Rhodococcus equi-Derived Extracellular Vesicles Promoting Inflammatory Response in Macrophage through TLR2-NF-κB/MAPK Pathways.
Abstract: Rhodococcus equi (R. equi) is a Gram-positive coccobacillus that causes pneumonia in foals of less than 3 months, which have the ability of replication in macrophages. The ability of R. equi persist in macrophages is dependent on the virulence plasmid pVAPA. Gram-positive extracellular vesicles (EVs) carry a variety of virulence factors and play an important role in pathogenic infection. There are few studies on R. equi-derived EVs (R. equi-EVs), and little knowledge regarding the mechanisms of how R. equi-EVs communicate with the host cell. In this study, we examine the properties of EVs produced by the virulence strain R. equi 103+ (103+-EVs) and avirulenct strain R. equi 103− (103−-EVs). We observed that 103+-EVs and 103−-EVs are similar to other Gram-positive extracellular vesicles, which range from 40 to 260 nm in diameter. The 103+-EVs or 103−-EVs could be taken up by mouse macrophage J774A.1 and cause macrophage cytotoxicity. Incubation of 103+-EVs or 103−-EVs with J774A.1 cells would result in increased expression levels of IL-1β, IL-6, and TNF-α. Moreover, the expression of TLR2, p-NF-κB, p-p38, and p-ERK were significantly increased in J774A.1 cells stimulated with R. equi-EVs. In addition, we presented that the level of inflammatory factors and expression of TLR2, p-NF-κB, p-p38, and p-ERK in J774A.1 cells showed a significant decreased when incubation with proteinase K pretreated-R. equi-EVs. Overall, our data indicate that R. equi-derived EVs are capable of mediating inflammatory responses in macrophages via TLR2-NF-κB/MAPK pathways, and R. equi-EVs proteins were responsible for TLR2-NF-κB/MAPK mediated inflammatory responses in macrophage. Our study is the first to reveal potential roles for R. equi-EVs in immune response in R. equi-host interactions and to compare the differences in macrophage inflammatory responses mediated by EVs derived from virulent strain R. equi and avirulent strain R. equi. The results of this study have improved our knowledge of the pathogenicity of R. equi.
Publication Date: 2022-08-28 PubMed ID: 36077142PubMed Central: PMC9456034DOI: 10.3390/ijms23179742Google Scholar: Lookup The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
- Journal Article
Summary
This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.
This study investigates the effects of extracellular vesicles from a bacterium called Rhodococcus equi on inflammatory responses in macrophages, and finds that these vesicles can mediate inflammation through specific cellular signaling pathways. It offers new insights into the bacterium’s pathogenicity and potential interaction with its host.
Understanding the Studied Microorganism
- Rhodococcus equi is a kind of bacterium capable of causing pneumonia in very young foals (baby horses). This bacteria can reproduce inside certain immune cells called macrophages.
- The ability of R. equi to survive within macrophages is based on a particular virulence factor found on a plasmid, a standalone piece of DNA, known as pVAPA.
The Importance of Extracellular Vesicles (EVs)
- Extracellular vesicles are small particles produced by cells which can carry a variety of substances, such as proteins and genetic material.
- In the context of bacterial infections, extracellular vesicles can contain virulence factors and are known to play significant roles in pathogenesis.
- The researchers in this study focused specifically on extracellular vesicles produced by R. equi, which have previously been understudied, aiming to clarify their impact on host cells.
Key Experimental Observations
- The researchers found that the extracellular vesicles from two different strains of R. equi, one virulent and one avirulent, were similar in properties to those of other Gram-positive bacteria and could be taken up by macrophages.
- Exposure to these vesicles led to increased expression of inflammatory cytokines (IL-1β, IL-6, and TNF-α) and other key proteins which are participants in inflammatory signaling pathways (TLR2, p-NF-κB, p-p38, and p-ERK) in the macrophages.
- Treatment of the vesicles with proteinase K, an enzyme that degrades proteins, significantly diminished these inflammatory responses, suggesting that proteins within the vesicles were responsible for the observed effects.
Conclusion and Implications
- The data suggests that extracellular vesicles produced by R. equi can stimulate inflammation in macrophages through specific cellular signaling pathways (TLR2-NF-κB/MAPK).
- The study provides valuable insights into the pathogenicity of R. equi, its interaction with the host immune system, and potential therapeutic targets for intervention. This could also pave way for future research into bacterial extracellular vesicles and their roles in host-pathogen interactions.
Cite This Article
APA
Xu Z, Hao X, Li M, Luo H.
(2022).
Rhodococcus equi-Derived Extracellular Vesicles Promoting Inflammatory Response in Macrophage through TLR2-NF-κB/MAPK Pathways.
Int J Mol Sci, 23(17), 9742.
https://doi.org/10.3390/ijms23179742 Publication
Researcher Affiliations
- Life Science School, Ningxia University, Yinchuan 750021, China.
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China.
- Life Science School, Ningxia University, Yinchuan 750021, China.
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China.
- Life Science School, Ningxia University, Yinchuan 750021, China.
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China.
- Life Science School, Ningxia University, Yinchuan 750021, China.
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China.
MeSH Terms
- Actinomycetales Infections / metabolism
- Actinomycetales Infections / veterinary
- Animals
- Extracellular Vesicles / metabolism
- Horses
- Macrophages / metabolism
- Mice
- NF-kappa B / metabolism
- Rhodococcus equi / genetics
- Toll-Like Receptor 2 / genetics
- Toll-Like Receptor 2 / metabolism
Grant Funding
- 31960694 / National Natural Science Foundation of China
- 31760035 / National Natural Science Foundation of China
- 2021AAC05008 / Excellent Youth Project of Ningxia Natural Science Foundation
- no / Ningxia Overseas Students Innovation and Entrepreneurship Project
Conflict of Interest Statement
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
References
This article includes 47 references
- Muscatello G. Rhodococcus equi pneumonia in the foal--part 1: pathogenesis and epidemiology.. Vet J 2012 Apr;192(1):20-6.
- Muscatello G. Rhodococcus equi pneumonia in the foal--part 2: diagnostics, treatment and disease management.. Vet J 2012 Apr;192(1):27-33.
- Hondalus MK, Diamond MS, Rosenthal LA, Springer TA, Mosser DM. The intracellular bacterium Rhodococcus equi requires Mac-1 to bind to mammalian cells.. Infect Immun 1993 Jul;61(7):2919-29.
- Hondalus MK, Mosser DM. Survival and replication of Rhodococcus equi in macrophages.. Infect Immun 1994 Oct;62(10):4167-75.
- Galeas-Pena M, McLaughlin N, Pociask D. The role of the innate immune system on pulmonary infections.. Biol Chem 2019 Mar 26;400(4):443-456.
- Bhatt K, Salgame P. Host innate immune response to Mycobacterium tuberculosis.. J Clin Immunol 2007 Jul;27(4):347-62.
- Liu CH, Liu H, Ge B. Innate immunity in tuberculosis: host defense vs pathogen evasion.. Cell Mol Immunol 2017 Dec;14(12):963-975.
- von Bargen K, Haas A. Molecular and infection biology of the horse pathogen Rhodococcus equi.. FEMS Microbiol Rev 2009 Sep;33(5):870-91.
- Jain S, Bloom BR, Hondalus MK. Deletion of vapA encoding Virulence Associated Protein A attenuates the intracellular actinomycete Rhodococcus equi.. Mol Microbiol 2003 Oct;50(1):115-28.
- Sangkanjanavanich N, Kawai M, Kakuda T, Takai S. Rescue of an intracellular avirulent Rhodococcus equi replication defect by the extracellular addition of virulence-associated protein A.. J Vet Med Sci 2017 Aug 4;79(8):1323-1326.
- von Bargen K, Scraba M, Kru00e4mer I, Ketterer M, Nehls C, Krokowski S, Repnik U, Wittlich M, Maaser A, Zapka P, Bunge M, Schlesinger M, Huth G, Klees A, Hansen P, Jeschke A, Bendas G, Utermu00f6hlen O, Griffiths G, Gutsmann T, Wohlmann J, Haas A. Virulence-associated protein A from Rhodococcus equi is an intercompartmental pH-neutralising virulence factor.. Cell Microbiol 2019 Jan;21(1):e12958.
- Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors.. Nat Immunol 2010 May;11(5):373-84.
- Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity.. Cell 2006 Feb 24;124(4):783-801.
- Darrah PA, Monaco MC, Jain S, Hondalus MK, Golenbock DT, Mosser DM. Innate immune responses to Rhodococcus equi.. J Immunol 2004 Aug 1;173(3):1914-24.
- Giguu00e8re S, Prescott JF. Cytokine induction in murine macrophages infected with virulent and avirulent Rhodococcus equi.. Infect Immun 1998 May;66(5):1848-54.
- Liu M, Bordin A, Liu T, Russell K, Cohen N. Gene expression of innate Th1-, Th2-, and Th17-type cytokines during early life of neonatal foals in response to Rhodococcus equi.. Cytokine 2011 Nov;56(2):356-64.
- Giguu00e8re S, Wilkie BN, Prescott JF. Modulation of cytokine response of pneumonic foals by virulent Rhodococcus equi.. Infect Immun 1999 Oct;67(10):5041-7.
- Vail KJ, da Silveira BP, Bell SL, Cohen ND, Bordin AI, Patrick KL, Watson RO. The opportunistic intracellular bacterial pathogen Rhodococcus equi elicits type I interferon by engaging cytosolic DNA sensing in macrophages.. PLoS Pathog 2021 Sep;17(9):e1009888.
- Berghaus LJ, Giguu00e8re S, Bordin AI, Cohen ND. Effects of priming with cytokines on intracellular survival and replication of Rhodococcus equi in equine macrophages.. Cytokine 2018 Feb;102:7-11.
- Kasuga-Aoki H, Takai S, Sasaki Y, Tsubaki S, Madarame H, Nakane A. Tumour necrosis factor and interferon-gamma are required in host resistance against virulent Rhodococcus equi infection in mice: cytokine production depends on the virulence levels of R. equi.. Immunology 1999 Jan;96(1):122-7.
- Darrah PA, Hondalus MK, Chen Q, Ischiropoulos H, Mosser DM. Cooperation between reactive oxygen and nitrogen intermediates in killing of Rhodococcus equi by activated macrophages.. Infect Immun 2000 Jun;68(6):3587-93.
- Kanaly ST, Hines SA, Palmer GH. Cytokine modulation alters pulmonary clearance of Rhodococcus equi and development of granulomatous pneumonia.. Infect Immun 1995 Aug;63(8):3037-41.
- Thu00e9ry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Baldacchino S, Bauer NN, Baxter AA, Bebawy M, Beckham C, Bedina Zavec A, Benmoussa A, Berardi AC, Bergese P, Bielska E, Blenkiron C, Bobis-Wozowicz S, Boilard E, Boireau W, Bongiovanni A, Borru00e0s FE, Bosch S, Boulanger CM, Breakefield X, Breglio AM, Brennan Mu00c1, Brigstock DR, Brisson A, Broekman ML, Bromberg JF, Bryl-Gu00f3recka P, Buch S, Buck AH, Burger D, Busatto S, Buschmann D, Bussolati B, Buzu00e1s EI, Byrd JB, Camussi G, Carter DR, Caruso S, Chamley LW, Chang YT, Chen C, Chen S, Cheng L, Chin AR, Clayton A, Clerici SP, Cocks A, Cocucci E, Coffey RJ, Cordeiro-da-Silva A, Couch Y, Coumans FA, Coyle B, Crescitelli R, Criado MF, D'Souza-Schorey C, Das S, Datta Chaudhuri A, de Candia P, De Santana EF, De Wever O, Del Portillo HA, Demaret T, Deville S, Devitt A, Dhondt B, Di Vizio D, Dieterich LC, Dolo V, Dominguez Rubio AP, Dominici M, Dourado MR, Driedonks TA, Duarte FV, Duncan HM, Eichenberger RM, Ekstru00f6m K, El Andaloussi S, Elie-Caille C, Erdbru00fcgger U, Falcu00f3n-Pu00e9rez JM, Fatima F, Fish JE, Flores-Bellver M, Fu00f6rsu00f6nits A, Frelet-Barrand A, Fricke F, Fuhrmann G, Gabrielsson S, Gu00e1mez-Valero A, Gardiner C, Gu00e4rtner K, Gaudin R, Gho YS, Giebel B, Gilbert C, Gimona M, Giusti I, Goberdhan DC, Gu00f6rgens A, Gorski SM, Greening DW, Gross JC, Gualerzi A, Gupta GN, Gustafson D, Handberg A, Haraszti RA, Harrison P, Hegyesi H, Hendrix A, Hill AF, Hochberg FH, Hoffmann KF, Holder B, Holthofer H, Hosseinkhani B, Hu G, Huang Y, Huber V, Hunt S, Ibrahim AG, Ikezu T, Inal JM, Isin M, Ivanova A, Jackson HK, Jacobsen S, Jay SM, Jayachandran M, Jenster G, Jiang L, Johnson SM, Jones JC, Jong A, Jovanovic-Talisman T, Jung S, Kalluri R, Kano SI, Kaur S, Kawamura Y, Keller ET, Khamari D, Khomyakova E, Khvorova A, Kierulf P, Kim KP, Kislinger T, Klingeborn M, Klinke DJ 2nd, Kornek M, Kosanoviu0107 MM, Kovu00e1cs u00c1F, Kru00e4mer-Albers EM, Krasemann S, Krause M, Kurochkin IV, Kusuma GD, Kuypers S, Laitinen S, Langevin SM, Languino LR, Lannigan J, Lu00e4sser C, Laurent LC, Lavieu G, Lu00e1zaro-Ibu00e1u00f1ez E, Le Lay S, Lee MS, Lee YXF, Lemos DS, Lenassi M, Leszczynska A, Li IT, Liao K, Libregts SF, Ligeti E, Lim R, Lim SK, Linu0113 A, Linnemannstu00f6ns K, Llorente A, Lombard CA, Lorenowicz MJ, Lu00f6rincz u00c1M, Lu00f6tvall J, Lovett J, Lowry MC, Loyer X, Lu Q, Lukomska B, Lunavat TR, Maas SL, Malhi H, Marcilla A, Mariani J, Mariscal J, Martens-Uzunova ES, Martin-Jaular L, Martinez MC, Martins VR, Mathieu M, Mathivanan S, Maugeri M, McGinnis LK, McVey MJ, Meckes DG Jr, Meehan KL, Mertens I, Minciacchi VR, Mu00f6ller A, Mu00f8ller Ju00f8rgensen M, Morales-Kastresana A, Morhayim J, Mullier F, Muraca M, Musante L, Mussack V, Muth DC, Myburgh KH, Najrana T, Nawaz M, Nazarenko I, Nejsum P, Neri C, Neri T, Nieuwland R, Nimrichter L, Nolan JP, Nolte-'t Hoen EN, Noren Hooten N, O'Driscoll L, O'Grady T, O'Loghlen A, Ochiya T, Olivier M, Ortiz A, Ortiz LA, Osteikoetxea X, u00d8stergaard O, Ostrowski M, Park J, Pegtel DM, Peinado H, Perut F, Pfaffl MW, Phinney DG, Pieters BC, Pink RC, Pisetsky DS, Pogge von Strandmann E, Polakovicova I, Poon IK, Powell BH, Prada I, Pulliam L, Quesenberry P, Radeghieri A, Raffai RL, Raimondo S, Rak J, Ramirez MI, Raposo G, Rayyan MS, Regev-Rudzki N, Ricklefs FL, Robbins PD, Roberts DD, Rodrigues SC, Rohde E, Rome S, Rouschop KM, Rughetti A, Russell AE, Sau00e1 P, Sahoo S, Salas-Huenuleo E, Su00e1nchez C, Saugstad JA, Saul MJ, Schiffelers RM, Schneider R, Schu00f8yen TH, Scott A, Shahaj E, Sharma S, Shatnyeva O, Shekari F, Shelke GV, Shetty AK, Shiba K, Siljander PR, Silva AM, Skowronek A, Snyder OL 2nd, Soares RP, Su00f3dar BW, Soekmadji C, Sotillo J, Stahl PD, Stoorvogel W, Stott SL, Strasser EF, Swift S, Tahara H, Tewari M, Timms K, Tiwari S, Tixeira R, Tkach M, Toh WS, Tomasini R, Torrecilhas AC, Tosar JP, Toxavidis V, Urbanelli L, Vader P, van Balkom BW, van der Grein SG, Van Deun J, van Herwijnen MJ, Van Keuren-Jensen K, van Niel G, van Royen ME, van Wijnen AJ, Vasconcelos MH, Vechetti IJ Jr, Veit TD, Vella LJ, Velot u00c9, Verweij FJ, Vestad B, Viu00f1as JL, Visnovitz T, Vukman KV, Wahlgren J, Watson DC, Wauben MH, Weaver A, Webber JP, Weber V, Wehman AM, Weiss DJ, Welsh JA, Wendt S, Wheelock AM, Wiener Z, Witte L, Wolfram J, Xagorari A, Xander P, Xu J, Yan X, Yu00e1u00f1ez-Mu00f3 M, Yin H, Yuana Y, Zappulli V, Zarubova J, u017du0117kas V, Zhang JY, Zhao Z, Zheng L, Zheutlin AR, Zickler AM, Zimmermann P, Zivkovic AM, Zocco D, Zuba-Surma EK. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines.. J Extracell Vesicles 2018;7(1):1535750.
- Gill S, Catchpole R, Forterre P. Extracellular membrane vesicles in the three domains of life and beyond.. FEMS Microbiol Rev 2019 May 1;43(3):273-303.
- Jan AT. Outer Membrane Vesicles (OMVs) of Gram-negative Bacteria: A Perspective Update.. Front Microbiol 2017;8:1053.
- Brown L, Wolf JM, Prados-Rosales R, Casadevall A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi.. Nat Rev Microbiol 2015 Oct;13(10):620-30.
- Nagakubo T, Tahara YO, Miyata M, Nomura N, Toyofuku M. Mycolic acid-containing bacteria trigger distinct types of membrane vesicles through different routes.. iScience 2021 Jan 22;24(1):102015.
- Hu R, Lin H, Wang M, Zhao Y, Liu H, Min Y, Yang X, Gao Y, Yang M. Lactobacillus reuteri-derived extracellular vesicles maintain intestinal immune homeostasis against lipopolysaccharide-induced inflammatory responsesu00a0inu00a0broilers.. J Anim Sci Biotechnol 2021 Feb 17;12(1):25.
- Wang J, Li X, Bello BK, Yu G, Yang Q, Yang H, Zhang W, Wang L, Dong J, Liu G, Zhao P. Activation of TLR2 heterodimers-mediated NF-u03baB, MAPK, AKT signaling pathways is responsible for Vibrio alginolyticus triggered inflammatory response in vitro.. Microb Pathog 2022 Jan;162:105219.
- Chandler CE, Ernst RK. Bacterial lipids: powerful modifiers of the innate immune response.. F1000Res 2017;6.
- Shishpal P, Kasarpalkar N, Singh D, Bhor VM. Characterization of Gardnerella vaginalis membrane vesicles reveals a role in inducing cytotoxicity in vaginal epithelial cells.. Anaerobe 2020 Feb;61:102090.
- Echeverru00eda-Bugueu00f1o M, Balada C, Irgang R, Avendau00f1o-Herrera R. Evidence for the existence of extracellular vesicles in Renibacterium salmoninarum and related cytotoxic effects on SHK-1 cells.. J Fish Dis 2021 Jul;44(7):1015-1024.
- Yerneni SS, Werner S, Azambuja JH, Ludwig N, Eutsey R, Aggarwal SD, Lucas PC, Bailey N, Whiteside TL, Campbell PG, Hiller NL. Pneumococcal Extracellular Vesicles Modulate Host Immunity.. mBio 2021 Aug 31;12(4):e0165721.
- Tartaglia NR, Nicolas A, Rodovalho VR, Luz BSRD, Briard-Bion V, Krupova Z, Thierry A, Coste F, Burel A, Martin P, Jardin J, Azevedo V, Le Loir Y, Guu00e9don E. Extracellular vesicles produced by human and animal Staphylococcus aureus strains share a highly conserved core proteome.. Sci Rep 2020 May 21;10(1):8467.
- Bitto NJ, Cheng L, Johnston EL, Pathirana R, Phan TK, Poon IKH, O'Brien-Simpson NM, Hill AF, Stinear TP, Kaparakis-Liaskos M. Staphylococcus aureus membrane vesicles contain immunostimulatory DNA, RNA and peptidoglycan that activate innate immune receptors and induce autophagy.. J Extracell Vesicles 2021 Apr;10(6):e12080.
- Bitto NJ, Zavan L, Johnston EL, Stinear TP, Hill AF, Kaparakis-Liaskos M. Considerations for the Analysis of Bacterial Membrane Vesicles: Methods of Vesicle Production and Quantification Can Influence Biological and Experimental Outcomes.. Microbiol Spectr 2021 Dec 22;9(3):e0127321.
- Murase K, Aikawa C, Nozawa T, Nakatake A, Sakamoto K, Kikuchi T, Nakagawa I. Biological Effect of Streptococcus pyogenes-Released Extracellular Vesicles on Human Monocytic Cells, Induction of Cytotoxicity, and Inflammatory Response.. Front Cell Infect Microbiol 2021;11:711144.
- Mehanny M, Kroniger T, Koch M, Hoppstu00e4dter J, Becher D, Kiemer AK, Lehr CM, Fuhrmann G. Yields and Immunomodulatory Effects of Pneumococcal Membrane Vesicles Differ with the Bacterial Growth Phase.. Adv Healthc Mater 2022 Mar;11(5):e2101151.
- de Rezende Rodovalho V, da Luz BSR, Nicolas A, do Carmo FLR, Jardin J, Briard-Bion V, Jan G, Le Loir Y, de Carvalho Azevedo VA, Guedon E. Environmental conditions modulate the protein content and immunomodulatory activity of extracellular vesicles produced by the probiotic Propionibacterium freudenreichii.. Appl Environ Microbiol 2021 Mar 1;87(4).
- Woo JH, Kim S, Lee T, Lee JC, Shin JH. Production of Membrane Vesicles in Listeria monocytogenes Cultured with or without Sub-Inhibitory Concentrations of Antibiotics and Their Innate Immune Responses In Vitro.. Genes (Basel) 2021 Mar 13;12(3).
- Wang X, Eagen WJ, Lee JC. Orchestration of human macrophage NLRP3 inflammasome activation by Staphylococcus aureus extracellular vesicles.. Proc Natl Acad Sci U S A 2020 Feb 11;117(6):3174-3184.
- Kim HY, Lim Y, An SJ, Choi BK. Characterization and immunostimulatory activity of extracellular vesicles from Filifactor alocis.. Mol Oral Microbiol 2020 Jan;35(1):1-9.
- Takeda K, Akira S. TLR signaling pathways.. Semin Immunol 2004 Feb;16(1):3-9.
- Simpson ME, Petri WA Jr. TLR2 as a Therapeutic Target in Bacterial Infection.. Trends Mol Med 2020 Aug;26(8):715-717.
- Prados-Rosales R, Baena A, Martinez LR, Luque-Garcia J, Kalscheuer R, Veeraraghavan U, Camara C, Nosanchuk JD, Besra GS, Chen B, Jimenez J, Glatman-Freedman A, Jacobs WR Jr, Porcelli SA, Casadevall A. Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice.. J Clin Invest 2011 Apr;121(4):1471-83.
- Kim HY, Song MK, Gho YS, Kim HH, Choi BK. Extracellular vesicles derived from the periodontal pathogen Filifactor alocis induce systemic bone loss through Toll-like receptor 2.. J Extracell Vesicles 2021 Oct;10(12):e12157.
- Morton AC, Begg AP, Anderson GA, Takai S, Lu00e4mmler C, Browning GF. Epidemiology of Rhodococcus equi strains on Thoroughbred horse farms.. Appl Environ Microbiol 2001 May;67(5):2167-75.