Osteoarthritis and cartilage2005; 13(12); 1050-1058; doi: 10.1016/j.joca.2005.07.008

A novel method for determination of collagen orientation in cartilage by Fourier transform infrared imaging spectroscopy (FT-IRIS).

Abstract: The orientation of collagen molecules is an important determinant of their functionality in connective tissues. The objective of the current study is to establish a method to determine the alignment of collagen molecules in histological sections of cartilage by polarized Fourier transform infrared imaging spectroscopy (FT-IRIS), a method based on molecular vibrations. Methods: Polarized FT-IRIS data obtained from highly oriented tendon collagen were utilized to calibrate the derived spectral parameters. The ratio of the integrated areas of the collagen amide I/II absorbances was used as an indicator of collagen orientation. These data were then applied to FT-IRIS analysis of the orientation of collagen molecules in equine articular cartilage, in equine repair cartilage after microfracture treatment, and in human osteoarthritic cartilage. Polarized light microscopy (PLM), the most frequently utilized technique to evaluate collagen fibril orientation in histological sections, was performed on picrosirius red-stained sections for comparison. Conclusions: Thicknesses of each zone of normal equine cartilage (calculated based on differences in collagen orientation) were equivalent as determined by PLM and FT-IRIS. Comparable outcomes were obtained from the PLM and FT-IRIS analyses of repair and osteoarthritis tissues, whereby similar zonal variations in collagen orientation were apparent for the two methods. However, the PLM images of human osteoarthritic cartilage showed less obvious zonal discrimination and orientation compared to the FT-IRIS images, possibly attributable to the FT-IRIS method detecting molecular orientation changes prior to their manifestation at the microscopic level.
Publication Date: 2005-09-09 PubMed ID: 16154778DOI: 10.1016/j.joca.2005.07.008Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article
  • Research Support
  • N.I.H.
  • Extramural

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

This research presents a novel method for determining the orientation of collagen molecules in cartilage using Fourier transform infrared imaging spectroscopy (FT-IRIS). The method offers a more detailed analysis than traditional polarized light microscopy (PLM) techniques, particularly when analyzing human osteoarthritic cartilage.

Objective

The study aimed to establish a new method for determining the alignment of collagen molecules within histological samples of cartilage. Collagen, a critical structural component in connective tissues, performs much of its function based on its molecular orientation. The research uses a technique based on molecular vibrations, known as polarized Fourier transform infrared imaging spectrophony (FT-IRIS).

Methods

  • Polarized FT-IRIS data, acquired from highly oriented tendon collagen, was used for calibrating the experiment’s derived spectral parameters.
  • The collagen amide I/II absorbances’ integrated areas’ ratio served as an indicator of collagen orientation.
  • This method was then applied to the assessment of collagen molecules’ orientation in equine articular cartilage and equine repair cartilage following microfracture treatment.
  • The method was also used for evaluating human osteoarthritic cartilage.
  • To generate a comparison, polarized light microscopy (PLM), the commonly used technique for evaluating collagen fibril orientation in histological sections, was performed on picrosirius red-stained sections.

Conclusions

  • Calculations based on differences in collagen orientation showed that normal equine cartilage thicknesses in each zone were the same with both PLM and FT-IRIS.
  • Similar outcomes using both methods were obtained when analyzing repair and osteoarthritis tissues.
  • However, PLM images of human osteoarthritic cartilage showed less clear zonal discrimination compared to the FT-IRIS images. This discrepancy could be due to the FT-IRIS method’s capability to detect molecular orientation changes before they become visible at the microscopic level.

Through this research, the FT-IRIS technique was proven to be a potentially more effective tool for detecting finer variations in collagen orientation, thus enhancing our understanding of tissue integrity and disease progression.

Cite This Article

APA
Bi X, Li G, Doty SB, Camacho NP. (2005). A novel method for determination of collagen orientation in cartilage by Fourier transform infrared imaging spectroscopy (FT-IRIS). Osteoarthritis Cartilage, 13(12), 1050-1058. https://doi.org/10.1016/j.joca.2005.07.008

Publication

ISSN: 1063-4584
NlmUniqueID: 9305697
Country: England
Language: English
Volume: 13
Issue: 12
Pages: 1050-1058

Researcher Affiliations

Bi, X
  • Research Division, Hospital for Special Surgery, 535 E 70th Street, New York, NY 10021, USA. bix@hss.edu
Li, G
    Doty, S B
      Camacho, N P

        MeSH Terms

        • Animals
        • Cartilage, Articular / ultrastructure
        • Fibrillar Collagens / ultrastructure
        • Hindlimb
        • Horses
        • Humans
        • Knee Joint
        • Osteoarthritis / pathology
        • Rabbits
        • Regeneration
        • Spectroscopy, Fourier Transform Infrared

        Grant Funding

        • R01 EB000744 / NIBIB NIH HHS
        • AR46121 / NIAMS NIH HHS
        • EB000744 / NIBIB NIH HHS

        Citations

        This article has been cited 54 times.
        1. Hamandi F, Goswami T. Hierarchical Structure and Properties of the Bone at Nano Level.. Bioengineering (Basel) 2022 Nov 10;9(11).
          doi: 10.3390/bioengineering9110677pubmed: 36354587google scholar: lookup
        2. Mankar R, Gajjela CC, Bueso-Ramos CE, Yin CC, Mayerich D, Reddy RK. Polarization Sensitive Photothermal Mid-Infrared Spectroscopic Imaging of Human Bone Marrow Tissue.. Appl Spectrosc 2022 Apr;76(4):508-518.
          doi: 10.1177/00037028211063513pubmed: 35236126google scholar: lookup
        3. Kistler M, Ku00f6hler H, Theopold J, Gockel I, Roth A, Hepp P, Osterhoff G. Intraoperative hyperspectral imaging (HSI) as a new diagnostic tool for the detection of cartilage degeneration.. Sci Rep 2022 Jan 12;12(1):608.
          doi: 10.1038/s41598-021-04642-5pubmed: 35022498google scholar: lookup
        4. Ding J, Mellergaard M, Zhu Z, Kwan P, Edge D, Ma Z, Hebert L, Alrobaiea S, Iwasaki T, Nielsen MCE, Tredget EE. Fluorescent light energy modulates healing in skin grafted mouse model.. Open Med (Wars) 2021;16(1):1240-1255.
          doi: 10.1515/med-2021-0329pubmed: 34522783google scholar: lookup
        5. Tits A, Ruffoni D. Joining soft tissues to bone: Insights from modeling and simulations.. Bone Rep 2021 Jun;14:100742.
          doi: 10.1016/j.bonr.2020.100742pubmed: 34150954google scholar: lookup
        6. Sanden KW, Bu00f6cker U, Ofstad R, Pedersen ME, Hu00f8st V, Afseth NK, Ru00f8nning SB, Pleshko N. Characterization of Collagen Structure in Normal, Wooden Breast and Spaghetti Meat Chicken Fillets by FTIR Microspectroscopy and Histology.. Foods 2021 Mar 6;10(3).
          doi: 10.3390/foods10030548pubmed: 33800851google scholar: lookup
        7. Rodrigues JFS, da Silva LCM, Cardoso-Sousa L, Caixeta DC, Lu00fcckemeyer DD, Henrique AS, Pontes JP, da Silva LMG, Macedo JSS, Carvalho Ju00fanior PS, Silva E Silva C, Martins MMRS, Monteiro-Neto V, Grisotto MAG, Fernandes AMR, Ferreira J, Calixto JB, Sabino-Silva R, Fernandes ES. Monitoring of Peripheral Blood Leukocytes and Plasma Samples: A Pilot Study to Examine Treatment Response to Leflunomide in Rheumatoid Arthritis.. Pharmaceuticals (Basel) 2021 Jan 29;14(2).
          doi: 10.3390/ph14020106pubmed: 33573015google scholar: lookup
        8. Querido W, Kandel S, Pleshko N. Applications of Vibrational Spectroscopy for Analysis of Connective Tissues.. Molecules 2021 Feb 9;26(4).
          doi: 10.3390/molecules26040922pubmed: 33572384google scholar: lookup
        9. Leclech C, Villard C. Cellular and Subcellular Contact Guidance on Microfabricated Substrates.. Front Bioeng Biotechnol 2020;8:551505.
          doi: 10.3389/fbioe.2020.551505pubmed: 33195116google scholar: lookup
        10. Bakir G, Girouard BE, Wiens R, Mastel S, Dillon E, Kansiz M, Gough KM. Orientation Matters: Polarization Dependent IR Spectroscopy of Collagen from Intact Tendon Down to the Single Fibril Level.. Molecules 2020 Sep 19;25(18).
          doi: 10.3390/molecules25184295pubmed: 32961663google scholar: lookup
        11. Ebrahimi M, Turunen MJ, Finnilu00e4 MA, Joukainen A, Kru00f6ger H, Saarakkala S, Korhonen RK, Tanska P. Structure-Function Relationships of Healthy and Osteoarthritic Human Tibial Cartilage: Experimental and Numerical Investigation.. Ann Biomed Eng 2020 Dec;48(12):2887-2900.
          doi: 10.1007/s10439-020-02559-0pubmed: 32648191google scholar: lookup
        12. Basso PR, Carava' E, Protasoni M, Reguzzoni M, Raspanti M. The synovial surface of the articular cartilage.. Eur J Histochem 2020 Jul 1;64(3).
          doi: 10.4081/ejh.2020.3146pubmed: 32613818google scholar: lookup
        13. Ramakrishnan N, Xia Y. Fourier-transform infrared spectroscopic imaging of articular cartilage and biomaterials: A review.. Trends Appl Spectrosc 2013;10:1-23.
          pubmed: 31693014
        14. Karchner JP, Querido W, Kandel S, Pleshko N. Spatial correlation of native and engineered cartilage components at micron resolution.. Ann N Y Acad Sci 2019 Apr;1442(1):104-117.
          doi: 10.1111/nyas.13934pubmed: 30058180google scholar: lookup
        15. Oinas J, Ronkainen AP, Rieppo L, Finnilu00e4 MAJ, Iivarinen JT, van Weeren PR, Helminen HJ, Brama PAJ, Korhonen RK, Saarakkala S. Composition, structure and tensile biomechanical properties of equine articular cartilage during growth and maturation.. Sci Rep 2018 Jul 27;8(1):11357.
          doi: 10.1038/s41598-018-29655-5pubmed: 30054498google scholar: lookup
        16. Karchner JP, Yousefi F, Bitman SR, Darvish K, Pleshko N. Non-Destructive Spectroscopic Assessment of High and Low Weight Bearing Articular Cartilage Correlates with Mechanical Properties.. Cartilage 2019 Oct;10(4):480-490.
          doi: 10.1177/1947603518764269pubmed: 29690771google scholar: lookup
        17. Spiesz EM, Thorpe CT, Thurner PJ, Screen HRC. Structure and collagen crimp patterns of functionally distinct equine tendons, revealed by quantitative polarised light microscopy (qPLM).. Acta Biomater 2018 Apr 1;70:281-292.
          doi: 10.1016/j.actbio.2018.01.034pubmed: 29409868google scholar: lookup
        18. Querido W, Falcon JM, Kandel S, Pleshko N. Vibrational spectroscopy and imaging: applications for tissue engineering.. Analyst 2017 Oct 23;142(21):4005-4017.
          doi: 10.1039/c7an01055apubmed: 28956032google scholar: lookup
        19. Qu D, Subramony SD, Boskey AL, Pleshko N, Doty SB, Lu HH. Compositional mapping of the mature anterior cruciate ligament-to-bone insertion.. J Orthop Res 2017 Nov;35(11):2513-2523.
          doi: 10.1002/jor.23539pubmed: 28176356google scholar: lookup
        20. Georgiadis M, Guizar-Sicairos M, Gschwend O, Hangartner P, Bunk O, Mu00fcller R, Schneider P. Ultrastructure Organization of Human Trabeculae Assessed by 3D sSAXS and Relation to Bone Microarchitecture.. PLoS One 2016;11(8):e0159838.
          doi: 10.1371/journal.pone.0159838pubmed: 27547973google scholar: lookup
        21. Georgiadis M, Mu00fcller R, Schneider P. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils.. J R Soc Interface 2016 Jun;13(119).
          doi: 10.1098/rsif.2016.0088pubmed: 27335222google scholar: lookup
        22. Mansour JM, Lee Z, Welter JF. Nondestructive Techniques to Evaluate the Characteristics and Development of Engineered Cartilage.. Ann Biomed Eng 2016 Mar;44(3):733-49.
          doi: 10.1007/s10439-015-1535-9pubmed: 26817458google scholar: lookup
        23. Liebi M, Georgiadis M, Menzel A, Schneider P, Kohlbrecher J, Bunk O, Guizar-Sicairos M. Nanostructure surveys of macroscopic specimens by small-angle scattering tensor tomography.. Nature 2015 Nov 19;527(7578):349-52.
          doi: 10.1038/nature16056pubmed: 26581291google scholar: lookup
        24. O'Brien MP, Penmatsa M, Palukuru U, West P, Yang X, Bostrom MP, Freeman T, Pleshko N. Monitoring the Progression of Spontaneous Articular Cartilage Healing with Infrared Spectroscopy.. Cartilage 2015 Jul;6(3):174-84.
          doi: 10.1177/1947603515572874pubmed: 26175863google scholar: lookup
        25. Ross KA, Williams RM, Schnabel LV, Mohammed HO, Potter HG, Bradica G, Castiglione E, Pownder SL, Satchell PW, Saska RA, Fortier LA. Comparison of Three Methods to Quantify Repair Cartilage Collagen Orientation.. Cartilage 2013 Apr;4(2):111-20.
          doi: 10.1177/1947603512461440pubmed: 26069654google scholar: lookup
        26. Gollwitzer H, Yang X, Spevak L, Lukashova L, Nocon A, Fields K, Pleshko N, Courtland HW, Bostrom MP, Boskey AL. Fourier Transform Infrared Spectroscopic Imaging of Fracture Healing in the Normal Mouse.. J Spectrosc (Hindawi) 2015 Jan 1;2015.
          doi: 10.1155/2015/659473pubmed: 26034749google scholar: lookup
        27. Matcher SJ. What can biophotonics tell us about the 3D microstructure of articular cartilage?. Quant Imaging Med Surg 2015 Feb;5(1):143-58.
        28. Silverberg JL, Barrett AR, Das M, Petersen PB, Bonassar LJ, Cohen I. Structure-function relations and rigidity percolation in the shear properties of articular cartilage.. Biophys J 2014 Oct 7;107(7):1721-30.
          doi: 10.1016/j.bpj.2014.08.011pubmed: 25296326google scholar: lookup
        29. Izadifar Z, Chen X, Kulyk W. Strategic design and fabrication of engineered scaffolds for articular cartilage repair.. J Funct Biomater 2012 Nov 14;3(4):799-838.
          doi: 10.3390/jfb3040799pubmed: 24955748google scholar: lookup
        30. Khanarian NT, Boushell MK, Spalazzi JP, Pleshko N, Boskey AL, Lu HH. FTIR-I compositional mapping of the cartilage-to-bone interface as a function of tissue region and age.. J Bone Miner Res 2014 Dec;29(12):2643-52.
          doi: 10.1002/jbmr.2284pubmed: 24839262google scholar: lookup
        31. Spalazzi JP, Boskey AL, Pleshko N, Lu HH. Quantitative mapping of matrix content and distribution across the ligament-to-bone insertion.. PLoS One 2013;8(9):e74349.
          doi: 10.1371/journal.pone.0074349pubmed: 24019964google scholar: lookup
        32. Hanifi A, McCarthy H, Roberts S, Pleshko N. Fourier transform infrared imaging and infrared fiber optic probe spectroscopy identify collagen type in connective tissues.. PLoS One 2013;8(5):e64822.
          doi: 10.1371/journal.pone.0064822pubmed: 23717662google scholar: lookup
        33. Hanifi A, McGoverin C, Ou YT, Safadi F, Spencer RG, Pleshko N. Differences in infrared spectroscopic data of connective tissues in transflectance and transmittance modes.. Anal Chim Acta 2013 May 24;779:41-9.
          doi: 10.1016/j.aca.2013.03.053pubmed: 23663670google scholar: lookup
        34. Julkunen P, Wilson W, Isaksson H, Jurvelin JS, Herzog W, Korhonen RK. A review of the combination of experimental measurements and fibril-reinforced modeling for investigation of articular cartilage and chondrocyte response to loading.. Comput Math Methods Med 2013;2013:326150.
          doi: 10.1155/2013/326150pubmed: 23653665google scholar: lookup
        35. Lee JH, Xia Y. Quantitative zonal differentiation of articular cartilage by microscopic magnetic resonance imaging, polarized light microscopy, and Fourier-transform infrared imaging.. Microsc Res Tech 2013 Jun;76(6):625-32.
          doi: 10.1002/jemt.22209pubmed: 23533143google scholar: lookup
        36. Hanifi A, Bi X, Yang X, Kavukcuoglu B, Lin PC, DiCarlo E, Spencer RG, Bostrom MP, Pleshko N. Infrared fiber optic probe evaluation of degenerative cartilage correlates to histological grading.. Am J Sports Med 2012 Dec;40(12):2853-61.
          doi: 10.1177/0363546512462009pubmed: 23108637google scholar: lookup
        37. Mu00e4kelu00e4 JT, Huttu MR, Korhonen RK. Structure-function relationships in osteoarthritic human hip joint articular cartilage.. Osteoarthritis Cartilage 2012 Nov;20(11):1268-77.
          doi: 10.1016/j.joca.2012.07.016pubmed: 22858669google scholar: lookup
        38. Hanifi A, Richardson JB, Kuiper JH, Roberts S, Pleshko N. Clinical outcome of autologous chondrocyte implantation is correlated with infrared spectroscopic imaging-derived parameters.. Osteoarthritis Cartilage 2012 Sep;20(9):988-96.
          doi: 10.1016/j.joca.2012.05.007pubmed: 22659601google scholar: lookup
        39. Yin J, Xia Y, Lu M. Concentration profiles of collagen and proteoglycan in articular cartilage by Fourier transform infrared imaging and principal component regression.. Spectrochim Acta A Mol Biomol Spectrosc 2012 Mar;88:90-6.
          doi: 10.1016/j.saa.2011.12.002pubmed: 22197357google scholar: lookup
        40. Kim M, Pugarelli J, Miller TL, Wolfson MR, Dodge GR, Shaffer TH. Brief mechanical ventilation impacts airway cartilage properties in neonatal lambs.. Pediatr Pulmonol 2012 Aug;47(8):763-70.
          doi: 10.1002/ppul.21616pubmed: 22170596google scholar: lookup
        41. Rosenbaum AJ, Wicker JF, Dines JS, Bonasser L, Razzano P, Dines DM, Grande DA. Histologic stages of healing correlate with restoration of tensile strength in a model of experimental tendon repair.. HSS J 2010 Sep;6(2):164-70.
          doi: 10.1007/s11420-009-9152-5pubmed: 21886531google scholar: lookup
        42. Shimizu T, Wakitani S, Tanaka Y, Yonetani Y, Shiozaki Y, Shimizu K, Horibe S. Ultrasonic probe is useful for in vivo quantitative assessment of medial femoral condyle articular cartilage.. Knee Surg Sports Traumatol Arthrosc 2011 Nov;19(11):1895-900.
          doi: 10.1007/s00167-011-1500-6pubmed: 21484387google scholar: lookup
        43. Cotofana S, Eckstein F, Wirth W, Souza RB, Li X, Wyman B, Hellio-Le Graverand MP, Link T, Majumdar S. In vivo measures of cartilage deformation: patterns in healthy and osteoarthritic female knees using 3T MR imaging.. Eur Radiol 2011 Jun;21(6):1127-35.
          doi: 10.1007/s00330-011-2057-ypubmed: 21448616google scholar: lookup
        44. Xia Y, Mittelstaedt D, Ramakrishnan N, Szarko M, Bidthanapally A. Depth-dependent anisotropies of amides and sugar in perpendicular and parallel sections of articular cartilage by Fourier transform infrared imaging.. Microsc Res Tech 2011 Feb;74(2):122-32.
          doi: 10.1002/jemt.20881pubmed: 21274999google scholar: lookup
        45. Yin J, Xia Y. Macromolecular concentrations in bovine nasal cartilage by Fourier transform infrared imaging and principal component regression.. Appl Spectrosc 2010 Nov;64(11):1199-208.
          doi: 10.1366/000370210793335124pubmed: 21073787google scholar: lookup
        46. Zheng N, Yang T, Liang M, Zhang H, Li L, Sunnassee A, Liu L. Characterization of protein in old myocardial infarction by FTIR micro-spectroscopy.. J Huazhong Univ Sci Technolog Med Sci 2010 Aug;30(4):546-50.
          doi: 10.1007/s11596-010-0466-9pubmed: 20714887google scholar: lookup
        47. Lopez Franco GE, Blank RD, Akhter MP. Intrinsic material properties of cortical bone.. J Bone Miner Metab 2011 Jan;29(1):31-6.
          doi: 10.1007/s00774-010-0194-zpubmed: 20503060google scholar: lookup
        48. Kim M, Foo LF, Uggen C, Lyman S, Ryaby JT, Moynihan DP, Grande DA, Potter HG, Pleshko N. Evaluation of early osteochondral defect repair in a rabbit model utilizing fourier transform-infrared imaging spectroscopy, magnetic resonance imaging, and quantitative T2 mapping.. Tissue Eng Part C Methods 2010 Jun;16(3):355-64.
          doi: 10.1089/ten.TEC.2009.0020pubmed: 19586313google scholar: lookup
        49. Ateshian GA. The role of interstitial fluid pressurization in articular cartilage lubrication.. J Biomech 2009 Jun 19;42(9):1163-76.
        50. Ramakrishnan N, Xia Y, Bidthanapally A. Fourier-transform infrared anisotropy in cross and parallel sections of tendon and articular cartilage.. J Orthop Surg Res 2008 Oct 6;3:48.
          doi: 10.1186/1749-799X-3-48pubmed: 18837979google scholar: lookup
        51. Xia Y, Alhadlaq H, Ramakrishnan N, Bidthanapally A, Badar F, Lu M. Molecular and morphological adaptations in compressed articular cartilage by polarized light microscopy and Fourier-transform infrared imaging.. J Struct Biol 2008 Oct;164(1):88-95.
          doi: 10.1016/j.jsb.2008.06.009pubmed: 18634884google scholar: lookup
        52. Xia Y, Ramakrishnan N, Bidthanapally A. The depth-dependent anisotropy of articular cartilage by Fourier-transform infrared imaging (FTIRI).. Osteoarthritis Cartilage 2007 Jul;15(7):780-8.
          doi: 10.1016/j.joca.2007.01.007pubmed: 17317225google scholar: lookup
        53. Boskey A, Pleshko Camacho N. FT-IR imaging of native and tissue-engineered bone and cartilage.. Biomaterials 2007 May;28(15):2465-78.
        54. Bi X, Yang X, Bostrom MP, Bartusik D, Ramaswamy S, Fishbein KW, Spencer RG, Camacho NP. Fourier transform infrared imaging and MR microscopy studies detect compositional and structural changes in cartilage in a rabbit model of osteoarthritis.. Anal Bioanal Chem 2007 Mar;387(5):1601-12.
          doi: 10.1007/s00216-006-0910-7pubmed: 17143596google scholar: lookup