Genes2019; 10(12); 976; doi: 10.3390/genes10120976

Genomic Divergence in Swedish Warmblood Horses Selected for Equestrian Disciplines.

Abstract: The equestrian sport horse Swedish Warmblood (SWB) originates from versatile cavalry horses. Most modern SWB breeders have specialized their breeding either towards show jumping or dressage disciplines. The aim of this study was to explore the genomic structure of SWB horses to evaluate the presence of genomic subpopulations, and to search for signatures of selection in subgroups of SWB with high or low breeding values (EBVs) for show jumping. We analyzed high density genotype information from 380 SWB horses born in the period 2010-2011, and used Principal Coordinates Analysis and Discriminant Analysis of Principal Components to detect population stratification. Fixation index and Cross Population Extended Haplotype Homozygosity scores were used to scan the genome for potential signatures of selection. In accordance with current breeding practice, this study highlights the development of two separate breed subpopulations with putative signatures of selection in eleven chromosomes. These regions involve genes with known function in, e.g., mentality, endogenous reward system, development of connective tissues and muscles, motor control, body growth and development. This study shows genetic divergence, due to specialization towards different disciplines in SWB horses. This latter evidence can be of interest for SWB and other horse studbooks encountering specialized breeding.
Publication Date: 2019-11-27 PubMed ID: 31783652PubMed Central: PMC6947233DOI: 10.3390/genes10120976Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article
  • Research Support
  • Non-U.S. Gov't

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

The research article delves into the genomic differences found in the specialized Swedish Warmblood horse breed, specifically investigating the subpopulations bred for show jumping versus dressage disciplines. In essence, it reveals there exists a discernible genetic distinction between the two, highlighting implications for future breeding practices.

Objective of the Study

  • The study sought to investigate the genomic structure of Swedish Warmblood (SWB) horses, particularly spotlighting the presence of subpopulations bred for different equestrian disciplines: dressage and show jumping.
  • Furthermore, it aimed to identify any potential selection signatures in these subgroups, which may be indicative of specialized breeding.

Methodology

  • A sample of 380 SWB horses born between 2010 and 2011 were selected for this study.
  • High density genotype information from these horses was analyzed using a Principal Coordinates Analysis and Discriminant Analysis of Principal Components. This was to detect the existence of population stratification.
  • The team used the Fixation index and Cross Population Extended Haplotype Homozygosity scores to scan the genome for potential selection signatures.

Findings of the Study

  • The study found that there were distinct subpopulations within the SWB breed, bred specifically for different equestrian competitions. This aligns with current breeding practices.
  • Signatures of selection were identified in eleven chromosomes. These are associated with traits such as mentality, reward system, development of muscles and connective tissues, motor control, and body growth and development.

Implication of the Study

  • This discovery validates the existence of genetic variance between specialized SWB subpopulations, attributed to the divergence in breeding for different equestrian disciplines.
  • It provides a valuable insight that could be useful to SWB and other horse studbooks, where specialized breeding is commonplace. Better understanding of these genetic distinctions could influence future breeding practices and the overall development of the breed.

Cite This Article

APA
Ablondi M, Eriksson S, Tetu S, Sabbioni A, Viklund u00c5, Mikko S. (2019). Genomic Divergence in Swedish Warmblood Horses Selected for Equestrian Disciplines. Genes (Basel), 10(12), 976. https://doi.org/10.3390/genes10120976

Publication

ISSN: 2073-4425
NlmUniqueID: 101551097
Country: Switzerland
Language: English
Volume: 10
Issue: 12
PII: 976

Researcher Affiliations

Ablondi, Michela
  • Department of Veterinary Science, University of Parma, 43126 Parma, Italy.
Eriksson, Susanne
  • Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023,S-75007 Uppsala, Sweden.
Tetu, Sasha
  • Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023,S-75007 Uppsala, Sweden.
Sabbioni, Alberto
  • Department of Veterinary Science, University of Parma, 43126 Parma, Italy.
Viklund, u00c5sa
  • Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023,S-75007 Uppsala, Sweden.
Mikko, Sofia
  • Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023,S-75007 Uppsala, Sweden.

MeSH Terms

  • Animals
  • Breeding / methods
  • Female
  • Horses / genetics
  • Horses / growth & development
  • Linkage Disequilibrium
  • Male
  • Oligonucleotide Array Sequence Analysis / veterinary
  • Polymorphism, Single Nucleotide
  • Principal Component Analysis
  • Quantitative Trait Loci
  • Selection, Genetic
  • Sports
  • Sweden

Conflict of Interest Statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

This article includes 99 references
  1. Rovere G., Madsen P., Norberg E., van Arendonk J.A.M., Ducro B.J. Genetic connections between dressage and show-jumping horses in Dutch Warmblood horses. Acta Agric. Scand. A Anim. Sci. 2014;64:57u201366. doi: 10.1080/09064702.2014.975738.
  2. SWB SWBs Avelsplan 2015. [(accessed on 28 October 2019)]; Available online: https://swb.org/wp-content/uploads/2016/11/Avelsplan-fi%CC%82r-SWB.pdf.
  3. Viklund u00c5., Granberg L., Eriksson S. Genetic analysis of data from Swedish stallion performance test; Proceedings of the 69th Annual Meeting of the EAAP; Dubrovnik, Croatia. 27u201331 August 2018; p. 660.
  4. Viklund u00c5., Nu00e4sholm A., Strandberg E., Philipsson J. Genetic trends for performance of Swedish Warmblood horses. Livest. Sci. 2011;141:113u2013122. doi: 10.1016/j.livsci.2011.05.006.
  5. Maiorano AM, Lourenco DL, Tsuruta S, Ospina AMT, Stafuzza NB, Masuda Y, Filho AEV, Cyrillo JNDSG, Curi RA, Silva JAIV. Assessing genetic architecture and signatures of selection of dual purpose Gir cattle populations using genomic information.. PLoS One 2018;13(8):e0200694.
  6. Marchiori C.M., Pereira G.L., Maiorano A.M., Rogatto G.M., Assoni A.D., Augusto V., II, Silva J., Chardulo L.A.L., Curi R.A. Linkage disequilibrium and population structure characterization in the cutting and racing lines of Quarter Horses bred in Brazil. Livest. Sci. 2019;219:45u201351. doi: 10.1016/j.livsci.2018.11.013.
  7. Bomba L, Nicolazzi EL, Milanesi M, Negrini R, Mancini G, Biscarini F, Stella A, Valentini A, Ajmone-Marsan P. Relative extended haplotype homozygosity signals across breeds reveal dairy and beef specific signatures of selection.. Genet Sel Evol 2015 Apr 2;47(1):25.
    doi: 10.1186/s12711-015-0113-9pmc: PMC4383072pubmed: 25888030google scholar: lookup
  8. Petersen JL, Mickelson JR, Cleary KD, McCue ME. The American Quarter Horse: population structure and relationship to the thoroughbred.. J Hered 2014 Mar-Apr;105(2):148-62.
    doi: 10.1093/jhered/est079pmc: PMC3920813pubmed: 24293614google scholar: lookup
  9. Avila F, Mickelson JR, Schaefer RJ, McCue ME. Genome-Wide Signatures of Selection Reveal Genes Associated With Performance in American Quarter Horse Subpopulations.. Front Genet 2018;9:249.
    doi: 10.3389/fgene.2018.00249pmc: PMC6060370pubmed: 30105047google scholar: lookup
  10. Lopes MS, Mendonu00e7a D, Rojer H, Cabral V, Bettencourt SX, da Cu00e2mara Machado A. Morphological and genetic characterization of an emerging Azorean horse breed: the Terceira Pony.. Front Genet 2015;6:62.
    doi: 10.3389/fgene.2015.00062pmc: PMC4343030pubmed: 25774165google scholar: lookup
  11. Ovchinnikov IV, Dahms T, Herauf B, McCann B, Juras R, Castaneda C, Cothran EG. Genetic diversity and origin of the feral horses in Theodore Roosevelt National Park.. PLoS One 2018;13(8):e0200795.
  12. Velie BD, Shrestha M, Franu04abois L, Schurink A, Tesfayonas YG, Stinckens A, Blott S, Ducro BJ, Mikko S, Thomas R, Swinburne JE, Sundqvist M, Eriksson S, Buys N, Lindgren G. Using an Inbred Horse Breed in a High Density Genome-Wide Scan for Genetic Risk Factors of Insect Bite Hypersensitivity (IBH).. PLoS One 2016;11(4):e0152966.
  13. Grilz-Seger G, Druml T, Neuditschko M, Dobretsberger M, Horna M, Brem G. High-resolution population structure and runs of homozygosity reveal the genetic architecture of complex traits in the Lipizzan horse.. BMC Genomics 2019 Mar 5;20(1):174.
    doi: 10.1186/s12864-019-5564-xpmc: PMC6402180pubmed: 30836959google scholar: lookup
  14. Metzger J, Karwath M, Tonda R, Beltran S, u00c1gueda L, Gut M, Gut IG, Distl O. Runs of homozygosity reveal signatures of positive selection for reproduction traits in breed and non-breed horses.. BMC Genomics 2015 Oct 9;16:764.
    doi: 10.1186/s12864-015-1977-3pmc: PMC4600213pubmed: 26452642google scholar: lookup
  15. Grilz-seger G., Neuditschko M., Mesaric M., Cotman M., Brem G., Druml T. Changes in breeding objectives of the Haflinger horse breed from a genomeu2014wide perspective. Zu00fcchtungskunde. 2019;91:296u2013311.
  16. Ablondi M, Viklund u00c5, Lindgren G, Eriksson S, Mikko S. Signatures of selection in the genome of Swedish warmblood horses selected for sport performance.. BMC Genomics 2019 Sep 18;20(1):717.
    doi: 10.1186/s12864-019-6079-1pmc: PMC6751828pubmed: 31533613google scholar: lookup
  17. Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, Xie X, Byrne EH, McCarroll SA, Gaudet R, Schaffner SF, Lander ES, Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM, Pasternak S, Wheeler DA, Willis TD, Yu F, Yang H, Zeng C, Gao Y, Hu H, Hu W, Li C, Lin W, Liu S, Pan H, Tang X, Wang J, Wang W, Yu J, Zhang B, Zhang Q, Zhao H, Zhao H, Zhou J, Gabriel SB, Barry R, Blumenstiel B, Camargo A, Defelice M, Faggart M, Goyette M, Gupta S, Moore J, Nguyen H, Onofrio RC, Parkin M, Roy J, Stahl E, Winchester E, Ziaugra L, Altshuler D, Shen Y, Yao Z, Huang W, Chu X, He Y, Jin L, Liu Y, Shen Y, Sun W, Wang H, Wang Y, Wang Y, Xiong X, Xu L, Waye MM, Tsui SK, Xue H, Wong JT, Galver LM, Fan JB, Gunderson K, Murray SS, Oliphant AR, Chee MS, Montpetit A, Chagnon F, Ferretti V, Leboeuf M, Olivier JF, Phillips MS, Roumy S, Sallu00e9e C, Verner A, Hudson TJ, Kwok PY, Cai D, Koboldt DC, Miller RD, Pawlikowska L, Taillon-Miller P, Xiao M, Tsui LC, Mak W, Song YQ, Tam PK, Nakamura Y, Kawaguchi T, Kitamoto T, Morizono T, Nagashima A, Ohnishi Y, Sekine A, Tanaka T, Tsunoda T, Deloukas P, Bird CP, Delgado M, Dermitzakis ET, Gwilliam R, Hunt S, Morrison J, Powell D, Stranger BE, Whittaker P, Bentley DR, Daly MJ, de Bakker PI, Barrett J, Chretien YR, Maller J, McCarroll S, Patterson N, Pe'er I, Price A, Purcell S, Richter DJ, Sabeti P, Saxena R, Schaffner SF, Sham PC, Varilly P, Altshuler D, Stein LD, Krishnan L, Smith AV, Tello-Ruiz MK, Thorisson GA, Chakravarti A, Chen PE, Cutler DJ, Kashuk CS, Lin S, Abecasis GR, Guan W, Li Y, Munro HM, Qin ZS, Thomas DJ, McVean G, Auton A, Bottolo L, Cardin N, Eyheramendy S, Freeman C, Marchini J, Myers S, Spencer C, Stephens M, Donnelly P, Cardon LR, Clarke G, Evans DM, Morris AP, Weir BS, Tsunoda T, Johnson TA, Mullikin JC, Sherry ST, Feolo M, Skol A, Zhang H, Zeng C, Zhao H, Matsuda I, Fukushima Y, Macer DR, Suda E, Rotimi CN, Adebamowo CA, Ajayi I, Aniagwu T, Marshall PA, Nkwodimmah C, Royal CD, Leppert MF, Dixon M, Peiffer A, Qiu R, Kent A, Kato K, Niikawa N, Adewole IF, Knoppers BM, Foster MW, Clayton EW, Watkin J, Gibbs RA, Belmont JW, Muzny D, Nazareth L, Sodergren E, Weinstock GM, Wheeler DA, Yakub I, Gabriel SB, Onofrio RC, Richter DJ, Ziaugra L, Birren BW, Daly MJ, Altshuler D, Wilson RK, Fulton LL, Rogers J, Burton J, Carter NP, Clee CM, Griffiths M, Jones MC, McLay K, Plumb RW, Ross MT, Sims SK, Willey DL, Chen Z, Han H, Kang L, Godbout M, Wallenburg JC, L'Archevu00eaque P, Bellemare G, Saeki K, Wang H, An D, Fu H, Li Q, Wang Z, Wang R, Holden AL, Brooks LD, McEwen JE, Guyer MS, Wang VO, Peterson JL, Shi M, Spiegel J, Sung LM, Zacharia LF, Collins FS, Kennedy K, Jamieson R, Stewart J. Genome-wide detection and characterization of positive selection in human populations.. Nature 2007 Oct 18;449(7164):913-8.
    doi: 10.1038/nature06250pmc: PMC2687721pubmed: 17943131google scholar: lookup
  18. Frischknecht M, Flury C, Leeb T, Rieder S, Neuditschko M. Selection signatures in Shetland ponies.. Anim Genet 2016 Jun;47(3):370-2.
    doi: 10.1111/age.12416pubmed: 26857482google scholar: lookup
  19. Moon S, Lee JW, Shin D, Shin KY, Kim J, Choi IY, Kim J, Kim H. A Genome-wide Scan for Selective Sweeps in Racing Horses.. Asian-Australas J Anim Sci 2015 Nov;28(11):1525-31.
    doi: 10.5713/ajas.14.0696pmc: PMC4647090pubmed: 26333666google scholar: lookup
  20. Metzger J, Philipp U, Lopes MS, da Camara Machado A, Felicetti M, Silvestrelli M, Distl O. Analysis of copy number variants by three detection algorithms and their association with body size in horses.. BMC Genomics 2013 Jul 18;14:487.
    doi: 10.1186/1471-2164-14-487pmc: PMC3720552pubmed: 23865711google scholar: lookup
  21. Wang W, Wang S, Hou C, Xing Y, Cao J, Wu K, Liu C, Zhang D, Zhang L, Zhang Y, Zhou H. Genome-wide detection of copy number variations among diverse horse breeds by array CGH.. PLoS One 2014;9(1):e86860.
  22. Schurink A, da Silva VH, Velie BD, Dibbits BW, Crooijmans RPMA, Franu04abois L, Janssens S, Stinckens A, Blott S, Buys N, Lindgren G, Ducro BJ. Copy number variations in Friesian horses and genetic risk factors for insect bite hypersensitivity.. BMC Genet 2018 Jul 30;19(1):49.
    doi: 10.1186/s12863-018-0657-0pmc: PMC6065148pubmed: 30060732google scholar: lookup
  23. SASu00ae 9.4 Fourth Edition. SAS Institute Inc.; Cary, NC, USA: 2015.
  24. Schaefer RJ, Schubert M, Bailey E, Bannasch DL, Barrey E, Bar-Gal GK, Brem G, Brooks SA, Distl O, Fries R, Finno CJ, Gerber V, Haase B, Jagannathan V, Kalbfleisch T, Leeb T, Lindgren G, Lopes MS, Mach N, da Cu00e2mara Machado A, MacLeod JN, McCoy A, Metzger J, Penedo C, Polani S, Rieder S, Tammen I, Tetens J, Thaller G, Verini-Supplizi A, Wade CM, Wallner B, Orlando L, Mickelson JR, McCue ME. Developing a 670k genotyping array to tag ~2M SNPs across 24 horse breeds.. BMC Genomics 2017 Jul 27;18(1):565.
    doi: 10.1186/s12864-017-3943-8pmc: PMC5530493pubmed: 28750625google scholar: lookup
  25. Kalbfleisch T.S., Rice E., DePriest M.S., Walenz B.P., Hestand M.S., Vermeesch J.R., Ou2019Connell B.L., Fiddes I.T., Vershinina A.O., Petersen J.L., et al. EquCab3, an Updated Reference Genome for the Domestic Horse. bioRxiv. 2018 doi: 10.1101/306928.
    doi: 10.1101/306928google scholar: lookup
  26. Beeson SK, Schaefer RJ, Mason VC, McCue ME. Robust remapping of equine SNP array coordinates to EquCab3.. Anim Genet 2019 Feb;50(1):114-115.
    doi: 10.1111/age.12745pmc: PMC6349531pubmed: 30421446google scholar: lookup
  27. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses.. Am J Hum Genet 2007 Sep;81(3):559-75.
    doi: 10.1086/519795pmc: PMC1950838pubmed: 17701901google scholar: lookup
  28. Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S, Imsland F, Lear TL, Adelson DL, Bailey E, Bellone RR, Blu00f6cker H, Distl O, Edgar RC, Garber M, Leeb T, Mauceli E, MacLeod JN, Penedo MC, Raison JM, Sharpe T, Vogel J, Andersson L, Antczak DF, Biagi T, Binns MM, Chowdhary BP, Coleman SJ, Della Valle G, Fryc S, Guu00e9rin G, Hasegawa T, Hill EW, Jurka J, Kiialainen A, Lindgren G, Liu J, Magnani E, Mickelson JR, Murray J, Nergadze SG, Onofrio R, Pedroni S, Piras MF, Raudsepp T, Rocchi M, Ru00f8ed KH, Ryder OA, Searle S, Skow L, Swinburne JE, Syvu00e4nen AC, Tozaki T, Valberg SJ, Vaudin M, White JR, Zody MC, Lander ES, Lindblad-Toh K. Genome sequence, comparative analysis, and population genetics of the domestic horse.. Science 2009 Nov 6;326(5954):865-7.
    doi: 10.1126/science.1178158pmc: PMC3785132pubmed: 19892987google scholar: lookup
  29. Mardia K.V. Some properties of clasical multi-dimesional scaling. Commun. Stat. Theory Methods. 1978;7:1233u20131241. doi: 10.1080/03610927808827707.
    doi: 10.1080/03610927808827707google scholar: lookup
  30. R Development Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2014.
  31. Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations.. BMC Genet 2010 Oct 15;11:94.
    doi: 10.1186/1471-2156-11-94pmc: PMC2973851pubmed: 20950446google scholar: lookup
  32. Jombart T. adegenet: a R package for the multivariate analysis of genetic markers.. Bioinformatics 2008 Jun 1;24(11):1403-5.
    doi: 10.1093/bioinformatics/btn129pubmed: 18397895google scholar: lookup
  33. Nei M. Molecular Evolutionary Genetics. Columbia University Press; New York, NY, USA: 1987.
  34. Akey JM, Zhang G, Zhang K, Jin L, Shriver MD. Interrogating a high-density SNP map for signatures of natural selection.. Genome Res 2002 Dec;12(12):1805-14.
    doi: 10.1101/gr.631202pmc: PMC187574pubmed: 12466284google scholar: lookup
  35. Wright S. Evolution and the Genetics of Populations, Variability within and among Natural Populations. Volume 4 University of Chicago Press; Chicago, IL, USA: 1978.
  36. Makina SO, Muchadeyi FC, van Marle-Ku00f6ster E, Taylor JF, Makgahlela ML, Maiwashe A. Genome-wide scan for selection signatures in six cattle breeds in South Africa.. Genet Sel Evol 2015 Nov 26;47:92.
    doi: 10.1186/s12711-015-0173-xpmc: PMC4662009pubmed: 26612660google scholar: lookup
  37. Zhao F, McParland S, Kearney F, Du L, Berry DP. Detection of selection signatures in dairy and beef cattle using high-density genomic information.. Genet Sel Evol 2015 Jun 19;47(1):49.
    doi: 10.1186/s12711-015-0127-3pmc: PMC4472243pubmed: 26089079google scholar: lookup
  38. Delaneau O, Coulonges C, Zagury JF. Shape-IT: new rapid and accurate algorithm for haplotype inference.. BMC Bioinformatics 2008 Dec 16;9:540.
    doi: 10.1186/1471-2105-9-540pmc: PMC2647951pubmed: 19087329google scholar: lookup
  39. Gautier M, Vitalis R. rehh: an R package to detect footprints of selection in genome-wide SNP data from haplotype structure.. Bioinformatics 2012 Apr 15;28(8):1176-7.
    doi: 10.1093/bioinformatics/bts115pubmed: 22402612google scholar: lookup
  40. Gautier M, Naves M. Footprints of selection in the ancestral admixture of a New World Creole cattle breed.. Mol Ecol 2011 Aug;20(15):3128-43.
  41. Benjamini Y., Hochberg Y. Controlling The False Discovery Rateu2014A Practical And Powerful Approach To Multiple Testing. J. R. Stat. Soc. 1995;57:289u2013300. doi: 10.1111/j.2517-6161.1995.tb02031.x.
  42. Aken BL, Ayling S, Barrell D, Clarke L, Curwen V, Fairley S, Fernandez Banet J, Billis K, Garcu00eda Giru00f3n C, Hourlier T, Howe K, Ku00e4hu00e4ri A, Kokocinski F, Martin FJ, Murphy DN, Nag R, Ruffier M, Schuster M, Tang YA, Vogel JH, White S, Zadissa A, Flicek P, Searle SM. The Ensembl gene annotation system.. Database (Oxford) 2016;2016.
    doi: 10.1093/database/baw093pmc: PMC4919035pubmed: 27337980google scholar: lookup
  43. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A. PANTHER: a library of protein families and subfamilies indexed by function.. Genome Res 2003 Sep;13(9):2129-41.
    doi: 10.1101/gr.772403pmc: PMC403709pubmed: 12952881google scholar: lookup
  44. Hu ZL, Park CA, Reecy JM. Building a livestock genetic and genomic information knowledgebase through integrative developments of Animal QTLdb and CorrDB.. Nucleic Acids Res 2019 Jan 8;47(D1):D701-D710.
    doi: 10.1093/nar/gky1084pmc: PMC6323967pubmed: 30407520google scholar: lookup
  45. Viklund A, Braam A, Nu00e4sholm A, Strandberg E, Philipsson J. Genetic variation in competition traits at different ages and time periods and correlations with traits at field tests of 4-year-old Swedish Warmblood horses.. Animal 2010 May;4(5):682-91.
    doi: 10.1017/S1751731110000017pubmed: 22444120google scholar: lookup
  46. Hellsten E.T., Nu00e4sholm A., Jorjani H., Strandberg E., Philipsson J. Influence of foreign stallions on the Swedish Warmblood breed and its genetic evaluation. Livest. Sci. 2009;121:207u2013214. doi: 10.1016/j.livsci.2008.06.014.
  47. Storz JF. Using genome scans of DNA polymorphism to infer adaptive population divergence.. Mol Ecol 2005 Mar;14(3):671-88.
  48. Chen M, Pan D, Ren H, Fu J, Li J, Su G, Wang A, Jiang L, Zhang Q, Liu JF. Identification of selective sweeps reveals divergent selection between Chinese Holstein and Simmental cattle populations.. Genet Sel Evol 2016 Oct 6;48(1):76.
    doi: 10.1186/s12711-016-0254-5pmc: PMC5054554pubmed: 27716022google scholar: lookup
  49. Doan R, Cohen N, Harrington J, Veazey K, Juras R, Cothran G, McCue ME, Skow L, Dindot SV. Identification of copy number variants in horses.. Genome Res 2012 May;22(5):899-907.
    doi: 10.1101/gr.128991.111pmc: PMC3337435pubmed: 22383489google scholar: lookup
  50. Zhang W, Han Q, Liu Z, Zhou W, Cao Q, Zhou W. Exome sequencing reveals a de novo PRKG1 mutation in a sporadic patient with aortic dissection.. BMC Med Genet 2018 Dec 22;19(1):218.
    doi: 10.1186/s12881-018-0735-1pmc: PMC6303953pubmed: 30577811google scholar: lookup
  51. Lee W, Park KD, Taye M, Lee C, Kim H, Lee HK, Shin D. Analysis of cross-population differentiation between Thoroughbred and Jeju horses.. Asian-Australas J Anim Sci 2018 Aug;31(8):1110-1118.
    doi: 10.5713/ajas.17.0460pmc: PMC6043458pubmed: 29268585google scholar: lookup
  52. Nekrasova T, Jobes ML, Ting JH, Wagner GC, Minden A. Targeted disruption of the Pak5 and Pak6 genes in mice leads to deficits in learning and locomotion.. Dev Biol 2008 Oct 1;322(1):95-108.
    doi: 10.1016/j.ydbio.2008.07.006pubmed: 18675265google scholar: lookup
  53. Carlisle HJ, Luong TN, Medina-Marino A, Schenker L, Khorosheva E, Indersmitten T, Gunapala KM, Steele AD, O'Dell TJ, Patterson PH, Kennedy MB. Deletion of densin-180 results in abnormal behaviors associated with mental illness and reduces mGluR5 and DISC1 in the postsynaptic density fraction.. J Neurosci 2011 Nov 9;31(45):16194-207.
  54. Udawela M, Scarr E, Hannan AJ, Thomas EA, Dean B. Phospholipase C beta 1 expression in the dorsolateral prefrontal cortex from patients with schizophrenia at different stages of illness.. Aust N Z J Psychiatry 2011 Feb;45(2):140-7.
    doi: 10.3109/00048674.2010.533364pubmed: 21091263google scholar: lookup
  55. Weng YT, Chien T, Kuan II, Chern Y. The TRAX, DISC1, and GSK3 complex in mental disorders and therapeutic interventions.. J Biomed Sci 2018 Oct 4;25(1):71.
    pmc: PMC6171312pubmed: 30285728doi: 10.1186/s12929-018-0473-xgoogle scholar: lookup
  56. Fernandes JCR, Acuu00f1a SM, Aoki JI, Floeter-Winter LM, Muxel SM. Long Non-Coding RNAs in the Regulation of Gene Expression: Physiology and Disease.. Noncoding RNA 2019 Feb 17;5(1).
    doi: 10.3390/ncrna5010017pmc: PMC6468922pubmed: 30781588google scholar: lookup
  57. Qureshi IA, Mehler MF. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease.. Nat Rev Neurosci 2012 Jul 20;13(8):528-41.
    doi: 10.1038/nrn3234pmc: PMC3478095pubmed: 22814587google scholar: lookup
  58. Carneiro M, Rubin CJ, Di Palma F, Albert FW, Alfu00f6ldi J, Martinez Barrio A, Pielberg G, Rafati N, Sayyab S, Turner-Maier J, Younis S, Afonso S, Aken B, Alves JM, Barrell D, Bolet G, Boucher S, Burbano HA, Campos R, Chang JL, Duranthon V, Fontanesi L, Garreau H, Heiman D, Johnson J, Mage RG, Peng Z, Queney G, Rogel-Gaillard C, Ruffier M, Searle S, Villafuerte R, Xiong A, Young S, Forsberg-Nilsson K, Good JM, Lander ES, Ferrand N, Lindblad-Toh K, Andersson L. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication.. Science 2014 Aug 29;345(6200):1074-1079.
    doi: 10.1126/science.1253714pmc: PMC5421586pubmed: 25170157google scholar: lookup
  59. Schru00f6der W, Klostermann A, Stock KF, Distl O. A genome-wide association study for quantitative trait loci of show-jumping in Hanoverian warmblood horses.. Anim Genet 2012 Aug;43(4):392-400.
  60. Napoli E, Ross-Inta C, Wong S, Hung C, Fujisawa Y, Sakaguchi D, Angelastro J, Omanska-Klusek A, Schoenfeld R, Giulivi C. Mitochondrial dysfunction in Pten haplo-insufficient mice with social deficits and repetitive behavior: interplay between Pten and p53.. PLoS One 2012;7(8):e42504.
  61. Kwon CH, Luikart BW, Powell CM, Zhou J, Matheny SA, Zhang W, Li Y, Baker SJ, Parada LF. Pten regulates neuronal arborization and social interaction in mice.. Neuron 2006 May 4;50(3):377-88.
  62. Rankinen T, Roth SM, Bray MS, Loos R, Pu00e9russe L, Wolfarth B, Hagberg JM, Bouchard C. Advances in exercise, fitness, and performance genomics.. Med Sci Sports Exerc 2010 May;42(5):835-46.
    doi: 10.1249/MSS.0b013e3181d86cecpubmed: 20400881google scholar: lookup
  63. Coricor G, Serra R. TGF-u03b2 regulates phosphorylation and stabilization of Sox9 protein in chondrocytes through p38 and Smad dependent mechanisms.. Sci Rep 2016 Dec 8;6:38616.
    doi: 10.1038/srep38616pmc: PMC5144132pubmed: 27929080google scholar: lookup
  64. Chavez RD, Coricor G, Perez J, Seo HS, Serra R. SOX9 protein is stabilized by TGF-u03b2 and regulates PAPSS2 mRNA expression in chondrocytes.. Osteoarthritis Cartilage 2017 Feb;25(2):332-340.
    doi: 10.1016/j.joca.2016.10.007pmc: PMC5258840pubmed: 27746378google scholar: lookup
  65. Loeys BL, Schwarze U, Holm T, Callewaert BL, Thomas GH, Pannu H, De Backer JF, Oswald GL, Symoens S, Manouvrier S, Roberts AE, Faravelli F, Greco MA, Pyeritz RE, Milewicz DM, Coucke PJ, Cameron DE, Braverman AC, Byers PH, De Paepe AM, Dietz HC. Aneurysm syndromes caused by mutations in the TGF-beta receptor.. N Engl J Med 2006 Aug 24;355(8):788-98.
    doi: 10.1056/NEJMoa055695pubmed: 16928994google scholar: lookup
  66. Borza CM, Su Y, Tran TL, Yu L, Steyns N, Temple KJ, Skwark MJ, Meiler J, Lindsley CW, Hicks BR, Leitinger B, Zent R, Pozzi A. Discoidin domain receptor 1 kinase activity is required for regulating collagen IV synthesis.. Matrix Biol 2017 Jan;57-58:258-271.
  67. Chiusa M, Hu W, Liao HJ, Su Y, Borza CM, de Caestecker MP, Skrypnyk NI, Fogo AB, Pedchenko V, Li X, Zhang MZ, Hudson BG, Basak T, Vanacore RM, Zent R, Pozzi A. The Extracellular Matrix Receptor Discoidin Domain Receptor 1 Regulates Collagen Transcription by Translocating to the Nucleus.. J Am Soc Nephrol 2019 Sep;30(9):1605-1624.
    doi: 10.1681/ASN.2018111160pmc: PMC6727269pubmed: 31383731google scholar: lookup
  68. Eklund L, Piuhola J, Komulainen J, Sormunen R, Ongvarrasopone C, Fu00e1ssler R, Muona A, Ilves M, Ruskoaho H, Takala TE, Pihlajaniemi T. Lack of type XV collagen causes a skeletal myopathy and cardiovascular defects in mice.. Proc Natl Acad Sci U S A 2001 Jan 30;98(3):1194-9.
    doi: 10.1073/pnas.98.3.1194pmc: PMC14731pubmed: 11158616google scholar: lookup
  69. Lim PJ, Lindert U, Opitz L, Hausser I, Rohrbach M, Giunta C. Transcriptome Profiling of Primary Skin Fibroblasts Reveal Distinct Molecular Features Between PLOD1- and FKBP14-Kyphoscoliotic Ehlers-Danlos Syndrome.. Genes (Basel) 2019 Jul 8;10(7).
    doi: 10.3390/genes10070517pmc: PMC6678841pubmed: 31288483google scholar: lookup
  70. Castori M, Tinkle B, Levy H, Grahame R, Malfait F, Hakim A. A framework for the classification of joint hypermobility and related conditions.. Am J Med Genet C Semin Med Genet 2017 Mar;175(1):148-157.
    doi: 10.1002/ajmg.c.31539pubmed: 28145606google scholar: lookup
  71. Monthoux C, de Brot S, Jackson M, Bleul U, Walter J. Skin malformations in a neonatal foal tested homozygous positive for Warmblood Fragile Foal Syndrome.. BMC Vet Res 2015 Jan 31;11:12.
    doi: 10.1186/s12917-015-0318-8pmc: PMC4327794pubmed: 25637337google scholar: lookup
  72. Giunta C, Elu00e7ioglu NH, Albrecht B, Eich G, Chambaz C, Janecke AR, Yeowell H, Weis M, Eyre DR, Kraenzlin M, Steinmann B. Spondylocheiro dysplastic form of the Ehlers-Danlos syndrome--an autosomal-recessive entity caused by mutations in the zinc transporter gene SLC39A13.. Am J Hum Genet 2008 Jun;82(6):1290-305.
    doi: 10.1016/j.ajhg.2008.05.001pmc: PMC2427271pubmed: 18513683google scholar: lookup
  73. Mushtaq M, Gaza HV, Kashuba EV. Role of the RB-Interacting Proteins in Stem Cell Biology.. Adv Cancer Res 2016;131:133-57.
    pubmed: 27451126doi: 10.1016/bs.acr.2016.04.002google scholar: lookup
  74. Minocherhomji S, Hansen C, Kim HG, Mang Y, Bak M, Guldberg P, Papadopoulos N, Eiberg H, Doh GD, Mu00f8llgu00e5rd K, Hertz JM, Nielsen JE, Ropers HH, Tu00fcmer Z, Tommerup N, Kalscheuer VM, Silahtaroglu A. Epigenetic remodelling and dysregulation of DLGAP4 is linked with early-onset cerebellar ataxia.. Hum Mol Genet 2014 Dec 1;23(23):6163-76.
    doi: 10.1093/hmg/ddu337pmc: PMC4222360pubmed: 24986922google scholar: lookup
  75. Rasmussen AH, Rasmussen HB, Silahtaroglu A. The DLGAP family: neuronal expression, function and role in brain disorders.. Mol Brain 2017 Sep 4;10(1):43.
    doi: 10.1186/s13041-017-0324-9pmc: PMC5583998pubmed: 28870203google scholar: lookup
  76. Banerjee A, Wang HY, Borgmann-Winter KE, MacDonald ML, Kaprielian H, Stucky A, Kvasic J, Egbujo C, Ray R, Talbot K, Hemby SE, Siegel SJ, Arnold SE, Sleiman P, Chang X, Hakonarson H, Gur RE, Hahn CG. Src kinase as a mediator of convergent molecular abnormalities leading to NMDAR hypoactivity in schizophrenia.. Mol Psychiatry 2015 Sep;20(9):1091-100.
    doi: 10.1038/mp.2014.115pmc: PMC5156326pubmed: 25330739google scholar: lookup
  77. Schob C, Morellini F, Ohana O, Bakota L, Hrynchak MV, Brandt R, Brockmann MD, Cichon N, Hartung H, Hanganu-Opatz IL, Kraus V, Scharf S, Herrmans-Borgmeyer I, Schweizer M, Kuhl D, Wu00f6hr M, Vu00f6rckel KJ, Calzada-Wack J, Fuchs H, Gailus-Durner V, Hrabu011b de Angelis M, Garner CC, Kreienkamp HJ, Kindler S. Cognitive impairment and autistic-like behaviour in SAPAP4-deficient mice.. Transl Psychiatry 2019 Jan 16;9(1):7.
    doi: 10.1038/s41398-018-0327-zpmc: PMC6341115pubmed: 30664629google scholar: lookup
  78. Ellenbroek SI, Collard JG. Rho GTPases: functions and association with cancer.. Clin Exp Metastasis 2007;24(8):657-72.
    doi: 10.1007/s10585-007-9119-1pubmed: 18000759google scholar: lookup
  79. Lowe C, Yoneda T, Boyce BF, Chen H, Mundy GR, Soriano P. Osteopetrosis in Src-deficient mice is due to an autonomous defect of osteoclasts.. Proc Natl Acad Sci U S A 1993 May 15;90(10):4485-9.
    doi: 10.1073/pnas.90.10.4485pmc: PMC46536pubmed: 7685105google scholar: lookup
  80. Skujina I, Winton CL, Hegarty MJ, McMahon R, Nash DM, Davies Morel MCG, McEwan NR. Detecting genetic regions associated with height in the native ponies of the British Isles by using high density SNP genotyping.. Genome 2018 Oct;61(10):767-770.
    doi: 10.1139/gen-2018-0006pubmed: 30184439google scholar: lookup
  81. Davidson TB, Sanchez-Lara PA, Randolph LM, Krieger MD, Wu SQ, Panigrahy A, Shimada H, Erdreich-Epstein A. Microdeletion del(22)(q12.2) encompassing the facial development-associated gene, MN1 (meningioma 1) in a child with Pierre-Robin sequence (including cleft palate) and neurofibromatosis 2 (NF2): a case report and review of the literature.. BMC Med Genet 2012 Mar 22;13:19.
    doi: 10.1186/1471-2350-13-19pmc: PMC3359208pubmed: 22436304google scholar: lookup
  82. Hu PQ, Fertig N, Medsger TA Jr, Wright TM. Molecular recognition patterns of serum anti-DNA topoisomerase I antibody in systemic sclerosis.. J Immunol 2004 Aug 15;173(4):2834-41.
    doi: 10.4049/jimmunol.173.4.2834pubmed: 15295002google scholar: lookup
  83. Nevitt C, Tooley JG, Schaner Tooley CE. N-terminal acetylation and methylation differentially affect the function of MYL9.. Biochem J 2018 Oct 22;475(20):3201-3219.
    doi: 10.1042/BCJ20180638pmc: PMC6442934pubmed: 30242065google scholar: lookup
  84. Rylatt DB, Aitken A, Bilham T, Condon GD, Embi N, Cohen P. Glycogen synthase from rabbit skeletal muscle. Amino acid sequence at the sites phosphorylated by glycogen synthase kinase-3, and extension of the N-terminal sequence containing the site phosphorylated by phosphorylase kinase.. Eur J Biochem 1980 Jun;107(2):529-37.
  85. Yang S, Li X, Liu X, Ding X, Xin X, Jin C, Zhang S, Li G, Guo H. Parallel comparative proteomics and phosphoproteomics reveal that cattle myostatin regulates phosphorylation of key enzymes in glycogen metabolism and glycolysis pathway.. Oncotarget 2018 Feb 16;9(13):11352-11370.
    doi: 10.18632/oncotarget.24250pmc: PMC5834288pubmed: 29541418google scholar: lookup
  86. Lewis SS, Nicholson AM, Williams ZJ, Valberg SJ. Clinical characteristics and muscle glycogen concentrations in warmblood horses with polysaccharide storage myopathy.. Am J Vet Res 2017 Nov;78(11):1305-1312.
    doi: 10.2460/ajvr.78.11.1305pubmed: 29076373google scholar: lookup
  87. Zhou J, Blundell J, Ogawa S, Kwon CH, Zhang W, Sinton C, Powell CM, Parada LF. Pharmacological inhibition of mTORC1 suppresses anatomical, cellular, and behavioral abnormalities in neural-specific Pten knock-out mice.. J Neurosci 2009 Feb 11;29(6):1773-83.
  88. Hassed S, Li S, Mulvihill J, Aston C, Palmer S. Adams-Oliver syndrome review of the literature: Refining the diagnostic phenotype.. Am J Med Genet A 2017 Mar;173(3):790-800.
    doi: 10.1002/ajmg.a.37889pubmed: 28160419google scholar: lookup
  89. Schindler RF, Scotton C, Zhang J, Passarelli C, Ortiz-Bonnin B, Simrick S, Schwerte T, Poon KL, Fang M, Rinnu00e9 S, Froese A, Nikolaev VO, Grunert C, Mu00fcller T, Tasca G, Sarathchandra P, Drago F, Dallapiccola B, Rapezzi C, Arbustini E, Di Raimo FR, Neri M, Selvatici R, Gualandi F, Fattori F, Pietrangelo A, Li W, Jiang H, Xu X, Bertini E, Decher N, Wang J, Brand T, Ferlini A. POPDC1(S201F) causes muscular dystrophy and arrhythmia by affecting protein trafficking.. J Clin Invest 2016 Jan;126(1):239-53.
    doi: 10.1172/JCI79562pmc: PMC4701561pubmed: 26642364google scholar: lookup
  90. Swan AH, Gruscheski L, Boland LA, Brand T. The Popeye domain containing gene family encoding a family of cAMP-effector proteins with important functions in striated muscle and beyond.. J Muscle Res Cell Motil 2019 Jun;40(2):169-183.
    doi: 10.1007/s10974-019-09523-zpmc: PMC6726836pubmed: 31197601google scholar: lookup
  91. Hendrickson SL. A genome wide study of genetic adaptation to high altitude in feral Andean Horses of the pu00e1ramo.. BMC Evol Biol 2013 Dec 17;13:273.
    doi: 10.1186/1471-2148-13-273pmc: PMC3878729pubmed: 24344830google scholar: lookup
  92. Shin JH, Adrover MF, Wess J, Alvarez VA. Muscarinic regulation of dopamine and glutamate transmission in the nucleus accumbens.. Proc Natl Acad Sci U S A 2015 Jun 30;112(26):8124-9.
    doi: 10.1073/pnas.1508846112pmc: PMC4491757pubmed: 26080439google scholar: lookup
  93. Kader A, Liu X, Dong K, Song S, Pan J, Yang M, Chen X, He X, Jiang L, Ma Y. Identification of copy number variations in three Chinese horse breeds using 70K single nucleotide polymorphism BeadChip array.. Anim Genet 2016 Oct;47(5):560-9.
    doi: 10.1111/age.12451pubmed: 27440410google scholar: lookup
  94. Ueda H, Sasaki K, Halder SK, Deguchi Y, Takao K, Miyakawa T, Tajima A. Prothymosin alpha-deficiency enhances anxiety-like behaviors and impairs learning/memory functions and neurogenesis.. J Neurochem 2017 Apr;141(1):124-136.
    doi: 10.1111/jnc.13963pubmed: 28122138google scholar: lookup
  95. George EM, Brown DT. Prothymosin alpha is a component of a linker histone chaperone.. FEBS Lett 2010 Jul 2;584(13):2833-6.
  96. McNeill EM, Klu00f6ckner-Bormann M, Roesler EC, Talton LE, Moechars D, Clagett-Dame M. Nav2 hypomorphic mutant mice are ataxic and exhibit abnormalities in cerebellar development.. Dev Biol 2011 May 15;353(2):331-43.
    doi: 10.1016/j.ydbio.2011.03.008pmc: PMC3250223pubmed: 21419114google scholar: lookup
  97. Lanuza GM, Gosgnach S, Pierani A, Jessell TM, Goulding M. Genetic identification of spinal interneurons that coordinate left-right locomotor activity necessary for walking movements.. Neuron 2004 May 13;42(3):375-86.
    doi: 10.1016/S0896-6273(04)00249-1pubmed: 15134635google scholar: lookup
  98. Griener A, Zhang W, Kao H, Haque F, Gosgnach S. Anatomical and electrophysiological characterization of a population of dI6 interneurons in the neonatal mouse spinal cord.. Neuroscience 2017 Oct 24;362:47-59.
  99. Andersson LS, Larhammar M, Memic F, Wootz H, Schwochow D, Rubin CJ, Patra K, Arnason T, Wellbring L, Hju00e4lm G, Imsland F, Petersen JL, McCue ME, Mickelson JR, Cothran G, Ahituv N, Roepstorff L, Mikko S, Vallstedt A, Lindgren G, Andersson L, Kullander K. Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice.. Nature 2012 Aug 30;488(7413):642-6.
    doi: 10.1038/nature11399pmc: PMC3523687pubmed: 22932389google scholar: lookup

Citations

This article has been cited 6 times.
  1. Lindsay-McGee V, Sanchez-Molano E, Banos G, Clark EL, Piercy RJ, Psifidi A. Genetic characterisation of the Connemara pony and the Warmblood horse using a within-breed clustering approach.. Genet Sel Evol 2023 Aug 17;55(1):60.
    doi: 10.1186/s12711-023-00827-wpubmed: 37592264google scholar: lookup
  2. Ablondi M, Johnsson M, Eriksson S, Sabbioni A, Viklund u00c5G, Mikko S. Performance of Swedish Warmblood fragile foal syndrome carriers and breeding prospects.. Genet Sel Evol 2022 Jan 21;54(1):4.
    doi: 10.1186/s12711-021-00693-4pubmed: 35062868google scholar: lookup
  3. Duguu00e9 M, Dumont Saint Priest B, Crichan H, Danvy S, Ricard A. Genomic Correlations Between the Gaits of Young Horses Measured by Accelerometry and Functional Longevity in Jumping Competition.. Front Genet 2021;12:619947.
    doi: 10.3389/fgene.2021.619947pubmed: 33584826google scholar: lookup
  4. Ricard A, Dumont Saint Priest B, Chassier M, Sabbagh M, Danvy S. Genetic consistency between gait analysis by accelerometry and evaluation scores at breeding shows for the selection of jumping competition horses.. PLoS One 2020;15(12):e0244064.
    doi: 10.1371/journal.pone.0244064pubmed: 33326505google scholar: lookup
  5. Ablondi M, Dadousis C, Vasini M, Eriksson S, Mikko S, Sabbioni A. Genetic Diversity and Signatures of Selection in a Native Italian Horse Breed Based on SNP Data.. Animals (Basel) 2020 Jun 8;10(6).
    doi: 10.3390/ani10061005pubmed: 32521830google scholar: lookup
  6. Gao S, Nanaei HA, Wei B, Wang Y, Wang X, Li Z, Dai X, Wang Z, Jiang Y, Shao J. Comparative Transcriptome Profiling Analysis Uncovers Novel Heterosis-Related Candidate Genes Associated with Muscular Endurance in Mules.. Animals (Basel) 2020 Jun 4;10(6).
    doi: 10.3390/ani10060980pubmed: 32512843google scholar: lookup