Genes2022; 13(12); 2188; doi: 10.3390/genes13122188

Analysis of the Whole-Genome Sequences from an Equus Parent-Offspring Trio Provides Insight into the Genomic Incompatibilities in the Hybrid Mule.

Abstract: Interspecific hybridization often shows negative effects on hybrids. However, only a few multicellular species, limited to a handful of plants and animals, have shown partial genetic mechanisms by which hybridization leads to low fitness in hybrids. Here, to explore the outcome of combining the two genomes of a horse and donkey, we analyzed the whole-genome sequences from an parent-offspring trio using Illumina platforms. We generated 41.39× and 46.21× coverage sequences for the horse and mule, respectively. For the donkey, a 40.38× coverage sequence was generated and stored in our laboratory. Approximately 24.86 million alleles were discovered that varied from the reference genome. Single nucleotide polymorphisms were used as polymorphic markers for assigning alleles to their parental genomic inheritance. We identified 25,703 Mendelian inheritance error single nucleotide polymorphisms in the mule genome that were not inherited from the parents through Mendelian inheritance. A total of 555 single nucleotide polymorphisms were also identified. The rate of single nucleotide polymorphisms was 2.21 × 10 in the mule from the parent-offspring trio. This rate is obviously higher than the natural mutation rate for , which is also consistent with the previous hypothesis that interracial crosses may have a high mutation rate. The genes associated with these single nucleotide polymorphisms are mainly involved in immune processes, DNA repair, and cancer processes. The results of the analysis of three genomes from an parent-offspring trio improved our knowledge of the consequences of the integration of parental genomes in mules.
Publication Date: 2022-11-23 PubMed ID: 36553455PubMed Central: PMC9778318DOI: 10.3390/genes13122188Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article
  • Research Support
  • Non-U.S. Gov't

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

This research study investigated the genomic characteristics of a mule, a hybrid offspring of a horse and a donkey, by analyzing its whole-genome sequence along with those of its parents. The researchers found genetic variations in the mule that were not inherited from the parents, suggesting a higher mutation rate in hybrid animals.

Study Methodology and Data Generation

  • The scientists used Illumina sequencing technology to analyze the entire genomes of a parent-offspring trio, which included a horse, a donkey, and their mule offspring.
  • They generated comprehensive sequence data with coverage depths between 40.38× and 46.21× for the horse, mule, and donkey genomes.
  • Approximately 24.86 million distinct variations, or alleles, were found when compared to a reference genome.

Analysis of Genetic Variation

  • The researchers used single nucleotide polymorphisms (SNPs), which are variations at a single position in the DNA sequence, to track which alleles were inherited from which parent.
  • In the mule’s genome, they discovered 25,703 SNPs that did not follow typical Mendelian inheritance patterns—in other words, these variants were not directly inherited from the horse or donkey parent.
  • In addition to these, they identified 555 other SNPs of special interest.

Implications of the Findings

  • The rate of these special SNPs was significantly higher in the mule than the natural mutation rate for other species. This suggests that hybrid offspring, such as mules, might have a greater mutation rate than non-hybrids.
  • Genes associated with these unique SNPs were mainly involved in various important biological functions, including immune response, DNA repair, and cancer-related processes.
  • These findings enhance our understanding of the genomic consequences of hybridization. This improved knowledge could be important for species conservation efforts, breeding programs, and the study of evolutionary biology.

Cite This Article

APA
Ren X, Liu Y, Zhao Y, Li B, Bai D, Bou G, Zhang X, Du M, Wang X, Bou T, Shen Y, Dugarjaviin M. (2022). Analysis of the Whole-Genome Sequences from an Equus Parent-Offspring Trio Provides Insight into the Genomic Incompatibilities in the Hybrid Mule. Genes (Basel), 13(12), 2188. https://doi.org/10.3390/genes13122188

Publication

ISSN: 2073-4425
NlmUniqueID: 101551097
Country: Switzerland
Language: English
Volume: 13
Issue: 12
PII: 2188

Researcher Affiliations

Ren, Xiujuan
  • Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China.
Liu, Yuanyi
  • Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China.
Zhao, Yiping
  • Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China.
Li, Bei
  • Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China.
Bai, Dongyi
  • Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China.
Bou, Gerelchimeg
  • Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China.
Zhang, Xinzhuang
  • Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China.
Du, Ming
  • Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China.
Wang, Xisheng
  • Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China.
Bou, Tugeqin
  • Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China.
Shen, Yingchao
  • Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China.
Dugarjaviin, Manglai
  • Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China.

MeSH Terms

  • Horses / genetics
  • Animals
  • Equidae / genetics
  • Genome
  • Genomics
  • Polymorphism, Single Nucleotide / genetics
  • Hybridization, Genetic

Conflict of Interest Statement

The authors declare no conflict of interest.

References

This article includes 93 references
  1. Orlando L, Ginolhac A, Zhang G, Froese D, Albrechtsen A, Stiller M, Schubert M, Cappellini E, Petersen B, Moltke I, Johnson PL, Fumagalli M, Vilstrup JT, Raghavan M, Korneliussen T, Malaspinas AS, Vogt J, Szklarczyk D, Kelstrup CD, Vinther J, Dolocan A, Stenderup J, Velazquez AM, Cahill J, Rasmussen M, Wang X, Min J, Zazula GD, Seguin-Orlando A, Mortensen C, Magnussen K, Thompson JF, Weinstock J, Gregersen K, Ru00f8ed KH, Eisenmann V, Rubin CJ, Miller DC, Antczak DF, Bertelsen MF, Brunak S, Al-Rasheid KA, Ryder O, Andersson L, Mundy J, Krogh A, Gilbert MT, Kju00e6r K, Sicheritz-Ponten T, Jensen LJ, Olsen JV, Hofreiter M, Nielsen R, Shapiro B, Wang J, Willerslev E. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse.. Nature 2013 Jul 4;499(7456):74-8.
    doi: 10.1038/nature12323pubmed: 23803765google scholar: lookup
  2. Ju00f3nsson H, Schubert M, Seguin-Orlando A, Ginolhac A, Petersen L, Fumagalli M, Albrechtsen A, Petersen B, Korneliussen TS, Vilstrup JT, Lear T, Myka JL, Lundquist J, Miller DC, Alfarhan AH, Alquraishi SA, Al-Rasheid KA, Stagegaard J, Strauss G, Bertelsen MF, Sicheritz-Ponten T, Antczak DF, Bailey E, Nielsen R, Willerslev E, Orlando L. Speciation with gene flow in equids despite extensive chromosomal plasticity.. Proc Natl Acad Sci U S A 2014 Dec 30;111(52):18655-60.
    doi: 10.1073/pnas.1412627111pmc: PMC4284605pubmed: 25453089google scholar: lookup
  3. Bush GL, Case SM, Wilson AC, Patton JL. Rapid speciation and chromosomal evolution in mammals.. Proc Natl Acad Sci U S A 1977 Sep;74(9):3942-6.
    doi: 10.1073/pnas.74.9.3942pmc: PMC431793pubmed: 269445google scholar: lookup
  4. Trifonov VA, Stanyon R, Nesterenko AI, Fu B, Perelman PL, O'Brien PC, Stone G, Rubtsova NV, Houck ML, Robinson TJ, Ferguson-Smith MA, Dobigny G, Graphodatsky AS, Yang F. Multidirectional cross-species painting illuminates the history of karyotypic evolution in Perissodactyla.. Chromosome Res 2008;16(1):89-107.
    doi: 10.1007/s10577-007-1201-7pubmed: 18293107google scholar: lookup
  5. Huang J, Zhao Y, Bai D, Shiraigol W, Li B, Yang L, Wu J, Bao W, Ren X, Jin B, Zhao Q, Li A, Bao S, Bao W, Xing Z, An A, Gao Y, Wei R, Bao Y, Bao T, Han H, Bai H, Bao Y, Zhang Y, Daidiikhuu D, Zhao W, Liu S, Ding J, Ye W, Ding F, Sun Z, Shi Y, Zhang Y, Meng H, Dugarjaviin M. Donkey genome and insight into the imprinting of fast karyotype evolution.. Sci Rep 2015 Sep 16;5:14106.
    doi: 10.1038/srep14106pmc: PMC4571621pubmed: 26373886google scholar: lookup
  6. Renaud G, Petersen B, Seguin-Orlando A, Bertelsen MF, Waller A, Newton R, Paillot R, Bryant N, Vaudin M, Librado P, Orlando L. Improved de novo genomic assembly for the domestic donkey.. Sci Adv 2018 Apr;4(4):eaaq0392.
    doi: 10.1126/sciadv.aaq0392pmc: PMC5938232pubmed: 29740610google scholar: lookup
  7. Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S, Imsland F, Lear TL, Adelson DL, Bailey E, Bellone RR, Blu00f6cker H, Distl O, Edgar RC, Garber M, Leeb T, Mauceli E, MacLeod JN, Penedo MC, Raison JM, Sharpe T, Vogel J, Andersson L, Antczak DF, Biagi T, Binns MM, Chowdhary BP, Coleman SJ, Della Valle G, Fryc S, Guu00e9rin G, Hasegawa T, Hill EW, Jurka J, Kiialainen A, Lindgren G, Liu J, Magnani E, Mickelson JR, Murray J, Nergadze SG, Onofrio R, Pedroni S, Piras MF, Raudsepp T, Rocchi M, Ru00f8ed KH, Ryder OA, Searle S, Skow L, Swinburne JE, Syvu00e4nen AC, Tozaki T, Valberg SJ, Vaudin M, White JR, Zody MC, Lander ES, Lindblad-Toh K. Genome sequence, comparative analysis, and population genetics of the domestic horse.. Science 2009 Nov 6;326(5954):865-7.
    doi: 10.1126/science.1178158pmc: PMC3785132pubmed: 19892987google scholar: lookup
  8. Muller H.J. Isolating mechanisms, evolution and temperature. Biol. Symp. 1942;6:71u2013125.
  9. Dobzhansky T. Genetics and the Origin of Species. Nature. 1959;184:587u2013588. doi: 10.2307/1439305.
    doi: 10.2307/1439305google scholar: lookup
  10. Fishman L, Sweigart AL. When Two Rights Make a Wrong: The Evolutionary Genetics of Plant Hybrid Incompatibilities.. Annu Rev Plant Biol 2018 Apr 29;69:707-731.
  11. Presgraves DC, Balagopalan L, Abmayr SM, Orr HA. Adaptive evolution drives divergence of a hybrid inviability gene between two species of Drosophila.. Nature 2003 Jun 12;423(6941):715-9.
    doi: 10.1038/nature01679pubmed: 12802326google scholar: lookup
  12. Zuellig MP, Sweigart AL. Gene duplicates cause hybrid lethality between sympatric species of Mimulus.. PLoS Genet 2018 Apr;14(4):e1007130.
  13. Hoffmann AA, Rieseberg LH. Revisiting the Impact of Inversions in Evolution: From Population Genetic Markers to Drivers of Adaptive Shifts and Speciation?. Annu Rev Ecol Evol Syst 2008 Dec 1;39:21-42.
  14. Stathos A, Fishman L. Chromosomal rearrangements directly cause underdominant F1 pollen sterility in Mimulus lewisii-Mimulus cardinalis hybrids.. Evolution 2014 Nov;68(11):3109-19.
    doi: 10.1111/evo.12503pubmed: 25125144google scholar: lookup
  15. Klein J, Sato A, Nikolaidis N. MHC, TSP, and the origin of species: from immunogenetics to evolutionary genetics.. Annu Rev Genet 2007;41:281-304.
  16. Gillingham MA, Courtiol A, Teixeira M, Galan M, Bechet A, Cezilly F. Evidence of gene orthology and trans-species polymorphism, but not of parallel evolution, despite high levels of concerted evolution in the major histocompatibility complex of flamingo species.. J Evol Biol 2016 Feb;29(2):438-54.
    doi: 10.1111/jeb.12798pubmed: 26606731google scholar: lookup
  17. Ilmonen P, Penn DJ, Damjanovich K, Morrison L, Ghotbi L, Potts WK. Major histocompatibility complex heterozygosity reduces fitness in experimentally infected mice.. Genetics 2007 Aug;176(4):2501-8.
    doi: 10.1534/genetics.107.074815pmc: PMC1950649pubmed: 17603099google scholar: lookup
  18. Malmstru00f8m M, Matschiner M, Tu00f8rresen OK, Star B, Snipen LG, Hansen TF, Baalsrud HT, Nederbragt AJ, Hanel R, Salzburger W, Stenseth NC, Jakobsen KS, Jentoft S. Evolution of the immune system influences speciation rates in teleost fishes.. Nat Genet 2016 Oct;48(10):1204-10.
    doi: 10.1038/ng.3645pubmed: 27548311google scholar: lookup
  19. Sicard A, Kappel C, Josephs EB, Lee YW, Marona C, Stinchcombe JR, Wright SI, Lenhard M. Divergent sorting of a balanced ancestral polymorphism underlies the establishment of gene-flow barriers in Capsella.. Nat Commun 2015 Aug 13;6:7960.
    doi: 10.1038/ncomms8960pmc: PMC4539569pubmed: 26268845google scholar: lookup
  20. Collins AM, Watson CT, Breden F. Immunoglobulin genes, reproductive isolation and vertebrate speciation.. Immunol Cell Biol 2022 Aug;100(7):497-506.
    doi: 10.1111/imcb.12567pmc: PMC9545137pubmed: 35781330google scholar: lookup
  21. Watson CT, Kos JT, Gibson WS, Newman L, Deikus G, Busse CE, Smith ML, Jackson KJ, Collins AM. A comparison of immunoglobulin IGHV, IGHD and IGHJ genes in wild-derived and classical inbred mouse strains.. Immunol Cell Biol 2019 Nov;97(10):888-901.
    doi: 10.1111/imcb.12288pubmed: 31441114google scholar: lookup
  22. Mack KL, Nachman MW. Gene Regulation and Speciation.. Trends Genet 2017 Jan;33(1):68-80.
    doi: 10.1016/j.tig.2016.11.003pmc: PMC5182078pubmed: 27914620google scholar: lookup
  23. Lu Y, Sandoval A, Voss S, Lai Z, Kneitz S, Boswell W, Boswell M, Savage M, Walter C, Warren W, Schartl M, Walter R. Oncogenic allelic interaction in Xiphophorus highlights hybrid incompatibility.. Proc Natl Acad Sci U S A 2020 Nov 24;117(47):29786-29794.
    doi: 10.1073/pnas.2010133117pmc: PMC7703647pubmed: 33168740google scholar: lookup
  24. Powell DL, Garcu00eda-Olazu00e1bal M, Keegan M, Reilly P, Du K, Du00edaz-Loyo AP, Banerjee S, Blakkan D, Reich D, Andolfatto P, Rosenthal GG, Schartl M, Schumer M. Natural hybridization reveals incompatible alleles that cause melanoma in swordtail fish.. Science 2020 May 15;368(6492):731-736.
    doi: 10.1126/science.aba5216pmc: PMC8074799pubmed: 32409469google scholar: lookup
  25. Levin-Sparenberg E, Bylsma LC, Lowe K, Sangare L, Fryzek JP, Alexander DD. A Systematic Literature Review and Meta-Analysis Describing the Prevalence of KRAS, NRAS, and BRAF Gene Mutations in Metastatic Colorectal Cancer.. Gastroenterology Res 2020 Oct;13(5):184-198.
    doi: 10.14740/gr1167pmc: PMC7665856pubmed: 33224365google scholar: lookup
  26. O'Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S, Karakoc E, Mackenzie AP, Ng SB, Baker C, Rieder MJ, Nickerson DA, Bernier R, Fisher SE, Shendure J, Eichler EE. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations.. Nat Genet 2011 Jun;43(6):585-9.
    doi: 10.1038/ng.835pmc: PMC3115696pubmed: 21572417google scholar: lookup
  27. Hoischen A, van Bon BW, Gilissen C, Arts P, van Lier B, Steehouwer M, de Vries P, de Reuver R, Wieskamp N, Mortier G, Devriendt K, Amorim MZ, Revencu N, Kidd A, Barbosa M, Turner A, Smith J, Oley C, Henderson A, Hayes IM, Thompson EM, Brunner HG, de Vries BB, Veltman JA. De novo mutations of SETBP1 cause Schinzel-Giedion syndrome.. Nat Genet 2010 Jun;42(6):483-5.
    doi: 10.1038/ng.581pubmed: 20436468google scholar: lookup
  28. Liu S, Luo J, Chai J, Ren L, Zhou Y, Huang F, Liu X, Chen Y, Zhang C, Tao M, Lu B, Zhou W, Lin G, Mai C, Yuan S, Wang J, Li T, Qin Q, Feng H, Luo K, Xiao J, Zhong H, Zhao R, Duan W, Song Z, Wang Y, Wang J, Zhong L, Wang L, Ding Z, Du Z, Lu X, Gao Y, Murphy RW, Liu Y, Meyer A, Zhang YP. Genomic incompatibilities in the diploid and tetraploid offspring of the goldfish u00d7 common carp cross.. Proc Natl Acad Sci U S A 2016 Feb 2;113(5):1327-32.
    doi: 10.1073/pnas.1512955113pmc: PMC4747765pubmed: 26768847google scholar: lookup
  29. Yang S, Wang L, Huang J, Zhang X, Yuan Y, Chen JQ, Hurst LD, Tian D. Parent-progeny sequencing indicates higher mutation rates in heterozygotes.. Nature 2015 Jul 23;523(7561):463-7.
    doi: 10.1038/nature14649pubmed: 26176923google scholar: lookup
  30. Xie Z, Wang L, Wang L, Wang Z, Lu Z, Tian D, Yang S, Hurst LD. Mutation rate analysis via parent-progeny sequencing of the perennial peach. I. A low rate in woody perennials and a higher mutagenicity in hybrids.. Proc Biol Sci 2016 Oct 26;283(1841).
    doi: 10.1098/rspb.2016.1016pmc: PMC5095371pubmed: 27798292google scholar: lookup
  31. Cho YS, Hu L, Hou H, Lee H, Xu J, Kwon S, Oh S, Kim HM, Jho S, Kim S, Shin YA, Kim BC, Kim H, Kim CU, Luo SJ, Johnson WE, Koepfli KP, Schmidt-Ku00fcntzel A, Turner JA, Marker L, Harper C, Miller SM, Jacobs W, Bertola LD, Kim TH, Lee S, Zhou Q, Jung HJ, Xu X, Gadhvi P, Xu P, Xiong Y, Luo Y, Pan S, Gou C, Chu X, Zhang J, Liu S, He J, Chen Y, Yang L, Yang Y, He J, Liu S, Wang J, Kim CH, Kwak H, Kim JS, Hwang S, Ko J, Kim CB, Kim S, Bayarlkhagva D, Paek WK, Kim SJ, O'Brien SJ, Wang J, Bhak J. The tiger genome and comparative analysis with lion and snow leopard genomes.. Nat Commun 2013;4:2433.
    doi: 10.1038/ncomms3433pmc: PMC3778509pubmed: 24045858google scholar: lookup
  32. Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging.. BMC Res Notes 2016 Feb 12;9:88.
    doi: 10.1186/s13104-016-1900-2pmc: PMC4751634pubmed: 26868221google scholar: lookup
  33. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform.. Bioinformatics 2009 Jul 15;25(14):1754-60.
  34. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The Sequence Alignment/Map format and SAMtools.. Bioinformatics 2009 Aug 15;25(16):2078-9.
  35. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.. Genome Res 2010 Sep;20(9):1297-303.
    doi: 10.1101/gr.107524.110pmc: PMC2928508pubmed: 20644199google scholar: lookup
  36. Poplin R, Chang PC, Alexander D, Schwartz S, Colthurst T, Ku A, Newburger D, Dijamco J, Nguyen N, Afshar PT, Gross SS, Dorfman L, McLean CY, DePristo MA. A universal SNP and small-indel variant caller using deep neural networks.. Nat Biotechnol 2018 Nov;36(10):983-987.
    doi: 10.1038/nbt.4235pubmed: 30247488google scholar: lookup
  37. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella KV, Altshuler D, Gabriel S, DePristo MA. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline.. Curr Protoc Bioinformatics 2013;43(1110):11.10.1-11.10.33.
  38. Manheimer KB, Patel N, Richter F, Gorham J, Tai AC, Homsy J, Boskovski MT, Parfenov M, Goldmuntz E, Chung WK, Brueckner M, Tristani-Firouzi M, Srivastava D, Seidman JG, Seidman CE, Gelb BD, Sharp AJ. Robust identification of deletions in exome and genome sequence data based on clustering of Mendelian errors.. Hum Mutat 2018 Jun;39(6):870-881.
    doi: 10.1002/humu.23419pmc: PMC6022753pubmed: 29527824google scholar: lookup
  39. Abyzov A, Urban AE, Snyder M, Gerstein M. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing.. Genome Res 2011 Jun;21(6):974-84.
    doi: 10.1101/gr.114876.110pmc: PMC3106330pubmed: 21324876google scholar: lookup
  40. Tempel S. Using and understanding RepeatMasker.. Methods Mol Biol 2012;859:29-51.
    doi: 10.1007/978-1-61779-603-6_2pubmed: 22367864google scholar: lookup
  41. Roach JC, Glusman G, Smit AF, Huff CD, Hubley R, Shannon PT, Rowen L, Pant KP, Goodman N, Bamshad M, Shendure J, Drmanac R, Jorde LB, Hood L, Galas DJ. Analysis of genetic inheritance in a family quartet by whole-genome sequencing.. Science 2010 Apr 30;328(5978):636-9.
    doi: 10.1126/science.1186802pmc: PMC3037280pubmed: 20220176google scholar: lookup
  42. Koboldt DC, Larson DE, Wilson RK. Using VarScan 2 for Germline Variant Calling and Somatic Mutation Detection.. Curr Protoc Bioinformatics 2013 Dec;44:15.4.1-17.
  43. Shao L, Xing F, Xu C, Zhang Q, Che J, Wang X, Song J, Li X, Xiao J, Chen LL, Ouyang Y, Zhang Q. Patterns of genome-wide allele-specific expression in hybrid rice and the implications on the genetic basis of heterosis.. Proc Natl Acad Sci U S A 2019 Mar 19;116(12):5653-5658.
    doi: 10.1073/pnas.1820513116pmc: PMC6431163pubmed: 30833384google scholar: lookup
  44. Do K.T., Kong H.S., Lee J.H., Lee H.K., Cho B.W., Kim H.S., Ahn K., Park K.D. Genomic characterization of the Przewalskiu2019s horse inhabiting Mongolian steppe by whole genome re-sequencing. Livest. Sci. 2014;167:86u201391. doi: 10.1016/j.livsci.2014.06.020.
  45. Huang J, Zhao Y, Shiraigol W, Li B, Bai D, Ye W, Daidiikhuu D, Yang L, Jin B, Zhao Q, Gao Y, Wu J, Bao W, Li A, Zhang Y, Han H, Bai H, Bao Y, Zhao L, Zhai Z, Zhao W, Sun Z, Zhang Y, Meng H, Dugarjaviin M. Analysis of horse genomes provides insight into the diversification and adaptive evolution of karyotype.. Sci Rep 2014 May 14;4:4958.
    doi: 10.1038/srep04958pmc: PMC4021364pubmed: 24828444google scholar: lookup
  46. Tatsumoto S, Go Y, Fukuta K, Noguchi H, Hayakawa T, Tomonaga M, Hirai H, Matsuzawa T, Agata K, Fujiyama A. Direct estimation of de novo mutation rates in a chimpanzee parent-offspring trio by ultra-deep whole genome sequencing.. Sci Rep 2017 Nov 1;7(1):13561.
    doi: 10.1038/s41598-017-13919-7pmc: PMC5666008pubmed: 29093469google scholar: lookup
  47. Campbell CD, Chong JX, Malig M, Ko A, Dumont BL, Han L, Vives L, O'Roak BJ, Sudmant PH, Shendure J, Abney M, Ober C, Eichler EE. Estimating the human mutation rate using autozygosity in a founder population.. Nat Genet 2012 Nov;44(11):1277-81.
    doi: 10.1038/ng.2418pmc: PMC3483378pubmed: 23001126google scholar: lookup
  48. Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, Gudjonsson SA, Sigurdsson A, Jonasdottir A, Jonasdottir A, Wong WS, Sigurdsson G, Walters GB, Steinberg S, Helgason H, Thorleifsson G, Gudbjartsson DF, Helgason A, Magnusson OT, Thorsteinsdottir U, Stefansson K. Rate of de novo mutations and the importance of father's age to disease risk.. Nature 2012 Aug 23;488(7412):471-5.
    doi: 10.1038/nature11396pmc: PMC3548427pubmed: 22914163google scholar: lookup
  49. Neefjes J, Jongsma ML, Paul P, Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation.. Nat Rev Immunol 2011 Nov 11;11(12):823-36.
    doi: 10.1038/nri3084pubmed: 22076556google scholar: lookup
  50. Gibson SA, Yang W, Yan Z, Qin H, Benveniste EN. CK2 Controls Th17 and Regulatory T Cell Differentiation Through Inhibition of FoxO1.. J Immunol 2018 Jul 15;201(2):383-392.
    doi: 10.4049/jimmunol.1701592pmc: PMC6040220pubmed: 29891553google scholar: lookup
  51. Rostamzadeh D, Yousefi M, Haghshenas MR, Ahmadi M, Dolati S, Babaloo Z. mTOR Signaling pathway as a master regulator of memory CD8(+) T-cells, Th17, and NK cells development and their functional properties.. J Cell Physiol 2019 Aug;234(8):12353-12368.
    doi: 10.1002/jcp.28042pubmed: 30710341google scholar: lookup
  52. Son J, Cho YW, Woo YJ, Baek YA, Kim EJ, Cho Y, Kim JY, Kim BS, Song JJ, Ha SJ. Metabolic Reprogramming by the Excessive AMPK Activation Exacerbates Antigen-Specific Memory CD8(+) T Cell Differentiation after Acute Lymphocytic Choriomeningitis Virus Infection.. Immune Netw 2019 Apr;19(2):e11.
    doi: 10.4110/in.2019.19.e11pmc: PMC6494768pubmed: 31089438google scholar: lookup
  53. Abdullah L, Hills LB, Winter EB, Huang YH. Diverse Roles of Akt in T cells.. Immunometabolism 2021;3(1).
  54. Koyama H, Bornfeldt KE, Fukumoto S, Nishizawa Y. Molecular pathways of cyclic nucleotide-induced inhibition of arterial smooth muscle cell proliferation.. J Cell Physiol 2001 Jan;186(1):1-10.
  55. Li Z, Pearlman AH, Hsieh P. DNA mismatch repair and the DNA damage response.. DNA Repair (Amst) 2016 Feb;38:94-101.
  56. Lavrik OI. PARPs' impact on base excision DNA repair.. DNA Repair (Amst) 2020 Sep;93:102911.
    doi: 10.1016/j.dnarep.2020.102911pubmed: 33087277google scholar: lookup
  57. Meek DW. Regulation of the p53 response and its relationship to cancer.. Biochem J 2015 Aug 1;469(3):325-46.
    doi: 10.1042/BJ20150517pubmed: 26205489google scholar: lookup
  58. Nguyen AV, Albers CG, Holcombe RF. Differentiation of tubular and villous adenomas based on Wnt pathway-related gene expression profiles.. Int J Mol Med 2010 Jul;26(1):121-5.
    doi: 10.3892/ijmm_00000443pubmed: 20514431google scholar: lookup
  59. Duncan F.N. An attempt to produce mutations through hybridization. Am. Nat. 1915;49:575u2013582. doi: 10.1086/279502.
    doi: 10.1086/279502google scholar: lookup
  60. Kovalchuk I, Kovalchuk O, Hohn B. Genome-wide variation of the somatic mutation frequency in transgenic plants.. EMBO J 2000 Sep 1;19(17):4431-8.
    doi: 10.1093/emboj/19.17.4431pmc: PMC302052pubmed: 10970837google scholar: lookup
  61. Dal GM, Ergu00fcner B, Sau011fu0131rou011flu MS, Yu00fcksel B, Onat OE, Alkan C, u00d6zu00e7elik T. Early postzygotic mutations contribute to de novo variation in a healthy monozygotic twin pair.. J Med Genet 2014 Jul;51(7):455-9.
    doi: 10.1136/jmedgenet-2013-102197pubmed: 24764354google scholar: lookup
  62. Acuna-Hidalgo R, Bo T, Kwint MP, van de Vorst M, Pinelli M, Veltman JA, Hoischen A, Vissers LE, Gilissen C. Post-zygotic Point Mutations Are an Underrecognized Source of De Novo Genomic Variation.. Am J Hum Genet 2015 Jul 2;97(1):67-74.
    doi: 10.1016/j.ajhg.2015.05.008pmc: PMC4571017pubmed: 26054435google scholar: lookup
  63. Lujan SA, Kunkel TA. Stability across the Whole Nuclear Genome in the Presence and Absence of DNA Mismatch Repair.. Cells 2021 May 17;10(5).
    doi: 10.3390/cells10051224pmc: PMC8156620pubmed: 34067668google scholar: lookup
  64. Kamath PL, Getz WM. Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus.. BMC Evol Biol 2011 May 18;11:128.
    doi: 10.1186/1471-2148-11-128pmc: PMC3126738pubmed: 21592397google scholar: lookup
  65. Liu C, Lei H, Ran X, Wang J. Genetic variation and selection in the major histocompatibility complex Class II gene in the Guizhou pony.. PeerJ 2020;8:e9889.
    doi: 10.7717/peerj.9889pmc: PMC7505079pubmed: 32999762google scholar: lookup
  66. Radwan J, Babik W, Kaufman J, Lenz TL, Winternitz J. Advances in the Evolutionary Understanding of MHC Polymorphism.. Trends Genet 2020 Apr;36(4):298-311.
    doi: 10.1016/j.tig.2020.01.008pubmed: 32044115google scholar: lookup
  67. Atanasov KE, Liu C, Erban A, Kopka J, Parker JE, Alcu00e1zar R. NLR Mutations Suppressing Immune Hybrid Incompatibility and Their Effects on Disease Resistance.. Plant Physiol 2018 Jul;177(3):1152-1169.
    doi: 10.1104/pp.18.00462pmc: PMC6052992pubmed: 29794019google scholar: lookup
  68. Yang X, Mariuzza RA. Pre-T-cell receptor binds MHC: Implications for thymocyte signaling and selection.. Proc Natl Acad Sci U S A 2015 Jul 7;112(27):8166-7.
    doi: 10.1073/pnas.1510127112pmc: PMC4500228pubmed: 26134398google scholar: lookup
  69. Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, Kochi Y, Ohmura K, Suzuki A, Yoshida S, Graham RR, Manoharan A, Ortmann W, Bhangale T, Denny JC, Carroll RJ, Eyler AE, Greenberg JD, Kremer JM, Pappas DA, Jiang L, Yin J, Ye L, Su DF, Yang J, Xie G, Keystone E, Westra HJ, Esko T, Metspalu A, Zhou X, Gupta N, Mirel D, Stahl EA, Diogo D, Cui J, Liao K, Guo MH, Myouzen K, Kawaguchi T, Coenen MJ, van Riel PL, van de Laar MA, Guchelaar HJ, Huizinga TW, Dieudu00e9 P, Mariette X, Bridges SL Jr, Zhernakova A, Toes RE, Tak PP, Miceli-Richard C, Bang SY, Lee HS, Martin J, Gonzalez-Gay MA, Rodriguez-Rodriguez L, Rantapu00e4u00e4-Dahlqvist S, Arlestig L, Choi HK, Kamatani Y, Galan P, Lathrop M, Eyre S, Bowes J, Barton A, de Vries N, Moreland LW, Criswell LA, Karlson EW, Taniguchi A, Yamada R, Kubo M, Liu JS, Bae SC, Worthington J, Padyukov L, Klareskog L, Gregersen PK, Raychaudhuri S, Stranger BE, De Jager PL, Franke L, Visscher PM, Brown MA, Yamanaka H, Mimori T, Takahashi A, Xu H, Behrens TW, Siminovitch KA, Momohara S, Matsuda F, Yamamoto K, Plenge RM. Genetics of rheumatoid arthritis contributes to biology and drug discovery.. Nature 2014 Feb 20;506(7488):376-81.
    doi: 10.1038/nature12873pmc: PMC3944098pubmed: 24390342google scholar: lookup
  70. Hu X, Deutsch AJ, Lenz TL, Onengut-Gumuscu S, Han B, Chen WM, Howson JM, Todd JA, de Bakker PI, Rich SS, Raychaudhuri S. Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk.. Nat Genet 2015 Aug;47(8):898-905.
    doi: 10.1038/ng.3353pmc: PMC4930791pubmed: 26168013google scholar: lookup
  71. Selvaraja M, Too CL, Tan LK, Koay BT, Abdullah M, Shah AM, Arip M, Amin-Nordin S. Human leucocyte antigens profiling in Malay female patients with systemic lupus erythematosus: are we the same or different?. Lupus Sci Med 2022 Feb;9(1).
    doi: 10.1136/lupus-2021-000554pmc: PMC8808435pubmed: 35105721google scholar: lookup
  72. Gaud G, Lesourne R, Love PE. Regulatory mechanisms in T cell receptor signalling.. Nat Rev Immunol 2018 Aug;18(8):485-497.
    doi: 10.1038/s41577-018-0020-8pubmed: 29789755google scholar: lookup
  73. Lebedeva T, Dustin ML, Sykulev Y. ICAM-1 co-stimulates target cells to facilitate antigen presentation.. Curr Opin Immunol 2005 Jun;17(3):251-8.
    doi: 10.1016/j.coi.2005.04.008pubmed: 15886114google scholar: lookup
  74. Lee EB, Kim JY, Kim EH, Nam JH, Park KS, Song YW. Intercellular adhesion molecule-1 polymorphisms in Korean patients with rheumatoid arthritis.. Tissue Antigens 2004 Oct;64(4):473-7.
  75. Huang G, Wang Y, Chi H. Regulation of TH17 cell differentiation by innate immune signals.. Cell Mol Immunol 2012 Jul;9(4):287-95.
    doi: 10.1038/cmi.2012.10pmc: PMC3423893pubmed: 22504954google scholar: lookup
  76. Gomes da Silva IIF, Lima CAD, Monteiro MLA, Barboza DASP, Rushansky E, Mariano MHQA, Sandrin-Garcia P, de Souza PRE, Maia MMD. IL1u03b2, IL18, NFKB1 and IFNG gene interactions are associated with severity of rheumatoid arthritis: A pilot study.. Autoimmunity 2020 Mar;53(2):95-101.
    doi: 10.1080/08916934.2019.1710831pubmed: 31992083google scholar: lookup
  77. Wang J, Liu H, Wang Y, Wu J, Wang C, Liu K, Qin Q. The Polymorphisms of Interleukin-12B Gene and Susceptibility to Inflammatory Bowel Diseases: A Meta-analysis and Trial Sequential Analysis.. Immunol Invest 2021 Nov;50(8):987-1006.
    doi: 10.1080/08820139.2020.1863981pubmed: 33390082google scholar: lookup
  78. Osman AE, Brema I, AlQurashi A, Al-Jurayyan A, Bradley B, Hamza MA. Single nucleotide polymorphism rs 2070874 at Interleukin-4 is associated with increased risk of type 1 diabetes mellitus independently of human leukocyte antigens.. Int J Immunopathol Pharmacol 2022 Jan-Dec;36:3946320221090330.
    doi: 10.1177/03946320221090330pmc: PMC9006359pubmed: 35404688google scholar: lookup
  79. Rosenberg E, Demopoulos RI, Zeleniuch-Jacquotte A, Yee H, Sorich J, Speyer JL, Newcomb EW. Expression of cell cycle regulators p57(KIP2), cyclin D1, and cyclin E in epithelial ovarian tumors and survival.. Hum Pathol 2001 Aug;32(8):808-13.
    doi: 10.1053/hupa.2001.26462pubmed: 11521224google scholar: lookup
  80. Dang TT, Morales JC. Involvement of POLA2 in Double Strand Break Repair and Genotoxic Stress.. Int J Mol Sci 2020 Jun 15;21(12).
    doi: 10.3390/ijms21124245pmc: PMC7352189pubmed: 32549188google scholar: lookup
  81. Shiratori A, Okumura K, Nogami M, Taguchi H, Onozaki T, Inoue T, Ando T, Shibata T, Izumi M, Miyazawa H. Assignment of the 49-kDa (PRIM1) and 58-kDa (PRIM2A and PRIM2B) subunit genes of the human DNA primase to chromosome bands 1q44 and 6p11.1-p12.. Genomics 1995 Jul 20;28(2):350-3.
    doi: 10.1006/geno.1995.1155pubmed: 8530050google scholar: lookup
  82. Venkatesan RN, Treuting PM, Fuller ED, Goldsby RE, Norwood TH, Gooley TA, Ladiges WC, Preston BD, Loeb LA. Mutation at the polymerase active site of mouse DNA polymerase delta increases genomic instability and accelerates tumorigenesis.. Mol Cell Biol 2007 Nov;27(21):7669-82.
    doi: 10.1128/MCB.00002-07pmc: PMC2169052pubmed: 17785453google scholar: lookup
  83. Zanders S, Ma X, Roychoudhury A, Hernandez RD, Demogines A, Barker B, Gu Z, Bustamante CD, Alani E. Detection of heterozygous mutations in the genome of mismatch repair defective diploid yeast using a Bayesian approach.. Genetics 2010 Oct;186(2):493-503.
    doi: 10.1534/genetics.110.120105pmc: PMC2954485pubmed: 20660644google scholar: lookup
  84. Magon KL, Parish JL. From infection to cancer: how DNA tumour viruses alter host cell central carbon and lipid metabolism.. Open Biol 2021 Mar;11(3):210004.
    doi: 10.1098/rsob.210004pmc: PMC8061758pubmed: 33653084google scholar: lookup
  85. Ali Syeda Z, Langden SSS, Munkhzul C, Lee M, Song SJ. Regulatory Mechanism of MicroRNA Expression in Cancer.. Int J Mol Sci 2020 Mar 3;21(5).
    doi: 10.3390/ijms21051723pmc: PMC7084905pubmed: 32138313google scholar: lookup
  86. Liaw D, Marsh DJ, Li J, Dahia PL, Wang SI, Zheng Z, Bose S, Call KM, Tsou HC, Peacocke M, Eng C, Parsons R. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome.. Nat Genet 1997 May;16(1):64-7.
    doi: 10.1038/ng0597-64pubmed: 9140396google scholar: lookup
  87. Sansom OJ, Meniel V, Wilkins JA, Cole AM, Oien KA, Marsh V, Jamieson TJ, Guerra C, Ashton GH, Barbacid M, Clarke AR. Loss of Apc allows phenotypic manifestation of the transforming properties of an endogenous K-ras oncogene in vivo.. Proc Natl Acad Sci U S A 2006 Sep 19;103(38):14122-7.
    doi: 10.1073/pnas.0604130103pmc: PMC1599922pubmed: 16959882google scholar: lookup
  88. Murugan AK, Grieco M, Tsuchida N. RAS mutations in human cancers: Roles in precision medicine.. Semin Cancer Biol 2019 Dec;59:23-35.
  89. Lee TI, Young RA. Transcriptional regulation and its misregulation in disease.. Cell 2013 Mar 14;152(6):1237-51.
    doi: 10.1016/j.cell.2013.02.014pmc: PMC3640494pubmed: 23498934google scholar: lookup
  90. Wei J, Hu M, Huang K, Lin S, Du H. Roles of Proteoglycans and Glycosaminoglycans in Cancer Development and Progression.. Int J Mol Sci 2020 Aug 20;21(17).
    doi: 10.3390/ijms21175983pmc: PMC7504257pubmed: 32825245google scholar: lookup
  91. Glunde K, Bhujwalla ZM, Ronen SM. Choline metabolism in malignant transformation.. Nat Rev Cancer 2011 Nov 17;11(12):835-48.
    doi: 10.1038/nrc3162pmc: PMC4337883pubmed: 22089420google scholar: lookup
  92. Wang Y, Chen Y, Fang J. Post-Transcriptional and Post-translational Regulation of Central Carbon Metabolic Enzymes in Cancer.. Anticancer Agents Med Chem 2017 Nov 24;17(11):1456-1465.
  93. Oliveira PA, Colau00e7o A, Chaves R, Guedes-Pinto H, De-La-Cruz P LF, Lopes C. Chemical carcinogenesis.. An Acad Bras Cienc 2007 Dec;79(4):593-616.

Citations

This article has been cited 0 times.