Single-cell profiling of bronchoalveolar cells reveals a Th17 signature in neutrophilic severe equine asthma.
- Journal Article
Summary
The research article focuses on a detailed analysis of bronchoalveolar cells in horses suffering from severe equine asthma (SEA), revealing a predominant Th17 immune response and potentially providing new biomarkers and therapeutic targets for treating the condition.
Research Objective and Methodology
The researchers aimed to uncover the elusive immune mechanisms driving SEA, a complex respiratory condition characterized by chronic airway inflammation. The study uses SEA as a model for studying human neutrophilic asthma given the similar clinical and pathological features. For this, the researchers used single-cell mRNA sequencing (scRNA-seq) on bronchoalveolar cells from 11 Warmblood horses; five were controls and six were afflicted with SEA.
Findings of the Study
- Through the procedure, the researchers identified six primary cell types: B cells, T cells, monocytes-macrophages, dendritic cells, neutrophils, and mast cells. Significant heterogeneity was found within all cell types, including previously identified and novel cell subtypes.
- Notably, the researchers observed complexes formed by monocytes and lymphocytes and detected a strong Th17 signature in SEA. An upregulation in CXCL13, a gene responsible for controlling chemotaxis, was found in intermediate monocytes.
- In horses with asthma, the researchers found an expansion of the B-cell population and Th17 polarization of the T-cell populations. They also found a dysregulation of genes associated with T-cell function.
- The researchers also found that the neutrophils demonstrated enhanced migratory capacity and a heightened ability to form neutrophil extracellular traps, a component of the immune response.
Conclusion and Implications
The results reveal a predominant Th17 immune response in cases of neutrophilic SEA. This response is driven by the dysregulation of particular genes in monocytes and T-cells. The dysregulated genes identified through scRNA-seq potentially serve as biomarkers for SEA and possible targets for therapeutic intervention. Consequently, the findings of this study also shed light on the understanding and treatment of human neutrophilic asthma.
Cite This Article
Publication
Researcher Affiliations
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty, Swiss Institute of Equine Medicine, University of Bern, Bern, Switzerland.
- Institute of Genetics, Vetsuisse Faculty, Institute of Genetics, University of Bern, Bern, Switzerland.
- Institute of Genetics, Vetsuisse Faculty, Institute of Genetics, University of Bern, Bern, Switzerland.
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty, Swiss Institute of Equine Medicine, University of Bern, Bern, Switzerland.
Grant Funding
- 31003A-162548/1 / Swiss National Science Foundation
References
- Couu00ebtil LLL, Cardwell JMM, Gerber V, Lavoie J-PP, Lu00e9guillette R, Richard EAA. Inflammatory airway disease of horses-revised consensus Statement. J Vet Intern Med. 2016;30(2):503-515. https://doi.org/10.1111/jvim.13824
- Laumen E, Doherr MG, Gerber V. Relationship of horse owner assessed respiratory signs index to characteristics of recurrent airway obstruction in two warmblood families. Equine Vet J. 2010;42(2):142-148. https://doi.org/10.2746/042516409X479586
- Ramseyer A, Gaillard C, Burger D, Straub R, Jost U, Boog C, et al. Effects of genetic and environmental factors on chronic lower airway disease in horses. J Vet Intern Med. 2007;21(1):149-156. https://doi.org/10.1111/j.1939-1676.2007.tb02941.x
- Schnider D, Rieder S, Leeb T, Gerber V, Neuditschko M. A genome-wide association study for equine recurrent airway obstruction in European warmblood horses reveals a suggestive new quantitative trait locus on chromosome 13. Anim Genet. 2017;48(6):691-693. https://doi.org/10.1111/age.12583
- Eder C, Curik I, Brem G, Crameri R, Bodo I, Habe F, et al. Influence of environmental and genetic factors on allergen-specific immunoglobulin-E levels in sera from Lipizzan horses. Equine Vet J. 2010;33(7):714-720. https://doi.org/10.2746/042516401776249264
- Bond S, Lu00e9guillette R, Richard EA, Couetil L, Lavoie JP, Martin JG, et al. Equine asthma: integrative biologic relevance of a recently proposed nomenclature. J Vet Intern Med. 2018;32(6):2088-2098. https://doi.org/10.1111/jvim.15302
- Woodrow JS, Sheats MK, Cooper B, Bayless R. Asthma: the use of animal models and their translational utility. Cell. 2023;12(7):1091. https://doi.org/10.3390/cells12071091
- Sheats MK, Davis KU, Poole JA. Comparative review of asthma in farmers and horses. Curr Allergy Asthma Rep. 2019;19(11):50. https://doi.org/10.1007/s11882-019-0882-2
- Lange-Consiglio A, Stucchi L, Zucca E, Lavoie JP, Cremonesi F, Ferrucci F. Insights into animal models for cell-based therapies in translational studies of lung diseases: is the horse with naturally occurring asthma the right choice? Cytotherapy. 2019;21(5):525-534. https://doi.org/10.1016/j.jcyt.2019.02.010
- Simu00f5es J, Batista M, Tilley P. The immune mechanisms of severe equine asthma-current understanding and what is missing. Animals. 2022;12(6):744. https://doi.org/10.3390/ani12060744
- Kehrli D, Jandova V, Fey K, Jahn P, Gerber V. Multiple hypersensitivities including recurrent airway obstruction, insect bite hypersensitivity, and urticaria in 2 warmblood horse populations. J Vet Intern Med. 2015;29(1):320-326. https://doi.org/10.1111/jvim.12473
- Lanz S, Brunner A, Graubner C, Marti E, Gerber V. Insect bite hypersensitivity in horses is associated with airway hyperreactivity. J Vet Intern Med. 2017;31(6):1877-1883. https://doi.org/10.1111/jvim.14817
- Debrue M, Hamilton E, Joubert P, Lajoie-Kadoch S, Lavoie J-P. Chronic exacerbation of equine heaves is associated with an increased expression of interleukin-17 mRNA in bronchoalveolar lavage cells. Vet Immunol Immunopathol. 2005;105(1-2):25-31. https://doi.org/10.1016/j.vetimm.2004.12.013
- Korn A, Miller D, Dong L, Buckles EL, Wagner B, Ainsworth DM. Differential gene expression profiles and selected cytokine protein analysis of mediastinal lymph nodes of horses with chronic recurrent airway obstruction (RAO) support an Interleukin-17 immune response. PLoS One. 2015;10(11):e0142622. https://doi.org/10.1371/journal.pone.0142622
- Pacholewska A, Kraft MF, Gerber V, Jagannathan V. Differential expression of serum MicroRNAs supports CD4 + t cell differentiation into Th2/Th17 cells in severe equine asthma. Genes (Basel). 2017;8(12):383. https://doi.org/10.3390/genes8120383
- Hulliger MF, Pacholewska A, Vargas A, Lavoie JP, Leeb T, Gerber V, et al. An integrative miRNA-mRNA expression analysis reveals striking transcriptomic similarities between severe equine asthma and specific asthma endotypes in humans. Genes (Basel). 2020;11(10):1143. https://doi.org/10.3390/genes11101143
- Pacholewska A, Jagannathan V, Dru00f6gemu00fcller M, Klukowska-Ru00f6tzler J, Lanz S, Hamza E, et al. Impaired cell cycle regulation in a natural equine model of asthma. PLoS One. 2015;10(8):e0136103. https://doi.org/10.1371/journal.pone.0136103
- Gressler AE, Lu00fcbke S, Wagner B, Arnold C, Lohmann KL, Schnabel CL. Comprehensive flow cytometric characterization of bronchoalveolar lavage cells indicates comparable phenotypes between asthmatic and healthy horses but functional lymphocyte differences. Front Immunol. 2022;13:1-17. https://doi.org/10.3389/fimmu.2022.896255
- Sage SE, Nicholson P, Peters LM, Leeb T, Jagannathan V, Gerber V. Single-cell gene expression analysis of cryopreserved equine bronchoalveolar cells. Front Immunol. 2022;13:1-18. https://doi.org/10.3389/fimmu.2022.929922
- Liu L, Zhang X, Liu Y, Zhang L, Zheng J, Wang J, et al. Chitinase-like protein YKL-40 correlates with inflammatory phenotypes, anti-asthma responsiveness and future exacerbations. Respir Res. 2019;20(1):1-12. https://doi.org/10.1186/s12931-019-1051-9
- Cremades-Jimeno L, de Pedro Mu00c1, Lu00f3pez-Ramos M, Sastre J, Mu00ednguez P, Fernu00e1ndez IM, et al. Prioritizing molecular biomarkers in asthma and respiratory allergy using systems biology. Front Immunol. 2021;12:1004. https://doi.org/10.3389/fimmu.2021.640791
- Alevy YG, Patel AC, Romero AG, Patel DA, Tucker J, Roswit WT, et al. IL-13-induced airway mucus production is attenuated by MAPK13 inhibition. J Clin Invest. 2012;122(12):4555-4568. https://doi.org/10.1172/JCI64896
- Bao C, Liu C, Liu Q, Hua L, Hu J, Li Z, et al. Liproxstatin-1 alleviates LPS/IL-13-induced bronchial epithelial cell injury and neutrophilic asthma in mice by inhibiting ferroptosis. Int Immunopharmacol. 2022;109:108770. https://doi.org/10.1016/j.intimp.2022.108770
- Sprenkeler EGG, Zandstra J, van Kleef ND, Goetschalckx I, Verstegen B, Aarts CEM, et al. S100A8/A9 is a marker for the release of neutrophil extracellular traps and induces neutrophil activation. Cell. 2022;11(2):236. https://doi.org/10.3390/cells11020236
- Jiang S, Park DW, Tadie J-M, Gregoire M, Deshane J, Pittet JF, et al. Human Resistin promotes neutrophil proinflammatory activation and neutrophil extracellular trap formation and increases severity of acute lung injury. J Immunol. 2014;192(10):4795-4803. https://doi.org/10.4049/jimmunol.1302764
- Zhu L, Zeng D, Lei X, Huang J, Deng YF, Ji YB, et al. KLF2 regulates neutrophil migration by modulating CXCR1 and CXCR2 in asthma. Biochim Biophys Acta Mol Basis Dis. 2020;1866(12):165920. https://doi.org/10.1016/j.bbadis.2020.165920
- Le A, Wu Y, Liu W, Wu C, Hu P, Zou J, et al. MiR-144-induced KLF2 inhibition and NF-kappaB/CXCR1 activation promote neutrophil extracellular trap-induced transfusion-related acute lung injury. J Cell Mol Med. 2021;25(14):6511-6523. https://doi.org/10.1111/jcmm.16650
- Leemans JC, te Velde AA, Florquin S, Bennink RJ, de Bruin K, van Lier u0154AW, et al. The epidermal growth factor-seven transmembrane (EGF-TM7) receptor CD97 is required for neutrophil migration and host defense. J Immunol. 2004;172(2):1125-1131. https://doi.org/10.4049/jimmunol.172.2.1125
- Majchrzak-Gorecka M, Majewski P, Grygier B, Murzyn K, Cichy J. Secretory leukocyte protease inhibitor (SLPI), a multifunctional protein in the host defense response. Cytokine Growth Factor Rev. 2016;28:79-93. https://doi.org/10.1016/j.cytogfr.2015.12.001
- Prince LR, Prosseda SD, Higgins K, Carlring J, Prestwich EC, Ogryzko NV, et al. NR4A orphan nuclear receptor family members, NR4A2 and NR4A3, regulate neutrophil number and survival. Blood. 2017;130(8):1014-1025. https://doi.org/10.1182/blood-2017-03-770164
- Cardenas EI, Che KF, Konradsen JR, Bao A, Lindu00e9n A. IL-26 in asthma and COPD. Expert Rev Respir Med. 2022;16(3):293-301. https://doi.org/10.1080/17476348.2022.2045197
- Chen X, Khalid K, Chen D, Qiu C. Serum levels of olfactomedin 4: a biomarker for asthma control state in asthmatics. Ann Transl Med. 2020;8(7):494. https://doi.org/10.21037/atm.2020.03.213
- Al Mutairi SS, Mojiminiyi OA, Shihab-Eldeen A, Al Rammah T, Abdella N. Putative roles of circulating resistin in patients with asthma, COPD and cigarette smokers. Dis Markers. 2011;31(1):1-7. https://doi.org/10.3233/DMA-2011-0793
- Mailer RKW, Joly A-L, Liu S, Elias S, Tegner J, Andersson J. IL-1u03b2 promotes Th17 differentiation by inducing alternative splicing of FOXP3. Sci Rep. 2015;5(1):14674. https://doi.org/10.1038/srep14674
- Gruarin P, Maglie S, De Simone M, Hu00e4ringer B, Vasco C, Ranzani V, et al. Eomesodermin controls a unique differentiation program in human IL-10 and IFN-u03b3 coproducing regulatory T cells. Eur J Immunol. 2019;49(1):96-111. https://doi.org/10.1002/eji.201847722
- Evans MD, Esnault S, Denlinger LC, Jarjour NN. Sputum cell IL-1 receptor expression level is a marker of airway neutrophilia and airflow obstruction in asthmatic patients. J Allergy Clin Immunol. 2018;142(2):415-423. https://doi.org/10.1016/j.jaci.2017.09.035
- Akitsu A, Iwakura Y. Interleukin-17-producing u03b3u03b4 T (u03b3u03b417) cells in inflammatory diseases. Immunology. 2018;155(4):418-426. https://doi.org/10.1111/imm.12993
- Seo H, Chen J, Gonzu00e1lez-Avalos E, Samaniego-Castruita D, das A, Wang YH, et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8 + T cell exhaustion. Proc Natl Acad Sci U S A. 2019;116(25):12410-12415. https://doi.org/10.1073/pnas.1905675116
- Evrard M, Wynne-Jones E, Peng C, Kato Y, Christo SN, Fonseca R, et al. Sphingosine 1-phosphate receptor 5 (S1PR5) regulates the peripheral retention of tissue-resident lymphocytes. J Exp Med. 2022;219(1):e20210116. https://doi.org/10.1084/jem.20210116
- Hirota JA, Hiebert PR, Gold M, Wu D, Graydon C, Smith JA, et al. Granzyme B deficiency exacerbates lung inflammation in mice after acute lung injury. Am J Respir Cell Mol Biol. 2013;49(3):453-462. https://doi.org/10.1165/rcmb.2012-0512OC
- Ingram JT, Yi JS, Zajac AJ. Exhausted CD8 T cells downregulate the IL-18 receptor and become unresponsive to inflammatory cytokines and bacterial Co-infections. PLoS Pathog. 2011;7(9):e1002273. https://doi.org/10.1371/journal.ppat.1002273
- Nguyen KD, Fohner A, Booker JD, Dong C, Krensky AM, Nadeau KC. XCL1 enhances regulatory activities of CD4+CD25highCD127low/u2212 T cells in human allergic asthma. J Immunol. 2008;181(8):5386-5395. https://doi.org/10.4049/jimmunol.181.8.5386
- Nair MPN, Schwartz SA, Wu K, Kronfol Z. Effect of neuropeptide Y on natural killer activity of normal human lymphocytes. Brain Behav Immun. 1993;7(1):70-78. https://doi.org/10.1006/brbi.1993.1007
- Brand HK, Ahout IML, de Ridder D, van Diepen A, Li Y, Zaalberg M, et al. Olfactomedin 4 serves as a marker for disease severity in pediatric respiratory syncytial virus (RSV) infection. PLoS One. 2015;10(7):e0131927. https://doi.org/10.1371/journal.pone.0131927
- Gong F, Li R, Zheng X, Chen W, Zheng Y, Yang Z, et al. OLFM4 regulates lung epithelial cell function in sepsis-associated ARDS/ALI via LDHA-mediated NF-u03baB signaling. J Inflamm Res. 2021;14(12):7035-7051. https://doi.org/10.2147/JIR.S335915
- Bozinovski S, Cross M, Vlahos R, Jones JE, Hsuu K, Tessier PA, et al. S100A8 chemotactic protein is abundantly increased, but only a minor contributor to LPS-induced, steroid resistant neutrophilic lung inflammation in vivo. J Proteome Res. 2005;4(1):136-145. https://doi.org/10.1021/pr049829t
- Wjst M. Exome variants associated with asthma and allergy. Sci Rep. 2022;12(1):21028. https://doi.org/10.1038/s41598-022-24960-6
- Park SY, Jing X, Gupta D, Dziarski R. Peptidoglycan recognition protein 1 enhances experimental asthma by promoting Th2 and Th17 and limiting regulatory T cell and plasmacytoid dendritic cell responses. J Immunol. 2013;190(7):3480-3492. https://doi.org/10.4049/jimmunol.1202675
- Gao P, Tang K, Wang M, Yang Q, Xu Y, Wang J, et al. Pentraxin levels in non-eosinophilic versus eosinophilic asthma. Clin Exp Allergy. 2018;48(8):981-989. https://doi.org/10.1111/cea.13168
- Ramery E, Fievez L, Fraipont A, Bureau F, Lekeux P. Characterization of pentraxin 3 in the horse and its expression in airways. Vet Res. 2010;41(2):18. https://doi.org/10.1051/vetres/2009066
- Kotsiou OS, Papagiannis D, Papadopoulou R, Gourgoulianis KI. Calprotectin in lung diseases. Int J Mol Sci. 2021;22(4):1706. https://doi.org/10.3390/ijms22041706
- Lin Q, Ni H, Zhong J, Zheng Z, Nie H. Identification of hub genes and potential biomarkers of neutrophilic asthma: evidence from a bioinformatics analysis. J Asthma. 2023;60(2):348-359. https://doi.org/10.1080/02770903.2022.2051544
- Ai X, Shen H, Wang Y, Zhuang J, Zhou Y, Niu F, et al. Developing a diagnostic model to predict the risk of asthma based on ten macrophage-related gene signatures. Biomed Res Int. 2022;2022:1-14. https://doi.org/10.1155/2022/3439010
- Wang Q, Liu S, Min J, Yin M, Zhang Y, Zhang Y, et al. CCL17 drives fibroblast activation in the progression of pulmonary fibrosis by enhancing the TGF-u03b2/Smad signaling. Biochem Pharmacol. 2023;210:115475. https://doi.org/10.1016/j.bcp.2023.115475
- Debien E, Mayol K, Biajoux V, Daussy C, de Aguero MG, Taillardet M, et al. S1PR5 is pivotal for the homeostasis of patrolling monocytes. Eur J Immunol. 2013;43(6):1667-1675. https://doi.org/10.1002/eji.201343312
- Hoek KL, Greer MJ, McClanahan KG, Nazmi A, Piazuelo MB, Singh K, et al. Granzyme B prevents aberrant IL-17 production and intestinal pathogenicity in CD4+ T cells. Mucosal Immunol. 2021;14(5):1088-1099. https://doi.org/10.1038/s41385-021-00427-1
- Deng J, Yu X-Q, Wang P-H. Inflammasome activation and Th17 responses. Mol Immunol. 2019;107:142-164. https://doi.org/10.1016/j.molimm.2018.12.024
- Arredouani MS, Franco F, Imrich A, Fedulov A, Lu X, Perkins D, et al. Scavenger receptors SR-AI/II and MARCO limit pulmonary dendritic cell migration and allergic airway inflammation. J Immunol. 2007;178(9):5912-5920. https://doi.org/10.4049/jimmunol.178.9.5912
- Hanschmann E-M, Berndt C, Hecker C, Garn H, Bertrams W, Lillig CH, et al. Glutaredoxin 2 reduces asthma-like acute airway inflammation in mice. Front Immunol. 2020;11(November):1-11. https://doi.org/10.3389/fimmu.2020.561724
- Branchett WJ, Cook J, Oliver RA, Bruno N, Walker SA, Stu00f6lting H, et al. Airway macrophage-intrinsic TGF-u03b21 regulates pulmonary immunity during early-life allergen exposure. J Allergy Clin Immunol. 2021;147(5):1892-1906. https://doi.org/10.1016/j.jaci.2021.01.026
- McDonough JE, Ahangari F, Li Q, Jain S, Verleden SE, Herazo-Maya J, et al. Transcriptional regulatory model of fibrosis progression in the human lung. JCI Insight. 2019;4(22):e131597. https://doi.org/10.1172/jci.insight.131597
- Zhang D-W, Ye J-J, Sun Y, Ji S, Kang JY, Wei YY, et al. CD19 and POU2AF1 are potential immune-related biomarkers involved in the emphysema of COPD: on multiple microarray analysis. J Inflamm Res. 2022;15(April):2491-2507. https://doi.org/10.2147/JIR.S355764
- Di Mauro S, Scamporrino A, Fruciano M, Filippello A, Fagone E, Gili E, et al. Circulating coding and long non-coding RNAs as potential biomarkers of idiopathic pulmonary fibrosis. Int J Mol Sci. 2020;21(22):8812. https://doi.org/10.3390/ijms21228812
- Xie Y, Abel PW, Casale TB, Tu Y. TH17 cells and corticosteroid insensitivity in severe asthma. J Allergy Clin Immunol. 2022;149(2):467-479. https://doi.org/10.1016/J.JACI.2021.12.769
- Baay-Guzman GJ, Huerta-Yepez S, Vega MI, Aguilar-Leon D, Campillos M, Blake J, et al. Role of CXCL13 in asthma: novel therapeutic target. Chest. 2012;141(4):886-894. https://doi.org/10.1378/chest.11-0633
- Alturaiki W. Elevated plasma levels of CXCL13 chemokine in Saudi patients with asthma exacerbation. Cureus. 2022;14(1):1-7. https://doi.org/10.7759/cureus.21142
- Takagi R, Higashi T, Hashimoto K, Nakano K, Mizuno Y, Okazaki Y, et al. B cell chemoattractant CXCL13 is preferentially expressed by human Th17 cell clones. J Immunol. 2008;181(1):186-189. https://doi.org/10.4049/jimmunol.181.1.186
- Al-Kufaidy R, Vazquez-Tello A, BaHammam AS, Al-Muhsen S, Hamid Q, Halwani R. IL-17 enhances the migration of B cells during asthma by inducing CXCL13 chemokine production in structural lung cells. J Allergy Clin Immunol. 2017;139(2):696-699.e5. https://doi.org/10.1016/j.jaci.2016.07.037
- Roberts CA, Dickinson AK, Taams LS. The interplay between monocytes/macrophages and CD4+ T cell subsets in rheumatoid arthritis. Front Immunol. 2015;6:571. https://doi.org/10.3389/fimmu.2015.00571
- Pang Y, Du X, Xu X, Wang M, Li Z. Monocyte activation and inflammation can exacerbate Treg/Th17 imbalance in infants with neonatal necrotizing enterocolitis. Int Immunopharmacol. 2018;59:354-360. https://doi.org/10.1016/j.intimp.2018.04.026
- Evans HG, Gullick NJ, Kelly S, Pitzalis C, Lord GM, Kirkham BW, et al. In vivo activated monocytes from the site of inflammation in humans specifically promote Th17 responses. Proc Natl Acad Sci U S A. 2009;106(15):6232-6237. https://doi.org/10.1073/pnas.0808144106
- Riihimu00e4ki M, Fegraeus K, Nordlund J, Waern I, Wernersson S, Akula S, et al. Single cell transcriptomics delineates the immune-cell landscape in equine lower airways and reveals upregulation of the FKBP5 gene in horses with asthmar. Sci Rep. 2023;13:16261. https://doi.org/10.21203/rs.3.rs-2768703/v1
- Burel JG, Pomaznoy M, Lindestam Arlehamn CS, Weiskopf D, da Silva Antunes R, Jung Y, et al. Circulating T cell-monocyte complexes are markers of immune perturbations. Elife. 2019;8:1-21. https://doi.org/10.7554/eLife.46045
- Bullone M, Lavoie JP. Asthma u201cof horses and menu201d-how can equine heaves help us better understand human asthma immunopathology and its functional consequences? Mol Immunol. 2015;66(1):97-105. https://doi.org/10.1016/j.molimm.2014.12.005
- Choy DF, Hart KM, Borthwick LA, Shikotra A, Nagarkar DR, Siddiqui S, et al. TH2 and TH17 inflammatory pathways are reciprocally regulated in asthma. Sci Transl Med. 2015;7(301):301ra129. https://doi.org/10.1126/scitranslmed.aab3142
- Davis KU, Sheats MK. The role of neutrophils in the pathophysiology of asthma in humans and horses. Inflammation. 2021;44(2):450-465. https://doi.org/10.1007/s10753-020-01362-2
- Janssen P, Tosi I, Hego A, Maru00e9chal P, Marichal T, Radermecker C. Neutrophil extracellular traps are found in bronchoalveolar lavage fluids of horses with severe asthma and correlate with asthma severity. Front Immunol. 2022;13:1-18. https://doi.org/10.3389/fimmu.2022.921077
- Burel JG, Pomaznoy M, Lindestam Arlehamn CS, Seumois G, Vijayanand P, Sette A, et al. The challenge of distinguishing cell-cell complexes from singlet cells in non-imaging flow cytometry and single-cell sorting. Cytom Part A. 2020;97(11):1127-1135. https://doi.org/10.1002/cyto.a.24027