Viruses2022; 14(9); 2013; doi: 10.3390/v14092013

Epidemiological and Genomic Characterisation of Middelburg and Sindbis Alphaviruses Identified in Horses with Febrile and Neurological Infections, South Africa (2014-2018).

Abstract: Although Old World alphaviruses, Middelburg- (MIDV) and Sindbis virus (SINV), have previously been detected in horses and wildlife with neurologic disease in South Africa, the pathogenesis and clinical presentation of MIDV and SINV infections in animals are not well documented. Clinical samples from horses across South Africa with acute or fatal neurologic and febrile infections submitted between 2014-2018 were investigated. In total, 69/1084 (6.36%) and 11/1084 (1.01%) horses tested positive for MIDV and SINV, respectively, by real-time reverse transcription (RT) PCR. Main signs/outcomes for MIDV ( = 69): 73.91% neurological, 75.36% fever, 28.99% icterus and anorexia, respectively, 8.70% fatalities; SINV ( = 11): 54.54% neurological, 72.73% fever, 36.36% anorexia and 18.18% fatalities. MIDV cases peaked in the late summer/autumn across most South African provinces while SINV cases did not show a clear seasonality and were detected in fewer South African provinces. MIDV could still be detected in blood samples via RT-PCR for up to 71,417 and 21 days after onset of signs in 4 horses respectively, suggesting prolonged replication relative to SINV which could only be detected in the initial sample. Phylogenetic analyses based on partial sequences of the nsP4 (MIDV = 59 and SINV = 7) and E1 (MIDV = 45) genes, as well as full genome sequences (MIDV = 6), clustered the MIDV and SINV strains from the present study with previously detected strains. MIDV infection appears to be more prevalent in horses than SINV infection based on RT-PCR results, however, prevalence estimates might be different when also considering serological surveillance data.
Publication Date: 2022-09-11 PubMed ID: 36146819PubMed Central: PMC9501102DOI: 10.3390/v14092013Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article
  • Research Support
  • Non-U.S. Gov't

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

The research examined the incidence and characteristics of neurological and febrile infections caused by Old World alphaviruses, Middelburg- (MIDV) and Sindbis virus (SINV), in horses in South Africa from 2014 to 2018. The study found more cases of MIDV than SINV, with MIDV also presenting prolonged replication relative to SINV.

Research Context and Approach

  • The study was driven by previous findings of MIDV and SINV in horses and wildlife in South Africa that presented with neurological diseases. However, there was limited documentation on the pathogenesis and clinical manifestation of these infections in animals, which created the need for this research.
  • The researchers analyzed clinical samples drawn from horses throughout South Africa with acute or fatal neurological and febrile infections submitted between 2014 and 2018.
  • These samples were tested for MIDV and SINV using real-time reverse transcription (RT) PCR, a method effective in detecting and measuring RNA in samples.

Key Findings

  • The testing found that 6.36% (69 out of 1084) and 1.01% (11 out of 1084) of the horses were positive for MIDV and SINV, respectively.
  • Main clinical symptoms of MIDV included neurological signs (73.91% of cases), fever (75.36%), icterus and anorexia (28.99%), with fatalities in 8.70% of cases. For SINV, the figures were 54.54% neurological, 72.73% fever, 36.36% anorexia, and 18.18% fatalities.
  • The occurrence of MIDV cases was highest in late summer or autumn across most provinces in South Africa, whereas SINV cases presented no clear seasonal trends and were found in fewer provinces.
  • MIDV presented a more prolonged replication compared to SINV, as shown by the detection of MIDV in blood samples up to 71,417 and 21 days after onset of signs in four horses. In contrast, SINV could only be detected in the initial sample.

Genomic Characterization

  • The researchers performed phylogenetic analyses based on partial sequences of the nsP4 (MIDV = 59 and SINV = 7) and E1 (MIDV = 45) genes, as well as full genome sequences (MIDV = 6).
  • They found that MIDV and SINV strains in their study clustered together with strains previously detected, indicating similarities in the genomic characteristics of the viruses from different periods.

Implications

  • The study concluded that MIDV infection appears more prevalent in horses than SINV infection based on RT-PCR testing.
  • However, the authors caution that the prevalence estimates might differ if serological surveillance data, which measures the presence of antibodies in the blood, are taken into account.

Cite This Article

APA
Fourie I, Snyman J, Williams J, Ismail A, Jansen van Vuren P, Venter M. (2022). Epidemiological and Genomic Characterisation of Middelburg and Sindbis Alphaviruses Identified in Horses with Febrile and Neurological Infections, South Africa (2014-2018). Viruses, 14(9), 2013. https://doi.org/10.3390/v14092013

Publication

ISSN: 1999-4915
NlmUniqueID: 101509722
Country: Switzerland
Language: English
Volume: 14
Issue: 9
PII: 2013

Researcher Affiliations

Fourie, Isabel
  • Department of Medical Virology, University of Pretoria, Pretoria 0031, South Africa.
Snyman, Jumari
  • Department of Medical Virology, University of Pretoria, Pretoria 0031, South Africa.
Williams, June
  • Department of Paraclinical Sciences, University of Pretoria, Pretoria 0110, South Africa.
Ismail, Arshad
  • Sequencing Core Facility, National Institute of Communicable Diseases (NICD), Johannesburg 2192, South Africa.
  • Department of Biochemistry and Microbiology, University of Venda, Thohoyandou 0950, South Africa.
Jansen van Vuren, Petrus
  • Australian Centre for Disease Preparedness, CSIRO-Health and Biosecurity, Geelong 3220, Australia.
Venter, Marietjie
  • Department of Medical Virology, University of Pretoria, Pretoria 0031, South Africa.

MeSH Terms

  • Alphavirus Infections / diagnosis
  • Alphavirus Infections / epidemiology
  • Alphavirus Infections / veterinary
  • Animals
  • Anorexia
  • Genomics
  • Horses
  • Phylogeny
  • Sindbis Virus / genetics
  • South Africa / epidemiology

Conflict of Interest Statement

The authors declare no conflict of interest.

References

This article includes 57 references
  1. Carrera JP, Forrester N, Wang E, Vittor AY, Haddow AD, Lu00f3pez-Vergu00e8s S, Abadu00eda I, Castau00f1o E, Sosa N, Bu00e1ez C, Estripeaut D, Du00edaz Y, Beltru00e1n D, Cisneros J, Cedeu00f1o HG, Travassos da Rosa AP, Hernandez H, Martu00ednez-Torres AO, Tesh RB, Weaver SC. Eastern equine encephalitis in Latin America.. N Engl J Med 2013 Aug 22;369(8):732-44.
    doi: 10.1056/NEJMoa1212628pmc: PMC3839813pubmed: 23964935google scholar: lookup
  2. Acosta-Ampudia Y, Monsalve DM, Rodru00edguez Y, Pacheco Y, Anaya JM, Ramu00edrez-Santana C. Mayaro: an emerging viral threat?. Emerg Microbes Infect 2018 Sep 26;7(1):163.
    doi: 10.1038/s41426-018-0163-5pmc: PMC6156602pubmed: 30254258google scholar: lookup
  3. Lundstru00f6m JO, Turell MJ, Niklasson B. Viremia in three orders of birds (Anseriformes, Galliformes and Passeriformes) inoculated with Ockelbo virus.. J Wildl Dis 1993 Apr;29(2):189-95.
    doi: 10.7589/0090-3558-29.2.189pubmed: 8387608google scholar: lookup
  4. Adouchief S, Smura T, Sane J, Vapalahti O, Kurkela S. Sindbis virus as a human pathogen-epidemiology, clinical picture and pathogenesis.. Rev Med Virol 2016 Jul;26(4):221-41.
    doi: 10.1002/rmv.1876pubmed: 26990827google scholar: lookup
  5. TAYLOR RM, HURLBUT HS, WORK TH, KINGSTON JR, FROTHINGHAM TE. Sindbis virus: a newly recognized arthropodtransmitted virus.. Am J Trop Med Hyg 1955 Sep;4(5):844-62.
    doi: 10.4269/ajtmh.1955.4.844pubmed: 13259009google scholar: lookup
  6. McIntosh B.M., Jupp P.G., Dos Santos I., Meenehan G.M. Epidemics of West Nile and Sindbis viruses in South Africa with Culex (Culex) univittatus Theobald as vector. South Afr. J. Sci. 1976;72:295u2013300.
  7. Storm N, Weyer J, Markotter W, Kemp A, Leman PA, Dermaux-Msimang V, Nel LH, Paweska JT. Human cases of Sindbis fever in South Africa, 2006-2010.. Epidemiol Infect 2014 Feb;142(2):234-8.
    doi: 10.1017/S0950268813000964pmc: PMC9151170pubmed: 23611492google scholar: lookup
  8. Division of Public Health Surveillance and Response. Centre for Emerging ZaPD, NICD-NHLS . Cluster of Sindbis virus infections in Gauteng Province: An update. In: Centre for Emerging ZaPD, NICD-NHLS, editor. Division of Public Health Surveillance and Response. NICD Division of Public Health Surveillance and Response; Johannesburg, South Africa: 2017. p. 1.
  9. KOKERNOT RH, DE MEILLON B, PATERSON HE, HEYMANN CS, SMITHBURN KC. Middelburg virus; a hitherto unknown agent isolated from Aedes mosquitoes during an epizootic in sheep in the eastern Cape Province.. S Afr J Med Sci 1957 Dec;22(4):145-53.
    pubmed: 13529199
  10. McIntosh B.M. Doctoral Dissertation. University of Pretoria; Hatfield, South Africa: 1980. The Epidemiology of Arthropod-Borne Viruses in Southern Africa Pretoria (SA)
  11. Human S., Steyl J., Williams J., Last R., van Niekerk S., Venter M. Sindbis and Middelburg Viruses as a Cause of Disease in Animals in South Africa: The Molecular Epidemiology; Proceedings of the 9th Annual Congress of the Southern African Society for Veterinary Epidemiology and Preventive Medicine; Farm Inn, Pretoria, South Africa. 18u201320 August 2010.
  12. Attoui H, Sailleau C, Mohd Jaafar F, Belhouchet M, Biagini P, Cantaloube JF, de Micco P, Mertens P, Zientara S. Complete nucleotide sequence of Middelburg virus, isolated from the spleen of a horse with severe clinical disease in Zimbabwe.. J Gen Virol 2007 Nov;88(Pt 11):3078-3088.
    doi: 10.1099/vir.0.83076-0pubmed: 17947533google scholar: lookup
  13. van Niekerk S, Human S, Williams J, van Wilpe E, Pretorius M, Swanepoel R, Venter M. Sindbis and Middelburg Old World Alphaviruses Associated with Neurologic Disease in Horses, South Africa.. Emerg Infect Dis 2015 Dec;21(12):2225-9.
    doi: 10.3201/eid2112.150132pmc: PMC4672445pubmed: 26583836google scholar: lookup
  14. Steyn J, Fourie I, Steyl J, Williams J, Stivaktas V, Botha E, van Niekerk S, Reininghaus B, Venter M. Zoonotic Alphaviruses in Fatal and Neurologic Infections in Wildlife and Nonequine Domestic Animals, South Africa.. Emerg Infect Dis 2020 Jun;26(6):1182-1191.
    doi: 10.3201/eid2606.191179pmc: PMC7258481pubmed: 32441633google scholar: lookup
  15. Su00e1nchez-Seco MP, Rosario D, Quiroz E, Guzmu00e1n G, Tenorio A. A generic nested-RT-PCR followed by sequencing for detection and identification of members of the alphavirus genus.. J Virol Methods 2001 Jun;95(1-2):153-61.
    doi: 10.1016/S0166-0934(01)00306-8pubmed: 11377722google scholar: lookup
  16. Zaayman D, Human S, Venter M. A highly sensitive method for the detection and genotyping of West Nile virus by real-time PCR.. J Virol Methods 2009 May;157(2):155-60.
  17. van Eeden C, Harders F, Kortekaas J, Bossers A, Venter M. Genomic and phylogenetic characterization of Shuni virus.. Arch Virol 2014 Nov;159(11):2883-92.
    doi: 10.1007/s00705-014-2131-2pubmed: 24957652google scholar: lookup
  18. Storm N., Weyer J., Markotter W., Leman P.A., Kemp A., Nel L.H., Paweska J.T. Phylogeny of Sindbis virus isolates from South Africa. South. Afr. J. Infect. Dis. 2013;28:207u2013214. doi: 10.1080/10158782.2013.11441552.
  19. Jansen van Vuren P, Wiley M, Palacios G, Storm N, McCulloch S, Markotter W, Birkhead M, Kemp A, Paweska JT. Isolation of a Novel Fusogenic Orthoreovirus from Eucampsipoda africana Bat Flies in South Africa.. Viruses 2016 Feb 29;8(3):65.
    doi: 10.3390/v8030065pmc: PMC4810255pubmed: 27011199google scholar: lookup
  20. Forrester NL, Palacios G, Tesh RB, Savji N, Guzman H, Sherman M, Weaver SC, Lipkin WI. Genome-scale phylogeny of the alphavirus genus suggests a marine origin.. J Virol 2012 Mar;86(5):2729-38.
    doi: 10.1128/JVI.05591-11pmc: PMC3302268pubmed: 22190718google scholar: lookup
  21. Nasar F, Palacios G, Gorchakov RV, Guzman H, Da Rosa AP, Savji N, Popov VL, Sherman MB, Lipkin WI, Tesh RB, Weaver SC. Eilat virus, a unique alphavirus with host range restricted to insects by RNA replication.. Proc Natl Acad Sci U S A 2012 Sep 4;109(36):14622-7.
    doi: 10.1073/pnas.1204787109pmc: PMC3437828pubmed: 22908261google scholar: lookup
  22. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization.. Brief Bioinform 2019 Jul 19;20(4):1160-1166.
    doi: 10.1093/bib/bbx108pmc: PMC6781576pubmed: 28968734google scholar: lookup
  23. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing.. Nat Methods 2012 Jul 30;9(8):772.
    doi: 10.1038/nmeth.2109pmc: PMC4594756pubmed: 22847109google scholar: lookup
  24. Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees.. BMC Evol Biol 2007 Nov 8;7:214.
    doi: 10.1186/1471-2148-7-214pmc: PMC2247476pubmed: 17996036google scholar: lookup
  25. Miller M.A., Pfeiffer W., Schwartz T., editors. Creating the CIPRES Science Gateway for inference of large phylogenetic trees; Proceedings of the 2010 Gateway Computing Environments Workshop (GCE); New Orleans, LA, USA. 14 November 2010.
  26. Stu00f6ver BC, Mu00fcller KF. TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses.. BMC Bioinformatics 2010 Jan 5;11:7.
    doi: 10.1186/1471-2105-11-7pmc: PMC2806359pubmed: 20051126google scholar: lookup
  27. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.. Mol Biol Evol 2016 Jul;33(7):1870-4.
    doi: 10.1093/molbev/msw054pmc: PMC8210823pubmed: 27004904google scholar: lookup
  28. Dean A.G., Arner T.G., Sunki G.G., Friedman R., Lantinga M., Sangam S., Zubieta J.C., Sullivan K.M., Brendel K.A., Gao Z., et al. CDC; Atlanta, GA, USA: 2011. [(accessed on 20 November 2019)]. Epi Infou2122, a Database and Statistics Program for Public Health Professionals. Available online: https://www.cdc.gov/epiinfo.
  29. Martin DP, Murrell B, Golden M, Khoosal A, Muhire B. RDP4: Detection and analysis of recombination patterns in virus genomes.. Virus Evol 2015;1(1):vev003.
    doi: 10.1093/ve/vev003pmc: PMC5014473pubmed: 27774277google scholar: lookup
  30. Martin D, Rybicki E. RDP: detection of recombination amongst aligned sequences.. Bioinformatics 2000 Jun;16(6):562-3.
  31. Padidam M, Sawyer S, Fauquet CM. Possible emergence of new geminiviruses by frequent recombination.. Virology 1999 Dec 20;265(2):218-25.
    doi: 10.1006/viro.1999.0056pubmed: 10600594google scholar: lookup
  32. Posada D. Evaluation of methods for detecting recombination from DNA sequences: empirical data.. Mol Biol Evol 2002 May;19(5):708-17.
  33. Gibbs MJ, Armstrong JS, Gibbs AJ. Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences.. Bioinformatics 2000 Jul;16(7):573-82.
  34. Martin DP, Posada D, Crandall KA, Williamson C. A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints.. AIDS Res Hum Retroviruses 2005 Jan;21(1):98-102.
    doi: 10.1089/aid.2005.21.98pubmed: 15665649google scholar: lookup
  35. Smith JM. Analyzing the mosaic structure of genes.. J Mol Evol 1992 Feb;34(2):126-9.
    doi: 10.1007/BF00182389pubmed: 1556748google scholar: lookup
  36. Lam HM, Ratmann O, Boni MF. Improved Algorithmic Complexity for the 3SEQ Recombination Detection Algorithm.. Mol Biol Evol 2018 Jan 1;35(1):247-251.
    doi: 10.1093/molbev/msx263pmc: PMC5850291pubmed: 29029186google scholar: lookup
  37. Tricou V, Berthet N, Descorps-Declere S, Nakounu00e9 E, Kazanji M. Complete genome sequences of two middelburg viruses isolated from arthropods in the central african republic.. Genome Announc 2014 Oct 23;2(5).
    doi: 10.1128/genomeA.01078-14pmc: PMC4208332pubmed: 25342688google scholar: lookup
  38. Venter M. Assessing the zoonotic potential of arboviruses of African origin.. Curr Opin Virol 2018 Feb;28:74-84.
    doi: 10.1016/j.coviro.2017.11.004pubmed: 29216533google scholar: lookup
  39. Fourie I, Williams J, Ismail A, Jansen van Vuren P, Stoltz A, Venter M. Detection and genome characterization of Middelburg virus strains isolated from CSF and whole blood samples of humans with neurological manifestations in South Africa.. PLoS Negl Trop Dis 2022 Jan;16(1):e0010020.
  40. Sane J, Kurkela S, Levanov L, Nikkari S, Vaheri A, Vapalahti O. Development and evaluation of a real-time RT-PCR assay for Sindbis virus detection.. J Virol Methods 2012 Jan;179(1):185-8.
  41. Jansen CC, Shivas MA, May FJ, Pyke AT, Onn MB, Lodo K, Hall-Mendelin S, McMahon JL, Montgomery BL, Darbro JM, Doggett SL, van den Hurk AF. Epidemiologic, Entomologic, and Virologic Factors of the 2014-15 Ross River Virus Outbreak, Queensland, Australia.. Emerg Infect Dis 2019 Dec;25(12):2243-2252.
    doi: 10.3201/eid2512.181810pmc: PMC6874252pubmed: 31742522google scholar: lookup
  42. Scott TW, Weaver SC. Eastern equine encephalomyelitis virus: epidemiology and evolution of mosquito transmission.. Adv Virus Res 1989;37:277-328.
    pubmed: 2574935doi: 10.1016/s0065-3527(08)60838-6google scholar: lookup
  43. Jupp PG, Blackburn NK, Thompson DL, Meenehan GM. Sindbis and West Nile virus infections in the Witwatersrand-Pretoria region.. S Afr Med J 1986 Aug 16;70(4):218-20.
    pubmed: 3016922
  44. Jupp P.G.T.D.L., Cornel A.J. Isolations of Middelburg virus from Aedes (Ochlerotatus) juppi McIntosh (Diptera: Culicidae) suggestive of a reservoir vector. J. Entomol. Soc. South. Afr. 1987;50:393u2013397.
  45. Hopkins B. Vegetation Map of Africa. The Vegetation of Africa: A Descriptive Memoir to Accompany the Unesco/AETFAT/UNSO Vegetation map of Africa. J. Ecol. 1987;75:1214u20131216. doi: 10.2307/2260340.
    doi: 10.2307/2260340google scholar: lookup
  46. South African Weather Service Annual Report 2016/2017 [Press Release] South African Weather Service; Centurion, South Africa: 2017.
  47. Lim EXY, Lee WS, Madzokere ET, Herrero LJ. Mosquitoes as Suitable Vectors for Alphaviruses.. Viruses 2018 Feb 14;10(2).
    doi: 10.3390/v10020084pmc: PMC5850391pubmed: 29443908google scholar: lookup
  48. Jose J, Snyder JE, Kuhn RJ. A structural and functional perspective of alphavirus replication and assembly.. Future Microbiol 2009 Sep;4(7):837-56.
    doi: 10.2217/fmb.09.59pmc: PMC2762864pubmed: 19722838google scholar: lookup
  49. Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S. A single mutation in chikungunya virus affects vector specificity and epidemic potential.. PLoS Pathog 2007 Dec;3(12):e201.
  50. Braack L, Gouveia de Almeida AP, Cornel AJ, Swanepoel R, de Jager C. Mosquito-borne arboviruses of African origin: review of key viruses and vectors.. Parasit Vectors 2018 Jan 9;11(1):29.
    doi: 10.1186/s13071-017-2559-9pmc: PMC5759361pubmed: 29316963google scholar: lookup
  51. Gorchakov R, Frolova E, Frolov I. Inhibition of transcription and translation in Sindbis virus-infected cells.. J Virol 2005 Aug;79(15):9397-409.
  52. Bhalla N, Sun C, Metthew Lam LK, Gardner CL, Ryman KD, Klimstra WB. Host translation shutoff mediated by non-structural protein 2 is a critical factor in the antiviral state resistance of Venezuelan equine encephalitis virus.. Virology 2016 Sep;496:147-165.
    doi: 10.1016/j.virol.2016.06.005pmc: PMC5821108pubmed: 27318152google scholar: lookup
  53. Mathiot CC, Grimaud G, Garry P, Bouquety JC, Mada A, Daguisy AM, Georges AJ. An outbreak of human Semliki Forest virus infections in Central African Republic.. Am J Trop Med Hyg 1990 Apr;42(4):386-93.
    doi: 10.4269/ajtmh.1990.42.386pubmed: 2158754google scholar: lookup
  54. Willems WR, Kaluza G, Boschek CB, Bauer H, Hager H, Schu00fctz HJ, Feistner H. Semliki forest virus: cause of a fatal case of human encephalitis.. Science 1979 Mar 16;203(4385):1127-9.
    doi: 10.1126/science.424742pubmed: 424742google scholar: lookup
  55. Milner AR, Marshall ID. Pathogenesis of in utero infections with abortogenic and non-abortogenic alphaviruses in mice.. J Virol 1984 Apr;50(1):66-72.
    doi: 10.1128/jvi.50.1.66-72.1984pmc: PMC255583pubmed: 6321801google scholar: lookup
  56. Colpitts TM, Conway MJ, Montgomery RR, Fikrig E. West Nile Virus: biology, transmission, and human infection.. Clin Microbiol Rev 2012 Oct;25(4):635-48.
    doi: 10.1128/CMR.00045-12pmc: PMC3485754pubmed: 23034323google scholar: lookup
  57. Johnson T, Braack L, Guarido M, Venter M, Gouveia Almeida AP. Mosquito community composition and abundance at contrasting sites in northern South Africa, 2014-2017.. J Vector Ecol 2020 Jun;45(1):104-117.
    doi: 10.1111/jvec.12378pubmed: 32492270google scholar: lookup

Citations

This article has been cited 1 times.
  1. Han J, Jang KL. All-trans Retinoic Acid Inhibits Hepatitis B Virus Replication by Downregulating HBx Levels via Siah-1-Mediated Proteasomal Degradation.. Viruses 2023 Jun 27;15(7).
    doi: 10.3390/v15071456pubmed: 37515144google scholar: lookup