Journal of equine veterinary science2013; 33(2); 120-126; doi: 10.1016/j.jevs.2012.05.004

Fructokinase, Fructans, Intestinal Permeability, and Metabolic Syndrome: An Equine Connection?

Abstract: Fructose is a simple sugar present in honey and fruit, but can also exist as a polymer (fructans) in pasture grasses. Mammals are unable to metabolize fructans, but certain gram positive bacteria contain fructanases and can convert fructans to fructose in the gut. Recent studies suggest that fructose generated from bacteria, or directly obtained from the diet, can induce both increased intestinal permeability and features of metabolic syndrome, especially the development of insulin resistance. The development of insulin resistance is driven in part by the metabolism of fructose by fructokinase C in the liver, which results in oxidative stress in the hepatocyte. Similarly, the metabolism of fructose in the small bowel by intestinal fructokinase may lead to increased intestinal permeability and endotoxemia. While speculative, these observations raise the possibility that the mechanism by which fructans induce laminitis could involve intestinal and hepatic fructokinase. Further studies are indicated to determine the role of fructanases, fructose and fructokinase in equine metabolic syndrome and laminitis.
Publication Date: 2013-02-27 PubMed ID: 23439477PubMed Central: PMC3576823DOI: 10.1016/j.jevs.2012.05.004Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

This paper investigates the possible link between fructose (a sugar found in honey and fruit), its derivatives, and the development of increased intestinal permeability and features of metabolic syndrome in horses, which could contribute to conditions like insulin resistance and laminitis.

Understanding the Components

  • Fructokinase C and intestinal fructokinase are enzymes that metabolize fructose. These enzymes exist in the liver and the small intestine respectively. Their activity reportedly triggers oxidative stress in liver cells and increases intestinal permeability, leading to a state of endotoxemia (toxins in the blood).
  • Fructans are polymer forms of fructose that mammals, including horses, cannot metabolize. However, certain bacteria present in the gastrointestinal tract of these animals, are capable of breaking down fructans into fructose.

Proposing the Link

  • The researchers report that recent studies demonstrate a connection between the fructose metabolized from the diet, or generated by bacteria, and the development of an increased intestinal permeability and symptoms of metabolic syndrome, particularly insulin resistance.
  • Insulin resistance is a condition in which cells are unable to efficiently use the insulin produced, leading to the need for increased insulin production, and potentially, the development of type 2 diabetes.

Fructose, Fructokinase and Laminitis

  • The symptoms observed led the researchers to hypothesize that these mechanisms might also be involved in the development of equine metabolic syndrome and laminitis in horses.
  • Laminitis is a painful condition affecting horse’s hooves and can lead to lameness. The condition has long been associated with the consumption of grass rich in fructans, but the mechanism through which this occurs has yet to be fully elucidated.

Future Research Directions

  • The paper concludes by emphasizing the need for further research to understand the roles of fructanases (enzymes that metabolize fructans), fructose, and fructokinase in relation to equine metabolic syndrome and laminitis.
  • Understanding these mechanisms could enable the development of preventive measures or treatments for these conditions in horses, potentially having a significant impact in the field of equine health.

Cite This Article

APA
Johnson RJ, Rivard C, Lanaspa MA, Otabachian-Smith S, Ishimoto T, Cicerchi C, Cheeke PR, Macintosh B, Hess T. (2013). Fructokinase, Fructans, Intestinal Permeability, and Metabolic Syndrome: An Equine Connection? J Equine Vet Sci, 33(2), 120-126. https://doi.org/10.1016/j.jevs.2012.05.004

Publication

ISSN: 0737-0806
NlmUniqueID: 8216840
Country: United States
Language: English
Volume: 33
Issue: 2
Pages: 120-126

Researcher Affiliations

Johnson, Richard J
  • Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado, USA.
Rivard, Chris
    Lanaspa, Miguel A
      Otabachian-Smith, Silvia
        Ishimoto, Takuji
          Cicerchi, Christina
            Cheeke, Peter R
              Macintosh, Bridgett
                Hess, Tanja

                  Grant Funding

                  • R01 HL068607 / NHLBI NIH HHS

                  References

                  This article includes 72 references
                  1. Johnson RJ, Perez-Pozo SE, Sautin YY, Manitius J, Sanchez-Lozada LG, Feig DI, Shafiu M, Segal M, Glassock RJ, Shimada M, Roncal C, Nakagawa T. Hypothesis: could excessive fructose intake and uric acid cause type 2 diabetes?. Endocr Rev 2009 Feb;30(1):96-116.
                    pmc: PMC2647706pubmed: 19151107doi: 10.1210/er.2008-0033google scholar: lookup
                  2. Shapiro A, Mu W, Roncal C, Cheng KY, Johnson RJ, Scarpace PJ. Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high-fat feeding.. Am J Physiol Regul Integr Comp Physiol 2008 Nov;295(5):R1370-5.
                    pmc: PMC2584858pubmed: 18703413doi: 10.1152/ajpregu.00195.2008google scholar: lookup
                  3. Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O, Ouyang X, Feig DI, Block ER, Herrera-Acosta J, Patel JM, Johnson RJ. A causal role for uric acid in fructose-induced metabolic syndrome.. Am J Physiol Renal Physiol 2006 Mar;290(3):F625-31.
                    pubmed: 16234313doi: 10.1152/ajprenal.00140.2005google scholar: lookup
                  4. Reungjui S, Roncal CA, Mu W, Srinivas TR, Sirivongs D, Johnson RJ, Nakagawa T. Thiazide diuretics exacerbate fructose-induced metabolic syndrome.. J Am Soc Nephrol 2007 Oct;18(10):2724-31.
                    pubmed: 17855639doi: 10.1681/ASN.2007040416google scholar: lookup
                  5. Gersch MS, Mu W, Cirillo P, Reungjui S, Zhang L, Roncal C, Sautin YY, Johnson RJ, Nakagawa T. Fructose, but not dextrose, accelerates the progression of chronic kidney disease.. Am J Physiol Renal Physiol 2007 Oct;293(4):F1256-61.
                    pubmed: 17670904doi: 10.1152/ajprenal.00181.2007google scholar: lookup
                  6. Roncal-Jimenez CA, Lanaspa MA, Rivard CJ, Nakagawa T, Sanchez-Lozada LG, Jalal D, Andres-Hernando A, Tanabe K, Madero M, Li N, Cicerchi C, Mc Fann K, Sautin YY, Johnson RJ. Sucrose induces fatty liver and pancreatic inflammation in male breeder rats independent of excess energy intake.. Metabolism 2011 Sep;60(9):1259-70.
                  7. Malik VS, Popkin BM, Bray GA, Despru00e9s JP, Hu FB. Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk.. Circulation 2010 Mar 23;121(11):1356-64.
                  8. Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, Hatcher B, Cox CL, Dyachenko A, Zhang W, McGahan JP, Seibert A, Krauss RM, Chiu S, Schaefer EJ, Ai M, Otokozawa S, Nakajima K, Nakano T, Beysen C, Hellerstein MK, Berglund L, Havel PJ. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans.. J Clin Invest 2009 May;119(5):1322-34.
                    pmc: PMC2673878pubmed: 19381015doi: 10.1172/JCI37385google scholar: lookup
                  9. Perez-Pozo SE, Schold J, Nakagawa T, Su00e1nchez-Lozada LG, Johnson RJ, Lillo JL. Excessive fructose intake induces the features of metabolic syndrome in healthy adult men: role of uric acid in the hypertensive response.. Int J Obes (Lond) 2010 Mar;34(3):454-61.
                    pubmed: 20029377doi: 10.1038/ijo.2009.259google scholar: lookup
                  10. Tappy L, Lu00ea KA. Metabolic effects of fructose and the worldwide increase in obesity.. Physiol Rev 2010 Jan;90(1):23-46.
                    pubmed: 20086073doi: 10.1152/physrev.00019.2009google scholar: lookup
                  11. van den Berghe G, Bronfman M, Vanneste R, Hers HG. The mechanism of adenosine triphosphate depletion in the liver after a load of fructose. A kinetic study of liver adenylate deaminase.. Biochem J 1977 Mar 15;162(3):601-9.
                    pmc: PMC1164643pubmed: 869906doi: 10.1042/bj1620601google scholar: lookup
                  12. Bode JC, Zelder O, Rumpelt HJ, Wittkamp U. Depletion of liver adenosine phosphates and metabolic effects of intravenous infusion of fructose or sorbitol in man and in the rat.. Eur J Clin Invest 1973 Sep;3(5):436-41.
                  13. Cortez-Pinto H, Chatham J, Chacko VP, Arnold C, Rashid A, Diehl AM. Alterations in liver ATP homeostasis in human nonalcoholic steatohepatitis: a pilot study.. JAMA 1999 Nov 3;282(17):1659-64.
                    pubmed: 10553793doi: 10.1001/jama.282.17.1659google scholar: lookup
                  14. Ishimoto T, Lanaspa MA, Le MT, Garcia GE, Diggle CP, Maclean PS, Jackman MR, Asipu A, Roncal-Jimenez CA, Kosugi T, Rivard CJ, Maruyama S, Rodriguez-Iturbe B, Su00e1nchez-Lozada LG, Bonthron DT, Sautin YY, Johnson RJ. Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice.. Proc Natl Acad Sci U S A 2012 Mar 13;109(11):4320-5.
                    pmc: PMC3306692pubmed: 22371574doi: 10.1073/pnas.1119908109google scholar: lookup
                  15. Mu00e4enpu00e4u00e4 PH, Raivio KO, Kekomu00e4ki MP. Liver adenine nucleotides: fructose-induced depletion and its effect on protein synthesis.. Science 1968 Sep 20;161(3847):1253-4.
                    pubmed: 5673437doi: 10.1126/science.161.3847.1253google scholar: lookup
                  16. Kim KM, Henderson GN, Ouyang X, Frye RF, Sautin YY, Feig DI, Johnson RJ. A sensitive and specific liquid chromatography-tandem mass spectrometry method for the determination of intracellular and extracellular uric acid.. J Chromatogr B Analyt Technol Biomed Life Sci 2009 Jul 15;877(22):2032-8.
                  17. Stirpe F, Della Corte E, Bonetti E, Abbondanza A, Abbati A, De Stefano F. Fructose-induced hyperuricaemia.. Lancet 1970 Dec 19;2(7686):1310-1.
                    pubmed: 4098798doi: 10.1016/s0140-6736(70)92269-5google scholar: lookup
                  18. Cirillo P, Gersch MS, Mu W, Scherer PM, Kim KM, Gesualdo L, Henderson GN, Johnson RJ, Sautin YY. Ketohexokinase-dependent metabolism of fructose induces proinflammatory mediators in proximal tubular cells.. J Am Soc Nephrol 2009 Mar;20(3):545-53.
                    pmc: PMC2653686pubmed: 19158351doi: 10.1681/ASN.2008060576google scholar: lookup
                  19. Diggle CP, Shires M, Leitch D, Brooke D, Carr IM, Markham AF, Hayward BE, Asipu A, Bonthron DT. Ketohexokinase: expression and localization of the principal fructose-metabolizing enzyme.. J Histochem Cytochem 2009 Aug;57(8):763-74.
                    pmc: PMC2713076pubmed: 19365088doi: 10.1369/jhc.2009.953190google scholar: lookup
                  20. Bergheim I, Weber S, Vos M, Kru00e4mer S, Volynets V, Kaserouni S, McClain CJ, Bischoff SC. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin.. J Hepatol 2008 Jun;48(6):983-92.
                    pubmed: 18395289doi: 10.1016/j.jhep.2008.01.035google scholar: lookup
                  21. Davids MR, Segal AS, Brunengraber H, Halperin ML. An unusual cause for ketoacidosis.. QJM 2004 Jun;97(6):365-76.
                    pubmed: 15152111doi: 10.1093/qjmed/hch064google scholar: lookup
                  22. Longland AC, Byrd BM. Pasture nonstructural carbohydrates and equine laminitis.. J Nutr 2006 Jul;136(7 Suppl):2099S-2102S.
                    pubmed: 16772510doi: 10.1093/jn/136.7.2099Sgoogle scholar: lookup
                  23. Vu JC, Allen LH Jr. Stem juice production of the C4 sugarcane (Saccharum officinarum) is enhanced by growth at double-ambient CO2 and high temperature.. J Plant Physiol 2009 Jul 15;166(11):1141-51.
                    pubmed: 19217687doi: 10.1016/j.jplph.2009.01.003google scholar: lookup
                  24. Brocklebank KJ, Hendry GAF. Characteristics of plant species which store different types of reserve carbohydratres. New Phytol. 1989;112:255u201360.
                  25. Pollock CJ. Fructans and the Metabolism of Sucrose in Vascular Plants New Phytol. 1986;104:1u201324.
                  26. Andersen R, Sorensen A. An enzymatic method for the determination of fructans in foods and food products. Eur Food Res Tech. 1999;210
                  27. Pilon-Smits E, Ebskamp M, Paul MJ, Jeuken M, Weisbeek PJ, Smeekens S. Improved Performance of Transgenic Fructan-Accumulating Tobacco under Drought Stress.. Plant Physiol 1995 Jan;107(1):125-130.
                    pmc: PMC161174pubmed: 12228347doi: 10.1104/pp.107.1.125google scholar: lookup
                  28. Hendry GAF. Evolutionary origins and natural functions of fructans-- a climatological, biogeographic and mechanistic appraisal. New Phytol. 1993;123:3u201314.
                  29. Garner HE, Hutcheson DP, Coffman JR, Hahn AW, Salem C. Lactic acidosis: a factor associated with equine laminitis.. J Anim Sci 1977 Nov;45(5):1037-41.
                    pubmed: 599094doi: 10.2527/jas1977.4551037xgoogle scholar: lookup
                  30. Polllock CJ, Cairns AJ. Fructan metabolism in grasses and cereals. Ann Rev Plant Physio,l and Plant Mol Biol. 1991;42:77u2013101.
                  31. Johnson RJ, Andrews P. Fructose, Uricase and the Back to Africa Hypothesis. Evolutionary Anthropol. 2010;19:250u20137.
                  32. Singh P, Gill PK. Production of inulinases: Recent advances. Food Technol Biotechnol. 2006;44:151u201362.
                  33. Blatch GL, Woods DR. Molecular characterization of a fructanase produced by Bacteroides fragilis BF-1.. J Bacteriol 1993 May;175(10):3058-66.
                  34. Legaz ME, Martin L, Pedrosa MM, Vicente C, de Armas R, Martu00ednez M, Medina I, Rodriguez CW. Purification and Partial Characterization of a Fructanase which Hydrolyzes Natural Polysaccharides from Sugarcane Juice.. Plant Physiol 1990 Mar;92(3):679-83.
                    pmc: PMC1062353pubmed: 16667334doi: 10.1104/pp.92.3.679google scholar: lookup
                  35. Wexler DL, Penders JE, Bowen WH, Burne RA. Characteristics and cariogenicity of a fructanase-defective Streptococcus mutants strain.. Infect Immun 1992 Sep;60(9):3673-81.
                  36. Bergeron LJ, Burne RA. Roles of fructosyltransferase and levanase-sucrase of Actinomyces naeslundii in fructan and sucrose metabolism.. Infect Immun 2001 Sep;69(9):5395-402.
                  37. Wen ZT, Burne RA. Analysis of cis- and trans-acting factors involved in regulation of the Streptococcus mutans fructanase gene (fruA).. J Bacteriol 2002 Jan;184(1):126-33.
                  38. Li X, Qiang L, Xu C. Effects of supplementation of fructooligosaccharide and/or Bacillus subtilis to diets on performance and on intestinal microflora in broilers. Arch Tierz Dummerstorf. 2008;51:64u201370.
                  39. Dibner JJ, Richards JD. Antibiotic growth promoters in agriculture: history and mode of action.. Poult Sci 2005 Apr;84(4):634-43.
                    pubmed: 15844822doi: 10.1093/ps/84.4.634google scholar: lookup
                  40. De Fombelle A, Varloud M, Goachet A-G, Jacotot E, Phillippeau C, Drogul C, et al. Characterization of the microbial and biochemical profile of the different segments of the digestive tract in horses given two distinct diets. J Animal Sci. 2003;77:293u2013304.
                  41. Coenen M, Mu00f6sseler A, Vervuert I. Fermentative gases in breath indicate that inulin and starch start to be degraded by microbial fermentation in the stomach and small intestine of the horse in contrast to pectin and cellulose.. J Nutr 2006 Jul;136(7 Suppl):2108S-2110S.
                    pubmed: 16772512doi: 10.1093/jn/136.7.2108Sgoogle scholar: lookup
                  42. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity.. Nature 2006 Dec 21;444(7122):1022-3.
                    pubmed: 17183309doi: 10.1038/4441022agoogle scholar: lookup
                  43. Ley RE, Bu00e4ckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology.. Proc Natl Acad Sci U S A 2005 Aug 2;102(31):11070-5.
                    pmc: PMC1176910pubmed: 16033867doi: 10.1073/pnas.0504978102google scholar: lookup
                  44. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest.. Nature 2006 Dec 21;444(7122):1027-31.
                    pubmed: 17183312doi: 10.1038/nature05414google scholar: lookup
                  45. Turnbaugh PJ, Bu00e4ckhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome.. Cell Host Microbe 2008 Apr 17;3(4):213-23.
                    pmc: PMC3687783pubmed: 18407065doi: 10.1016/j.chom.2008.02.015google scholar: lookup
                  46. Bu00e4ckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice.. Proc Natl Acad Sci U S A 2007 Jan 16;104(3):979-84.
                    pmc: PMC1764762pubmed: 17210919doi: 10.1073/pnas.0605374104google scholar: lookup
                  47. Graham JP, Boland JJ, Silbergeld E. Growth promoting antibiotics in food animal production: an economic analysis.. Public Health Rep 2007 Jan-Feb;122(1):79-87.
                    pmc: PMC1804117pubmed: 17236612doi: 10.1177/003335490712200111google scholar: lookup
                  48. Wang Y, Lehane C, Ghebremeskel K, Crawford MA. Modern organic and broiler chickens sold for human consumption provide more energy from fat than protein.. Public Health Nutr 2010 Mar;13(3):400-8.
                    pubmed: 19728900doi: 10.1017/S1368980009991157google scholar: lookup
                  49. Diarra MS, Silversides FG, Diarrassouba F, Pritchard J, Masson L, Brousseau R, Bonnet C, Delaquis P, Bach S, Skura BJ, Topp E. Impact of feed supplementation with antimicrobial agents on growth performance of broiler chickens, Clostridium perfringens and enterococcus counts, and antibiotic resistance phenotypes and distribution of antimicrobial resistance determinants in Escherichia coli isolates.. Appl Environ Microbiol 2007 Oct;73(20):6566-76.
                    pmc: PMC2075079pubmed: 17827305doi: 10.1128/AEM.01086-07google scholar: lookup
                  50. COATES ME, DAVIES MK, KON SK. The effect of antibiotics on the intestine of the chick.. Br J Nutr 1955;9(1):110-9.
                    pubmed: 14351666doi: 10.1079/bjn19550016google scholar: lookup
                  51. COATES ME, FULLER R, HARRISON GF, LEV M, SUFFOLK SF. A comparison of the growth of chicks in the Gustafsson germ-free apparatus and in a conventional environment, with and without dietary supplements of penicillin.. Br J Nutr 1963;17:141-50.
                    pubmed: 14021819doi: 10.1079/bjn19630015google scholar: lookup
                  52. Onifade AA. Growth performance, carcass characteristics, organs measurement and haematology of broiler chickens fed a high fibre diet supplemented with antibiotics or dried yeast. Nahrung. 1997;41:370u20134.
                  53. Santoso U, Tanaka K, Ohtani S. Effect of dried Bacillus subtilis culture on growth, body composition and hepatic lipogenic enzyme activity in female broiler chicks.. Br J Nutr 1995 Oct;74(4):523-9.
                    pubmed: 7577890doi: 10.1079/bjn19950155google scholar: lookup
                  54. Yamamoto Y, Takahashi Y, Kawano M, Iizuka M, Matsumoto T, Saeki S, Yamaguchi H. In vitro digestibility and fermentability of levan and its hypocholesterolemic effects in rats.. J Nutr Biochem 1999 Jan;10(1):13-8.
                    pubmed: 15539245doi: 10.1016/s0955-2863(98)00077-1google scholar: lookup
                  55. Gibson GR. Dietary modulation of the human gut microflora using the prebiotics oligofructose and inulin.. J Nutr 1999 Jul;129(7 Suppl):1438S-41S.
                    pubmed: 10395616doi: 10.1093/jn/129.7.1438Sgoogle scholar: lookup
                  56. Yusrizal, Chen TC. Effect of adding chicory fructans in feed on broiler growth performance, serum cholesterol and intestinal length. Int J Poult Sci. 2003;2:214u20139.
                  57. Respondek F, Myers K, Smith TL, Wagner A, Geor RJ. Dietary supplementation with short-chain fructo-oligosaccharides improves insulin sensitivity in obese horses.. J Anim Sci 2011 Jan;89(1):77-83.
                    pubmed: 20870952doi: 10.2527/jas.2010-3108google scholar: lookup
                  58. Williams CM, Jackson KG. Inulin and oligofructose: effects on lipid metabolism from human studies.. Br J Nutr 2002 May;87 Suppl 2:S261-4.
                    pubmed: 12088527doi: 10.1079/BJNBJN/2002546google scholar: lookup
                  59. Parnell JA, Reimer RA. Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults.. Am J Clin Nutr 2009 Jun;89(6):1751-9.
                    pmc: PMC3827013pubmed: 19386741doi: 10.3945/ajcn.2009.27465google scholar: lookup
                  60. van Eps AW, Pollitt CC. Equine laminitis induced with oligofructose.. Equine Vet J 2006 May;38(3):203-8.
                    pubmed: 16706272doi: 10.2746/042516406776866327google scholar: lookup
                  61. Pollitt CC. Equine Laminitis. Australia: 2001.
                  62. McMeniman NP. Nutrition of Grazing Broodmares, Their Foals and Young horses. Rural Industries Research and Development Corporation; Barton Australia: 2000.
                  63. Nourian AR, Asplin KE, McGowan CM, Sillence MN, Pollitt CC. Equine laminitis: ultrastructural lesions detected in ponies following hyperinsulinaemia.. Equine Vet J 2009 Sep;41(7):671-7.
                    pubmed: 19927586doi: 10.2746/042516409x407648google scholar: lookup
                  64. Pollitt CC. Equine laminits. Clin Tech Equine Pract. 2004;3:34u201344.
                  65. Milinovich GJ, Burrell PC, Pollitt CC, Klieve AV, Blackall LL, Ouwerkerk D, Woodland E, Trott DJ. Microbial ecology of the equine hindgut during oligofructose-induced laminitis.. ISME J 2008 Nov;2(11):1089-100.
                    pubmed: 18580970doi: 10.1038/ismej.2008.67google scholar: lookup
                  66. Milinovich GJ, Trott DJ, Burrell PC, Croser EL, Al Jassim RA, Morton JM, van Eps AW, Pollitt CC. Fluorescence in situ hybridization analysis of hindgut bacteria associated with the development of equine laminitis.. Environ Microbiol 2007 Aug;9(8):2090-100.
                  67. Carter RA, Treiber KH, Geor RJ, Douglass L, Harris PA. Prediction of incipient pasture-associated laminitis from hyperinsulinaemia, hyperleptinaemia and generalised and localised obesity in a cohort of ponies.. Equine Vet J 2009 Feb;41(2):171-8.
                    pubmed: 19418747doi: 10.2746/042516408x342975google scholar: lookup
                  68. Frank N, Elliott SB, Brandt LE, Keisler DH. Physical characteristics, blood hormone concentrations, and plasma lipid concentrations in obese horses with insulin resistance.. J Am Vet Med Assoc 2006 May 1;228(9):1383-90.
                    pubmed: 16649943doi: 10.2460/javma.228.9.1383google scholar: lookup
                  69. Treiber KH, Kronfeld DS, Hess TM, Byrd BM, Splan RK, Staniar WB. Evaluation of genetic and metabolic predispositions and nutritional risk factors for pasture-associated laminitis in ponies.. J Am Vet Med Assoc 2006 May 15;228(10):1538-45.
                    pubmed: 16677122doi: 10.2460/javma.228.10.1538google scholar: lookup
                  70. Bailey SR, Habershon-Butcher JL, Ransom KJ, Elliott J, Menzies-Gow NJ. Hypertension and insulin resistance in a mixed-breed population of ponies predisposed to laminitis.. Am J Vet Res 2008 Jan;69(1):122-9.
                    pubmed: 18167097doi: 10.2460/ajvr.69.1.122google scholar: lookup
                  71. Frank N, Geor RJ, Bailey SR, Durham AE, Johnson PJ. Equine metabolic syndrome.. J Vet Intern Med 2010 May-Jun;24(3):467-75.
                  72. Diggle CP, Shires M, McRae C, Crellin D, Fisher J, Carr IM, Markham AF, Hayward BE, Asipu A, Bonthron DT. Both isoforms of ketohexokinase are dispensable for normal growth and development.. Physiol Genomics 2010 Nov 29;42A(4):235-43.

                  Citations

                  This article has been cited 20 times.
                  1. Andres-Hernando A, Orlicky DJ, Cicerchi C, Kuwabara M, Garcia GE, Nakagawa T, Sanchez-Lozada LG, Johnson RJ, Lanaspa MA. High Fructose Corn Syrup Accelerates Kidney Disease and Mortality in Obese Mice with Metabolic Syndrome.. Biomolecules 2023 Apr 30;13(5).
                    doi: 10.3390/biom13050780pubmed: 37238651google scholar: lookup
                  2. Zhou X, Zhang X, Niu D, Zhang S, Wang H, Zhang X, Nan F, Jiang S, Wang B. Gut microbiota induces hepatic steatosis by modulating the T cells balance in high fructose diet mice.. Sci Rep 2023 Apr 24;13(1):6701.
                    doi: 10.1038/s41598-023-33806-8pubmed: 37095192google scholar: lookup
                  3. Bilal M, Ashraf S, Zhao X. Dietary Component-Induced Inflammation and Its Amelioration by Prebiotics, Probiotics, and Synbiotics.. Front Nutr 2022;9:931458.
                    doi: 10.3389/fnut.2022.931458pubmed: 35938108google scholar: lookup
                  4. Stolfi C, Maresca C, Monteleone G, Laudisi F. Implication of Intestinal Barrier Dysfunction in Gut Dysbiosis and Diseases.. Biomedicines 2022 Jan 27;10(2).
                    doi: 10.3390/biomedicines10020289pubmed: 35203499google scholar: lookup
                  5. Febbraio MA, Karin M. "Sweet death": Fructose as a metabolic toxin that targets the gut-liver axis.. Cell Metab 2021 Dec 7;33(12):2316-2328.
                    doi: 10.1016/j.cmet.2021.09.004pubmed: 34619076google scholar: lookup
                  6. Hrncir T, Hrncirova L, Kverka M, Hromadka R, Machova V, Trckova E, Kostovcikova K, Kralickova P, Krejsek J, Tlaskalova-Hogenova H. Gut Microbiota and NAFLD: Pathogenetic Mechanisms, Microbiota Signatures, and Therapeutic Interventions.. Microorganisms 2021 Apr 29;9(5).
                    doi: 10.3390/microorganisms9050957pubmed: 33946843google scholar: lookup
                  7. Khoshbin K, Camilleri M. Effects of dietary components on intestinal permeability in health and disease.. Am J Physiol Gastrointest Liver Physiol 2020 Nov 1;319(5):G589-G608.
                    doi: 10.1152/ajpgi.00245.2020pubmed: 32902315google scholar: lookup
                  8. Meinitzer S, Baranyi A, Holasek S, Schnedl WJ, Zelzer S, Mangge H, Herrmann M, Meinitzer A, Enko D. Sex-Specific Associations of Trimethylamine-N-Oxide and Zonulin with Signs of Depression in Carbohydrate Malabsorbers and Nonmalabsorbers.. Dis Markers 2020;2020:7897240.
                    doi: 10.1155/2020/7897240pubmed: 31998418google scholar: lookup
                  9. Zhai R, Dong X, Feng L, Li S, Hu Z. The Effect of Heat Stress on Autophagy and Apoptosis of Rumen, Abomasum, Duodenum, Liver and Kidney Cells in Calves.. Animals (Basel) 2019 Oct 22;9(10).
                    doi: 10.3390/ani9100854pubmed: 31652592google scholar: lookup
                  10. Camilleri M, Lyle BJ, Madsen KL, Sonnenburg J, Verbeke K, Wu GD. Role for diet in normal gut barrier function: developing guidance within the framework of food-labeling regulations.. Am J Physiol Gastrointest Liver Physiol 2019 Jul 1;317(1):G17-G39.
                    doi: 10.1152/ajpgi.00063.2019pubmed: 31125257google scholar: lookup
                  11. Ribeiro A, Igual-Perez MJ, Santos Silva E, Sokal EM. Childhood Fructoholism and Fructoholic Liver Disease.. Hepatol Commun 2019 Jan;3(1):44-51.
                    doi: 10.1002/hep4.1291pubmed: 30619993google scholar: lookup
                  12. Eren OC, Ortiz A, Afsar B, Covic A, Kuwabara M, Lanaspa MA, Johnson RJ, Kanbay M. Multilayered Interplay Between Fructose and Salt in Development of Hypertension.. Hypertension 2019 Feb;73(2):265-272.
                  13. Astbury S, Song A, Zhou M, Nielsen B, Hoedl A, Willing BP, Symonds ME, Bell RC. High Fructose Intake During Pregnancy in Rats Influences the Maternal Microbiome and Gut Development in the Offspring.. Front Genet 2018;9:203.
                    doi: 10.3389/fgene.2018.00203pubmed: 29971089google scholar: lookup
                  14. Lanaspa MA, Andres-Hernando A, Orlicky DJ, Cicerchi C, Jang C, Li N, Milagres T, Kuwabara M, Wempe MF, Rabinowitz JD, Johnson RJ, Tolan DR. Ketohexokinase C blockade ameliorates fructose-induced metabolic dysfunction in fructose-sensitive mice.. J Clin Invest 2018 Jun 1;128(6):2226-2238.
                    doi: 10.1172/JCI94427pubmed: 29533924google scholar: lookup
                  15. Jensen T, Abdelmalek MF, Sullivan S, Nadeau KJ, Green M, Roncal C, Nakagawa T, Kuwabara M, Sato Y, Kang DH, Tolan DR, Sanchez-Lozada LG, Rosen HR, Lanaspa MA, Diehl AM, Johnson RJ. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease.. J Hepatol 2018 May;68(5):1063-1075.
                    doi: 10.1016/j.jhep.2018.01.019pubmed: 29408694google scholar: lookup
                  16. Zhang DM, Jiao RQ, Kong LD. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions.. Nutrients 2017 Mar 29;9(4).
                    doi: 10.3390/nu9040335pubmed: 28353649google scholar: lookup
                  17. Woting A, Blaut M. The Intestinal Microbiota in Metabolic Disease.. Nutrients 2016 Apr 6;8(4):202.
                    doi: 10.3390/nu8040202pubmed: 27058556google scholar: lookup
                  18. Di Luccia B, Crescenzo R, Mazzoli A, Cigliano L, Venditti P, Walser JC, Widmer A, Baccigalupi L, Ricca E, Iossa S. Rescue of Fructose-Induced Metabolic Syndrome by Antibiotics or Faecal Transplantation in a Rat Model of Obesity.. PLoS One 2015;10(8):e0134893.
                    doi: 10.1371/journal.pone.0134893pubmed: 26244577google scholar: lookup
                  19. Resendez A, Abdul Halim M, Landhage CM, Hellstru00f6m PM, Singaram B, Webb DL. Rapid small intestinal permeability assay based on riboflavin and lactulose detected by bis-boronic acid appended benzyl viologens.. Clin Chim Acta 2015 Jan 15;439:115-21.
                    doi: 10.1016/j.cca.2014.09.031pubmed: 25300228google scholar: lookup
                  20. Johnson RJ, Rodriguez-Iturbe B, Roncal-Jimenez C, Lanaspa MA, Ishimoto T, Nakagawa T, Correa-Rotter R, Wesseling C, Bankir L, Sanchez-Lozada LG. Hyperosmolarity drives hypertension and CKD--water and salt revisited.. Nat Rev Nephrol 2014 Jul;10(7):415-20.
                    doi: 10.1038/nrneph.2014.76pubmed: 24802066google scholar: lookup