Proceedings of the National Academy of Sciences of the United States of America1976; 73(10); 3413-3417; doi: 10.1073/pnas.73.10.3413

Amino-acid sequence of equine renal metallothionein-1B.

Abstract: The amino-acid sequence of a metallothionein is reported. Metallothionein is a widely distributed, extremely cysteine-rich, low-molecular-weight protein containing large amounts of cadmium and/or zinc. Metallothionein-1B is one of the two prinicipal variants occurring in equine kidney cortex. The single-chain protein contains 61 amino acids and has the composition Cys20 Ser8Lys7Arg1Ala7Gly5Val3Asp2Asn1-Glu1Gln2Pro2Thr1Met1(Cd + Zn)7. Its amino-terminal residue is N-acetylmethionine. The sequence shows distinct clustering of the twenty cysteinyl residues into seven groups separated by stretches of at least three other residues. Within these groups the cysteines occur seven times in alternating Cys-X-Cys sequences and three times each in Cys-Cys and Cys-X-X-Cys sequences, where X is an amino acid other than cysteine. Another unique feature is the close association of serine and the basic amino acids with cysteine, as manifested by the occurrence of seven Ser-Cys, four Cys-Lys, one Cys-Arg, and three Lys-Cys sequences. These findings are in agreement with the previous suggestion that metallothionein has structurally defined metal-binding sites, most of which contain three cysteinyl residues as the principal metal-binding ligands. The charge difference between the metal-free and the metal-containing protein is consistent with the formation of negatively charged trimercaptide complexes with cadmium and/or zinc ions. The possible additional involvement of serine and the basic amino acids in metal binding is discussed.
Publication Date: 1976-10-01 PubMed ID: 1068454PubMed Central: PMC431125DOI: 10.1073/pnas.73.10.3413Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article
  • Research Support
  • U.S. Gov't
  • P.H.S.

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

The research is about the amino-acid sequence of a protein called metallothionein-1B that occurs in the kidney cortex of horses. The protein is rich in cysteine and often carries large amounts of zinc and/or cadmium.

Protein Description

  • The study reports the sequence for a type of protein known as metallothionein, specifically metallothionein-1B. This protein is prominent in the kidney cortex of horses.
  • Metallothionein is a low-molecular-weight protein characterized by high cysteine content. It also carries significant volumes of cadmium and/or zinc.
  • The single-chain protein metallothionein-1B contains 61 amino acids; 20 of them are cysteines (Cys). CySteine is especially significant since it is usually involved in binding to metal ions.
  • The rest of the sequence consists of other amino acids: Ser 8, Lys 7, Arg 1, Ala 7, Gly 5, Val 3, Asp 2, Asn 1, Glu 1, Gln 2, Pro 2, Thr 1, and Met 1. It also has seven metal ions (either cadmium or zinc).

Protein Sequence Analysis

  • The study reveals a distinct pattern where the cysteine sources are separated into seven clusters with gaps of at least three other residues.
  • Within these cysteine groups, the Cys-X-Cys sequence structure appears seven times where X is an amino acid different from Cys. This structure is crucial for understanding the protein’s interaction with metal ions.
  • The sequence analysis also reveals a close association between serine and the basic amino acids with cysteine, as indicated by occurrences of Ser-Cys, Cys-Lys, Cys-Arg, and Lys-Cys sequences. This suggests a potential role of these amino acids in metal binding.

Implications

  • This study’s significance lies in the proposed structure of metallothionein, indicating that these proteins have defined metal-binding sites, most containing three key Cys residues.
  • The researchers also discuss the possibility of serine and the basic amino acids playing a role in metal binding, based on the observed sequence relationships. This implies that other amino acids might be relevant in the formation of metal protein complexes besides cysteine.
  • Understanding metallothionein structure is key to deciphering its function and role in important biological processes including detoxification of heavy metals, regulation of zinc and copper levels, and protection against oxidative damage.

Cite This Article

APA
Kojima Y, Berger C, Vallee BL, Ku00e4gi JH. (1976). Amino-acid sequence of equine renal metallothionein-1B. Proc Natl Acad Sci U S A, 73(10), 3413-3417. https://doi.org/10.1073/pnas.73.10.3413

Publication

ISSN: 0027-8424
NlmUniqueID: 7505876
Country: United States
Language: English
Volume: 73
Issue: 10
Pages: 3413-3417

Researcher Affiliations

Kojima, Y
    Berger, C
      Vallee, B L
        Ku00e4gi, J H

          MeSH Terms

          • Amino Acid Sequence
          • Animals
          • Binding Sites
          • Cysteine
          • Horses
          • Kidney / analysis
          • Metalloproteins
          • Metallothionein

          References

          This article includes 45 references
          1. Matthews BW, Weaver LH. Binding of lanthanide ions to thermolysin.. Biochemistry 1974 Apr 9;13(8):1719-25.
            pubmed: 4831359doi: 10.1021/bi00705a025google scholar: lookup
          2. Taniuchi H, Anfinsen CB. The amino acid sequence of an extracellular nuclease of Staphylococcus aureus. I. Linear order of the fragments produced by cleavage with cyanogen bromide.. J Biol Chem 1966 Oct 10;241(19):4366-85.
            pubmed: 5922961
          3. Weser U, Donay F, Rupp H. Cadmium-induced synthesis of hepatic metallothionein in chicken and rats.. FEBS Lett 1973 May 15;32(1):171-4.
            pubmed: 4715680doi: 10.1016/0014-5793(73)80764-1google scholar: lookup
          4. Kretsinger RH, Nockolds CE. Carp muscle calcium-binding protein. II. Structure determination and general description.. J Biol Chem 1973 May 10;248(9):3313-26.
            pubmed: 4700463
          5. Hermodson MA, Ericsson LH, Titani K, Neurath H, Walsh KA. Application of sequenator analyses to the study of proteins.. Biochemistry 1972 Nov 21;11(24):4493-502.
            pubmed: 4675874doi: 10.1021/bi00774a011google scholar: lookup
          6. Adman ET, Sieker LC, Jensen LH. Structure of a bacterial ferredoxin.. J Biol Chem 1973 Jun 10;248(11):3987-96.
            pubmed: 4708097
          7. Webb M. Binding of cadmium ions by rat liver and kidney.. Biochem Pharmacol 1972 Oct 15;21(20):2751-65.
            pubmed: 4647081doi: 10.1016/0006-2952(72)90023-8google scholar: lookup
          8. Winge DR, Rajagopalan KV. Purification and some properties of Cd-binding protein from rat liver.. Arch Biochem Biophys 1972 Dec;153(2):755-62.
            pubmed: 4662108doi: 10.1016/0003-9861(72)90395-5google scholar: lookup
          9. Pisano JJ, Bronzert TJ, Brewer HB Jr. Advances in the gas chromatographic analysis of amino acid phenyl- and methylthiohydantoins.. Anal Biochem 1972 Jan;45(1):43-59.
            pubmed: 5061852doi: 10.1016/0003-2697(72)90006-1google scholar: lookup
          10. Nordberg GF, Nordberg M, Piscator M, Vesterberg O. Separation of two forms of rabbit metallothionein by isoelectric focusing.. Biochem J 1972 Feb;126(3):491-8.
            pubmed: 5075263doi: 10.1042/bj1260491google scholar: lookup
          11. Tschesche H, Kupfer S. C-terminal-sequence determination by carboxypeptidase C from orange levels.. Eur J Biochem 1972 Mar 15;26(1):33-6.
          12. Prinz R, Weser U. A naturally occurring Cu-thionein in Saccharomyces cerevisiae.. Hoppe Seylers Z Physiol Chem 1975 Jun;356(6):767-76.
            pubmed: 1102411doi: 10.1515/bchm2.1975.356.s1.767google scholar: lookup
          13. Richardson J, Thomas KA, Rubin BH, Richardson DC. Crystal structure of bovine Cu,Zn superoxide dismutase at 3 A resolution: chain tracing and metal ligands.. Proc Natl Acad Sci U S A 1975 Apr;72(4):1349-53.
            pubmed: 1055410doi: 10.1073/pnas.72.4.1349google scholar: lookup
          14. Marafante E. Binding of mercury and zinc to cadmium-binding protein in liver and kidney of goldfish (Carassius auratus L.).. Experientia 1976 Feb 15;32(2):149-50.
            pubmed: 1269596doi: 10.1007/BF01937734google scholar: lookup
          15. Bremner I, Davies NT. The induction of metallothionein in rat liver by zinc injection and restriction of food intake.. Biochem J 1975 Sep;149(3):733-8.
            pubmed: 1201001doi: 10.1042/bj1490733google scholar: lookup
          16. Sokolowski G, Weser U. Formation, circular dichroism and x-ray photoelectron spectroscopy of hepatic Zn-thionein.. Hoppe Seylers Z Physiol Chem 1975 Nov;356(11):1715-26.
            pubmed: 1205450doi: 10.1515/bchm2.1975.356.2.1715google scholar: lookup
          17. Winge DR, Premakumar R, Rajagopalan KV. Metal-induced formation of metallothionein in rat liver.. Arch Biochem Biophys 1975 Sep;170(1):242-52.
            pubmed: 1164031doi: 10.1016/0003-9861(75)90115-0google scholar: lookup
          18. Richards MP, Cousins RJ. Influence of parenteral zinc and actinomycin D on tissue zinc uptake and the synthesis of a zinc - binding protein.. Bioinorg Chem 1975 Apr;4(3):215-24.
            pubmed: 1125336doi: 10.1016/s0006-3061(00)80104-0google scholar: lookup
          19. Lipscomb WN, Hartsuck JA, Quiocho FA, Reeke GN Jr. The structure of carboxypeptidase A. IX. The x-ray diffraction results in the light of the chemical sequence.. Proc Natl Acad Sci U S A 1969 Sep;64(1):28-35.
            pubmed: 5263013doi: 10.1073/pnas.64.1.28google scholar: lookup
          20. Smithies O, Gibson D, Fanning EM, Goodfliesh RM, Gilman JG, Ballantyne DL. Quantitative procedures for use with the Edman-Begg sequenator. Partial sequences of two unusual immunoglobulin light chains, Rzf and Sac.. Biochemistry 1971 Dec 21;10(26):4912-21.
            pubmed: 5134536doi: 10.1021/bi00802a013google scholar: lookup
          21. Shaikh ZA, Lucis OJ. Isolation of cadmium-binding proteins.. Experientia 1971 Sep 15;27(9):1024-5.
            pubmed: 5116120doi: 10.1007/BF02138857google scholar: lookup
          22. HIRS CH. The oxidation of ribonuclease with performic acid.. J Biol Chem 1956 Apr;219(2):611-21.
            pubmed: 13319283
          23. BANASZAK LJ, WATSON HC, KENDREW JC. THE BINDING OF CUPRIC AND ZINC IONS TO CRYSTALLINE SPERM WHALE MYOGLOBIN.. J Mol Biol 1965 May;12:130-7.
            pubmed: 14343272doi: 10.1016/s0022-2836(65)80287-xgoogle scholar: lookup
          24. PISCATOR M. [ON CADMIUM IN NORMAL HUMAN KIDNEYS WITH A REPORT ON THE ISOLATION OF METALLOTHIONEINE FROM CADMIUM-EXPOSED RABBIT LIVERS].. Nord Hyg Tidskr 1964;45:76-82.
            pubmed: 14209152
          25. KAGI JH, VALLEE BL. Metallothionein: a cadmium and zinc-containign protein from equine renal cortex. II. Physico-chemical properties.. J Biol Chem 1961 Sep;236:2435-42.
            pubmed: 13750714
          26. KAGI JH, VALEE BL. Metallothionein: a cadmium- and zinc-containing protein from equine renal cortex.. J Biol Chem 1960 Dec;235:3460-5.
            pubmed: 13750713
          27. RUDLOFF V, BRAUNITZER G. [On hemoglobin. VI. A method for the preparative production of natural peptides. The isolation of tryptic cleavage products of human hemoglobin A with Dowex 1X2 using a ninhydrin-negative volatile buffer].. Hoppe Seylers Z Physiol Chem 1961 May 3;323:129-44.
            pubmed: 13744462doi: 10.1515/bchm2.1961.323.1.129google scholar: lookup
          28. Eklund H, Nordstru00f6m B, Zeppezauer E, Su00f6derlund G, Ohlsson I, Boiwe T, Bru00e4ndu00e9n CI. The structure of horse liver alcohol dehydrogenase.. FEBS Lett 1974 Aug 25;44(2):200-4.
            pubmed: 4473096doi: 10.1016/0014-5793(74)80725-8google scholar: lookup
          29. Cotton FA, Bier CJ, Day VW, Hazen EE Jr, Larsen S. Some aspects of the structure of staphylococcal nuclease. I. Crystallographic studies.. Cold Spring Harb Symp Quant Biol 1972;36:243-9.
            pubmed: 4343716doi: 10.1101/sqb.1972.036.01.032google scholar: lookup
          30. Piszkiewicz D, Landon M, Smith EL. Anomalous cleavage of aspartyl-proline peptide bonds during amino acid sequence determinations.. Biochem Biophys Res Commun 1970 Sep 10;40(5):1173-8.
            pubmed: 4100801doi: 10.1016/0006-291x(70)90918-6google scholar: lookup
          31. Suda T, Horiuchi N, Ogata E, Ezawa I, Otaki N. Prevention by metallothionein of cadmium-induced inhibition of vitamin D activation reaction in kidney.. FEBS Lett 1974 May 15;42(1):23-6.
            pubmed: 4369038doi: 10.1016/0014-5793(74)80270-xgoogle scholar: lookup
          32. Bremner I, Marshall RB. Hepatic copper-and zinc-binding proteins in ruminants. 1. Distribution of Cu and Zn among soluble proteins of livers of varying Cu and Zn content.. Br J Nutr 1974 Sep;32(2):283-91.
            pubmed: 4371647doi: 10.1079/bjn19740081google scholar: lookup
          33. Waara I, Lu00f6vgren S, Liljas A, Kannan KK, Bergstu00e9n PC. Functional aspects of the three-dimensional structure of the active site of carbonic anhydrase.. Adv Exp Med Biol 1972;28:169-87.
            pubmed: 4628558doi: 10.1007/978-1-4684-3222-0_13google scholar: lookup
          34. Carter CW Jr, Freer ST, Xuong NH, Alden RA, Kraut J. Structure of the iron-sulfur cluster in the Chromatius iron protein at 2.25 Angstrom resolution.. Cold Spring Harb Symp Quant Biol 1972;36:381-5.
            pubmed: 4508152doi: 10.1101/sqb.1972.036.01.049google scholar: lookup
          35. Watenpaugh KD, Sieker LC, Herriott JR, Jensen LH. The structure of a non-heme iron protein: rubredoxin at 1.5 Angstrom resolution.. Cold Spring Harb Symp Quant Biol 1972;36:359-67.
            pubmed: 4508149doi: 10.1101/sqb.1972.036.01.047google scholar: lookup
          36. Edelman GM, Cunningham BA, Reeke GN Jr, Becker JW, Waxdal MJ, Wang JL. The covalent and three-dimensional structure of concanavalin A.. Proc Natl Acad Sci U S A 1972 Sep;69(9):2580-4.
            pubmed: 4506778doi: 10.1073/pnas.69.9.2580google scholar: lookup
          37. Kimura M, Otaki N, Yoshiki S, Suzuki M, Horiuchi N. The isolation of metallothionein and its protective role in cadmium poisoning.. Arch Biochem Biophys 1974 Nov;165(1):340-8.
            pubmed: 4441078doi: 10.1016/0003-9861(74)90172-6google scholar: lookup
          38. Bremner I, Marshall RB. Hepatic copper- and zinc-binding proteins in ruminants. 2. Relationship between Cu and Zn concentrations and the occurrence of a metallothionein-like fraction.. Br J Nutr 1974 Sep;32(2):293-300.
            pubmed: 4424627doi: 10.1079/bjn19740082google scholar: lookup
          39. Bu00fchler RH, Ku00e4gi JH. Human hepatic metallothioneins.. FEBS Lett 1974 Feb 15;39(2):229-34.
            pubmed: 4852307doi: 10.1016/0014-5793(74)80057-8google scholar: lookup
          40. Ku00e4gi JH, Himmelhoch SR, Whanger PD, Bethune JL, Vallee BL. Equine hepatic and renal metallothioneins. Purification, molecular weight, amino acid composition, and metal content.. J Biol Chem 1974 Jun 10;249(11):3537-42.
            pubmed: 4831228
          41. Friedman M, Krull LH, Cavins JF. The chromatographic determination of cystine and cysteine residues in proteins as s-beta-(4-pyridylethyl)cysteine.. J Biol Chem 1970 Aug 10;245(15):3868-71.
            pubmed: 5492953
          42. Delaage M. [On the determination of the most coherent molecular weight with analysis of the amino acids of a protein].. Biochim Biophys Acta 1968 Dec 3;168(3):573-5.
            pubmed: 5701717
          43. Edman P, Begg G. A protein sequenator.. Eur J Biochem 1967 Mar;1(1):80-91.
            pubmed: 6059350doi: 10.1007/978-3-662-25813-2_14google scholar: lookup
          44. Pulido P, Ku00e4gi JH, Vallee BL. Isolation and some properties of human metallothionein.. Biochemistry 1966 May;5(5):1768-77.
            pubmed: 5961295doi: 10.1021/bi00869a046google scholar: lookup
          45. Weser U, Rupp H, Donay F, Linnemann F, Voelter W, Voetsch W, Jung G. Characterization of Cd, Zn-thionein (metallothionein) isolated from rat and chicken liver.. Eur J Biochem 1973 Nov 1;39(1):127-40.

          Citations

          This article has been cited 46 times.
          1. Yoshikawa Y, Nasuno R, Takaya N, Takagi H. Metallothionein Cup1 attenuates nitrosative stress in the yeast Saccharomyces cerevisiae.. Microb Cell 2023 Aug 7;10(8):170-177.
            doi: 10.15698/mic2023.08.802pubmed: 37545644google scholar: lookup
          2. Sekovaniu0107 A, Jurasoviu0107 J, Piasek M. Metallothionein 2A gene polymorphisms in relation to diseases and trace element levels in humans.. Arh Hig Rada Toksikol 2020 Mar 1;71(1):27-47.
            doi: 10.2478/aiht-2020-71-3349pubmed: 32597135google scholar: lookup
          3. Kru0119u017cel A, Maret W. The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism.. Int J Mol Sci 2017 Jun 9;18(6).
            doi: 10.3390/ijms18061237pubmed: 28598392google scholar: lookup
          4. Moreno-Sierra D, Bergu00e9s-Tiznado ME, Mu00e1rquez-Faru00edas F, Torres-Rojas YE, Ruelas-Inzunza JR, Pu00e1ez-Osuna F. Trace metals in target tissues and stomach contents of the top predator sailfish Istiophorus platypterus from the Eastern Pacific: concentrations and contrasting behavior of biomagnification.. Environ Sci Pollut Res Int 2016 Dec;23(23):23791-23803.
            doi: 10.1007/s11356-016-7551-ypubmed: 27623858google scholar: lookup
          5. Yang M, Zhang F, Wang F, Dong Z, Cao Q, Chen M. Characterization of a Type 1 Metallothionein Gene from the Stresses-Tolerant Plant Ziziphus jujuba.. Int J Mol Sci 2015 Jul 23;16(8):16750-62.
            doi: 10.3390/ijms160816750pubmed: 26213917google scholar: lookup
          6. He Y, Liu M, Darabedian N, Liang Y, Wu D, Xiang J, Zhou F. pH-dependent coordination of Pb2+ to metallothionein2: structures and insight into lead detoxification.. Inorg Chem 2014 Mar 17;53(6):2822-30.
            doi: 10.1021/ic402452spubmed: 24559479google scholar: lookup
          7. Mehus AA, Muhonen WW, Garrett SH, Somji S, Sens DA, Shabb JB. Quantitation of human metallothionein isoforms: a family of small, highly conserved, cysteine-rich proteins.. Mol Cell Proteomics 2014 Apr;13(4):1020-33.
            doi: 10.1074/mcp.M113.033373pubmed: 24493013google scholar: lookup
          8. Phillips JL. Zinc-induced synthesis of low molecular weight zinc-binding protein by human lymphocytes.. Biol Trace Elem Res 1979 Dec;1(4):359-71.
            doi: 10.1007/BF02778837pubmed: 24277169google scholar: lookup
          9. Verma MP, Sharma RP, Bourcier DR. Macromolecular interactions with cadmium and the effects of zinc, copper, lead, and mercury ions.. Biol Trace Elem Res 1982 Mar;4(1):35-43.
            doi: 10.1007/BF02789132pubmed: 24271913google scholar: lookup
          10. Namdarghanbari M, Wobig W, Krezoski S, Tabatabai NM, Petering DH. Mammalian metallothionein in toxicology, cancer, and cancer chemotherapy.. J Biol Inorg Chem 2011 Oct;16(7):1087-101.
            doi: 10.1007/s00775-011-0823-6pubmed: 21822976google scholar: lookup
          11. Freisinger E. Structural features specific to plant metallothioneins.. J Biol Inorg Chem 2011 Oct;16(7):1035-45.
            doi: 10.1007/s00775-011-0801-zpubmed: 21688177google scholar: lookup
          12. Vau0161u00e1k M, Meloni G. Chemistry and biology of mammalian metallothioneins.. J Biol Inorg Chem 2011 Oct;16(7):1067-78.
            doi: 10.1007/s00775-011-0799-2pubmed: 21647776google scholar: lookup
          13. Waeytens A, De Vos M, Laukens D. Evidence for a potential role of metallothioneins in inflammatory bowel diseases.. Mediators Inflamm 2009;2009:729172.
            doi: 10.1155/2009/729172pubmed: 19727408google scholar: lookup
          14. Du00edaz S, Amaro F, Rico D, Campos V, Benu00edtez L, Martu00edn-Gonzu00e1lez A, Hamilton EP, Orias E, Gutiu00e9rrez JC. Tetrahymena metallothioneins fall into two discrete subfamilies.. PLoS One 2007 Mar 14;2(3):e291.
            doi: 10.1371/journal.pone.0000291pubmed: 17356700google scholar: lookup
          15. Woo S, Yum S, Jung JH, Shim WJ, Lee CH, Lee TK. Heavy metal-induced differential gene expression of metallothionein in Javanese medaka, Oryzias javanicus.. Mar Biotechnol (NY) 2006 Nov-Dec;8(6):654-62.
            doi: 10.1007/s10126-006-6046-0pubmed: 16967182google scholar: lookup
          16. Wagner GJ. Characterization of a cadmium-binding complex of cabbage leaves.. Plant Physiol 1984 Nov;76(3):797-805.
            doi: 10.1104/pp.76.3.797pubmed: 16663927google scholar: lookup
          17. Bartolf M, Brennan E, Price CA. Partial Characterization of a Cadmium-binding Protein from the Roots of Cadmium-treated Tomato.. Plant Physiol 1980 Sep;66(3):438-41.
            doi: 10.1104/pp.66.3.438pubmed: 16661451google scholar: lookup
          18. Jiang P, Chang L, Pan CS, Qi YF, Tang CS. Protective role of metallothionein in stress-induced gastric ulcer in rats.. World J Gastroenterol 2005 May 14;11(18):2739-43.
            doi: 10.3748/wjg.v11.i18.2739pubmed: 15884113google scholar: lookup
          19. Choi CH, Cha YJ, An CS, Kim KJ, Kim KC, Moon SP, Lee ZH, Min YD. Molecular mechanisms of heptaplatin effective against cisplatin-resistant cancer cell lines: less involvement of metallothionein.. Cancer Cell Int 2004 Oct 19;4(1):6.
            doi: 10.1186/1475-2867-4-6pubmed: 15494073google scholar: lookup
          20. Emoto T, Kurasaki M, Oikawa S, Suzuki-Kurasaki M, Okabe M, Yamasaki F, Kojima Y. Roles of the conserved serines of metallothionein in cadmium binding.. Biochem Genet 1996 Jun;34(5-6):239-51.
            doi: 10.1007/BF02407022pubmed: 8813055google scholar: lookup
          21. Khazaeli MB, Mitra RS. Cadmium-binding component in Escherichia coli during accommodation to low levels of this ion.. Appl Environ Microbiol 1981 Jan;41(1):46-50.
            doi: 10.1128/aem.41.1.46-50.1981pubmed: 7013701google scholar: lookup
          22. Otvos JD, Armitage IM. Structure of the metal clusters in rabbit liver metallothionein.. Proc Natl Acad Sci U S A 1980 Dec;77(12):7094-8.
            doi: 10.1073/pnas.77.12.7094pubmed: 6938956google scholar: lookup
          23. Udom AO, Brady FO. Reactivation in vitro of zinc-requiring apo-enzymes by rat liver zinc-thionein.. Biochem J 1980 May 1;187(2):329-35.
            doi: 10.1042/bj1870329pubmed: 6772158google scholar: lookup
          24. Hunt CT, Boulanger Y, Fesik SW, Armitage IM. NMR analysis of the structure and metal sequestering properties of metallothioneins.. Environ Health Perspect 1984 Mar;54:135-45.
            doi: 10.1289/ehp.8454135pubmed: 6734553google scholar: lookup
          25. Boulanger Y, Goodman CM, Forte CP, Fesik SW, Armitage IM. Model for mammalian metallothionein structure.. Proc Natl Acad Sci U S A 1983 Mar;80(6):1501-5.
            doi: 10.1073/pnas.80.6.1501pubmed: 6572910google scholar: lookup
          26. Cousins RJ. Metallothionein--aspects related to copper and zinc metabolism.. J Inherit Metab Dis 1983;6 Suppl 1:15-21.
            doi: 10.1007/BF01811318pubmed: 6413769google scholar: lookup
          27. Ku00e4gi JH, Vasu00e1k M, Lerch K, Gilg DE, Hunziker P, Bernhard WR, Good M. Structure of mammalian metallothionein.. Environ Health Perspect 1984 Mar;54:93-103.
            doi: 10.1289/ehp.54-1568188pubmed: 6329671google scholar: lookup
          28. Vasu00e1k M, Ku00e4gi JH. Metal thiolate clusters in cobalt(II)-metallothionein.. Proc Natl Acad Sci U S A 1981 Nov;78(11):6709-13.
            doi: 10.1073/pnas.78.11.6709pubmed: 6273885google scholar: lookup
          29. Winge DR, Garvey JS. Antigenicity of metallothionein.. Proc Natl Acad Sci U S A 1983 May;80(9):2472-6.
            doi: 10.1073/pnas.80.9.2472pubmed: 6189123google scholar: lookup
          30. Dohi Y, Kosaka K, Ohba K, Yoneyama Y. Cadmium-binding proteins of three marine molluscs and characterization of two cadmium-binding glycoproteins from the hepatopancreas of a whelk, Buccinum tenuissimum.. Environ Health Perspect 1986 Mar;65:49-55.
            doi: 10.1289/ehp.866549pubmed: 3709465google scholar: lookup
          31. Vasu00e1k M, Armitage I. Nomenclature and possible evolutionary pathways of metallothionein and related proteins.. Environ Health Perspect 1986 Mar;65:215-6.
            doi: 10.1289/ehp.65-1474693pubmed: 3709443google scholar: lookup
          32. Vasu00e1k M. Dynamic metal-thiolate cluster structure of metallothioneins.. Environ Health Perspect 1986 Mar;65:193-7.
            doi: 10.1289/ehp.65-1474703pubmed: 3709439google scholar: lookup
          33. Kito H, Ose Y, Sato T. Cadmium-binding protein (metallothionein) in carp.. Environ Health Perspect 1986 Mar;65:117-24.
            doi: 10.1289/ehp.8665117pubmed: 3519201google scholar: lookup
          34. Ku00e4gi JH, Hunziker P. Mammalian metallothionein.. Biol Trace Elem Res 1989 Jul-Sep;21:111-8.
            doi: 10.1007/BF02917243pubmed: 2484576google scholar: lookup
          35. Razak AA. Incorporation of cadmium into proteins in a cadmium tolerant fungi.. Biol Trace Elem Res 1989 Dec;22(3):277-85.
            doi: 10.1007/BF02916616pubmed: 2484413google scholar: lookup
          36. McCormick CC, Fullmer CS, Garvey JS. Amino acid sequence and comparative antigenicity of chicken metallothionein.. Proc Natl Acad Sci U S A 1988 Jan;85(2):309-13.
            doi: 10.1073/pnas.85.2.309pubmed: 2448773google scholar: lookup
          37. Pasquale EB. Identification of chicken embryo kinase 5, a developmentally regulated receptor-type tyrosine kinase of the Eph family.. Cell Regul 1991 Jul;2(7):523-34.
            doi: 10.1091/mbc.2.7.523pubmed: 1664238google scholar: lookup
          38. Satoh M, Naganuma A, Imura N. Effect of preinduction of metallothionein on paraquat toxicity in mice.. Arch Toxicol 1992;66(2):145-8.
            doi: 10.1007/BF02342510pubmed: 1605731google scholar: lookup
          39. Andersen RD, Weser U. Partial purification, characterization and translation in vitro of rat liver metallothionein messenger ribonucleic acid.. Biochem J 1978 Dec 1;175(3):841-52.
            doi: 10.1042/bj1750841pubmed: 743237google scholar: lookup
          40. Suzuki KT, Maitani T. Cadmium-113 FT NMR-spectra of rabbit liver metallothioneins.. Experientia 1978 Nov 15;34(11):1449-50.
            doi: 10.1007/BF01932344pubmed: 720466google scholar: lookup
          41. Andersen RD, Winter WP, Maher JJ, Bernstein IA. Turnover of metallothioneins in rat liver.. Biochem J 1978 Jul 15;174(1):327-38.
            doi: 10.1042/bj1740327pubmed: 697759google scholar: lookup
          42. Port AE, Hunt DM. A study of the copper-binding proteins in liver and kidney tissue of neonatal normal and mottled mutant mice.. Biochem J 1979 Dec 1;183(3):721-30.
            doi: 10.1042/bj1830721pubmed: 575486google scholar: lookup
          43. Ohtake H, Koga M. Purification and characterization of zinc-binding protein from the liver of the partially hepatectomized rat.. Biochem J 1979 Dec 1;183(3):683-90.
            doi: 10.1042/bj1830683pubmed: 540039google scholar: lookup
          44. Overnell J, Coombs TL. Purification and properties of plaice metallothionein, a cadmium-binding protein from the liver of the plaice (Pleuronectes platessa).. Biochem J 1979 Nov 1;183(2):277-83.
            doi: 10.1042/bj1830277pubmed: 534496google scholar: lookup
          45. Suzuki KT. Copper content in cadmium-exposed animal kidney metallothioneins.. Arch Environ Contam Toxicol 1979;8(3):255-68.
            doi: 10.1007/BF01056242pubmed: 507936google scholar: lookup
          46. Yoshida A, Kaplan BE, Kimura M. Metal-binding and detoxification effect of synthetic oligopeptides containing three cysteinyl residues.. Proc Natl Acad Sci U S A 1979 Jan;76(1):486-90.
            doi: 10.1073/pnas.76.1.486pubmed: 284364google scholar: lookup