.str.2016.09.009.
    doi: 10.1016/j.str.2016.09.009pubmed: 27806260google scholar: lookup
  82. Mancina R.M., Sasidharan K., Lindblom A., Wei Y., Ciociola E., Jamialahmadi O., Pingitore P., Andreasson A.C., Pellegrini G., Baselli G., et al. PSD3 downregulation confers protection against fatty liver disease. Nat. Metab. 2022;4:60u201375. doi: 10.1038/s42255-021-00518-0.
    doi: 10.1038/s42255-021-00518-0pmc: PMC8803605pubmed: 35102341google scholar: lookup
  83. Schroder W., Klostermann A., Distl O. Candidate genes for physical performance in the horse. Vet. J. 2011;190:39u201348. doi: 10.1016/j.tvjl.2010.09.029.
    doi: 10.1016/j.tvjl.2010.09.029pubmed: 21115378google scholar: lookup
  84. Ghosh M., Cho H.W., Park J.W., Choi J.Y., Chung Y.H., Sharma N., Singh A.K., Kim N.E., Mongre R.K., Huynh D., et al. Comparative Transcriptomic Analyses by RNA-seq to Elucidate Differentially Expressed Genes in the Muscle of Korean Thoroughbred Horses. Appl. Biochem. Biotechnol. 2016;180:588u2013608. doi: 10.1007/s12010-016-2118-4.
    doi: 10.1007/s12010-016-2118-4pubmed: 27351985google scholar: lookup
  85. Obach M., Navarro-Sabate A., Caro J., Kong X., Duran J., Gomez M., Perales J.C., Ventura F., Rosa J.L., Bartrons R. 6-Phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia. J. Biol. Chem. 2004;279:53562u201353570. doi: 10.1074/jbc.M406096200.
    doi: 10.1074/jbc.M406096200pubmed: 15466858google scholar: lookup
  86. Eivers S.S., McGivney B.A., Fonseca R.G., MacHugh D.E., Menson K., Park S.D., Rivero J.L., Taylor C.T., Katz L.M., Hill E.W. Alterations in oxidative gene expression in equine skeletal muscle following exercise and training. Physiol. Genom. 2010;40:83u201393. doi: 10.1152/physiolgenomics.00041.2009.
  87. Eivers S.S., McGivney B.A., Gu J., MacHugh D.E., Katz L.M., Hill E.W. PGC-1alpha encoded by the PPARGC1A gene regulates oxidative energy metabolism in equine skeletal muscle during exercise. Anim. Genet. 2012;43:153u2013162. doi: 10.1111/j.1365-2052.2011.02238.x.
  88. Semenova E.A., Hall E.C.R., Ahmetov I.I. Genes and Athletic Performance: The 2023 Update. Genes. 2023;14:1235. doi: 10.3390/genes14061235.
    doi: 10.3390/genes14061235pmc: PMC10298527pubmed: 37372415google scholar: lookup
  89. Ricard A., Robert C., Blouin C., Baste F., Torquet G., Morgenthaler C., Riviere J., Mach N., Mata X., Schibler L., et al. Endurance Exercise Ability in the Horse: A Trait with Complex Polygenic Determinism. Front. Genet. 2017;8:89. doi: 10.3389/fgene.2017.00089.
    doi: 10.3389/fgene.2017.00089pmc: PMC5488500pubmed: 28702049google scholar: lookup
  90. Le Moyec L., Robert C., Triba M.N., Billat V.L., Mata X., Schibler L., Barrey E. Protein catabolism and high lipid metabolism associated with long-distance exercise are revealed by plasma NMR metabolomics in endurance horses. PLoS ONE. 2014;9:e90730. doi: 10.1371/journal.pone.0090730.

Citations

This article has been cited 0 times.