Physiological reports2024; 12(10); e16083; doi: 10.14814/phy2.16083

Heat acclimation improves exercise performance in hot conditions and increases heat shock protein 70 and 90 of skeletal muscles in Thoroughbred horses.

Abstract: This study aimed to determine whether heat acclimation could induce adaptations in exercise performance, thermoregulation, and the expression of proteins associated with heat stress in the skeletal muscles of Thoroughbreds. Thirteen trained Thoroughbreds performed 3 weeks of training protocols, consisting of cantering at 90% maximal oxygen consumption (VO) for 2 min 2 days/week and cantering at 7 m/s for 3 min 1 day/week, followed by a 20-min walk in either a control group (CON; Wet Bulb Globe Temperature [WBGT] 12-13°C; n = 6) or a heat acclimation group (HA; WBGT 29-30°C; n = 7). Before and after heat acclimation, standardized exercise tests (SET) were conducted, cantering at 7 m/s for 90 s and at 115% VO until fatigue in hot conditions. Increases in run time (p = 0.0301), peak cardiac output (p = 0.0248), and peak stroke volume (p = 0.0113) were greater in HA than in CON. Pulmonary artery temperature at 7 m/s was lower in HA than in CON (p = 0.0332). The expression of heat shock protein 70 (p = 0.0201) and 90 (p = 0.0167) increased in HA, but not in CON. These results suggest that heat acclimation elicits improvements in exercise performance and thermoregulation under hot conditions, with a protective adaptation to heat stress in equine skeletal muscles.
Publication Date: 2024-05-25 PubMed ID: 38789393PubMed Central: PMC11126422DOI: 10.14814/phy2.16083Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

This research paper explores how heat acclimation can improve the performance of Thoroughbred horses by increasing heat shock proteins in their muscles and improving their thermoregulation.

Introduction and Objectives

  • The main aim of the study was to find out if acclimatisation to hot conditions could improve exercise performance, help with regulation of body temperature and increase the expression of proteins linked with heat stress in the muscles of Thoroughbred horses.

Methodology

  • Thirteen trained Thoroughbred horses were put through a three-week course of training exercises under either control (CON; normal temperature conditions) or heat acclimation (HA; high temperature conditions).
  • The training protocol consisted of running at 90% of their maximum oxygen consumption (VO) for two minutes, two days a week, and running for three minutes at a speed of 7 m/s one day a week, followed by a 20-minute walk.
  • The horses’ exercise performance was tested at 7 m/s for 90 seconds and at 115% VO to the point of exhaustion in hot conditions, before and after the heat acclimation process.

Results

  • Horses who trained in the heat acclimation environment showed greater improvements in running time, peak cardiac output, and peak stroke volume compared to the horses in the control group.
  • The internal body temperature (pulmonary artery temperature) at speeds of 7m/s was lesser in heat-acclimated horses than in the control group, indicating better thermoregulation.
  • The expression of heat shock proteins 70 and 90, which protect against heat stress, increased in the HA group horses but not in the CON group horses.

Conclusion

  • The results of the study indicate that heat acclimation has positive effects on training performance and the capability of Thoroughbred horses to manage bodily temperatures in hot conditions. Moreover, there is an increase in the production of proteins that play a role in heat stress protection in their muscles.

Cite This Article

APA
Ebisuda Y, Mukai K, Takahashi Y, Yoshida T, Matsuhashi T, Kawano A, Miyata H, Kuwahara M, Ohmura H. (2024). Heat acclimation improves exercise performance in hot conditions and increases heat shock protein 70 and 90 of skeletal muscles in Thoroughbred horses. Physiol Rep, 12(10), e16083. https://doi.org/10.14814/phy2.16083

Publication

ISSN: 2051-817X
NlmUniqueID: 101607800
Country: United States
Language: English
Volume: 12
Issue: 10
Pages: e16083
PII: e16083

Researcher Affiliations

Ebisuda, Yusaku
  • Sports Science Division, Equine Research Institute, Japan Racing Association, Shimotsuke, Japan.
Mukai, Kazutaka
  • Sports Science Division, Equine Research Institute, Japan Racing Association, Shimotsuke, Japan.
Takahashi, Yuji
  • Sports Science Division, Equine Research Institute, Japan Racing Association, Shimotsuke, Japan.
Yoshida, Toshinobu
  • Sports Science Division, Equine Research Institute, Japan Racing Association, Shimotsuke, Japan.
Matsuhashi, Tsubasa
  • Department of Biological Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan.
Kawano, Aoto
  • Department of Biological Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan.
Miyata, Hirofumi
  • Department of Biological Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan.
Kuwahara, Masayoshi
  • Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
Ohmura, Hajime
  • Sports Science Division, Equine Research Institute, Japan Racing Association, Shimotsuke, Japan.

MeSH Terms

  • Animals
  • Horses / physiology
  • Muscle, Skeletal / metabolism
  • Muscle, Skeletal / physiology
  • Physical Conditioning, Animal / methods
  • Physical Conditioning, Animal / physiology
  • HSP70 Heat-Shock Proteins / metabolism
  • Acclimatization / physiology
  • Male
  • Hot Temperature
  • Body Temperature Regulation / physiology
  • Oxygen Consumption / physiology
  • Heat-Shock Response / physiology

Grant Funding

  • N/A / Japan Racing Association (JRA)

Conflict of Interest Statement

This study was funded by the Japan Racing Association. YE, KM, YT, TY, and HO are employees of the Japan Racing Association.

References

This article includes 64 references
  1. Almgren, C. M. , & Olson, L. E. (1999). Moderate hypoxia increases heat shock protein 90 expression in excised rat aorta. Journal of Vascular Research, 36, 363u2013371. 10.1159/000025675
    doi: 10.1159/000025675pubmed: 10559676google scholar: lookup
  2. Arngrimsson, S. A. , Stewart, D. J. , Borrani, F. , Skinner, K. A. , & Cureton, K. J. (2003). Relation of heart rate to percent VO2 peak during submaximal exercise in the heat. Journal of Applied Physiology, 94, 1162u20131168. 10.1152/japplphysiol.00508.2002
  3. Avellini, B. , Kamon, E. , & Krajewski, J. (1980). Physiological responses of physically fit men and women to acclimation to humid heat. Journal of Applied Physiology, 49, 254u2013261. 10.1152/jappl.1980.49.2.254
    doi: 10.1152/jappl.1980.49.2.254pubmed: 7400008google scholar: lookup
  4. Bass, A. , Brdiczka, D. , Eyer, P. , Hofer, S. , & Pette, D. (1969). Metabolic differentiation of distinct muscle types at the level of enzymatic organization. European Journal of Biochemistry, 10, 198u2013206. 10.1111/j.1432-1033.1969.tb00674.x
  5. Benjamin, C. L. , Sekiguchi, Y. , Fry, L. A. , & Casa, D. J. (2019). Performance changes following heat acclimation and the factors that influence these changes: Metau2010analysis and metau2010regression. Frontiers in Physiology, 10, 1448. 10.3389/fphys.2019.01448
    doi: 10.3389/fphys.2019.01448pmc: PMC6890862pubmed: 31827444google scholar: lookup
  6. Birks, E. K. , Ohmura, H. , & Jones, J. H. (2019). Measuring VO2 in hypoxic and hyperoxic conditions using dynamic gas mixing with a flowu2010through indirect calorimeter. Journal of Equine Science, 30, 87u201392. 10.1294/jes.30.87
    doi: 10.1294/jes.30.87pmc: PMC6920056pubmed: 31871410google scholar: lookup
  7. Bishop, D. J. , Hoffman, N. J. , Taylor, D. F. , Saner, N. J. , Lee, M. J. , & Hawley, J. A. (2023). Discordant skeletal muscle gene and protein responses to exercise. Trends in Biochemical Sciences, 48, 927u2013936. 10.1016/j.tibs.2023.08.005
    doi: 10.1016/j.tibs.2023.08.005pubmed: 37709636google scholar: lookup
  8. Brownlow, M. A. , Dart, A. J. , & Jeffcott, L. B. (2016). Exertional heat illness: A review of the syndrome affecting racing Thoroughbreds in hot and humid climates. Australian Veteterinary Journal, 94, 240u2013247. 10.1111/avj.12454
    doi: 10.1111/avj.12454pubmed: 27349884google scholar: lookup
  9. Casa, D. J. , DeMartini, J. K. , Bergeron, M. F. , Csillan, D. , Eichner, E. R. , Lopez, R. M. , Ferrara, M. S. , Miller, K. C. , O'Connor, F. , Sawka, M. N. , & Yeargin, S. W. (2015). National Athletic Trainers' association position Statement: Exertional heat illnesses. Journal of Athletic Training, 50, 986u20131000. 10.4085/1062-6050-50.9.07
    doi: 10.4085/1062-6050-50.9.07pmc: PMC4639891pubmed: 26381473google scholar: lookup
  10. Cooper, E. R. , Ferrara, M. S. , Casa, D. J. , Powell, J. W. , Broglio, S. P. , Resch, J. E. , & Courson, R. W. (2016). Exertional heat illness in American football players: When is the risk greatest? Journal of Athletic Training, 51, 593u2013600. 10.4085/1062-6050-51.8.08
    doi: 10.4085/1062-6050-51.8.08pmc: PMC5094838pubmed: 27505271google scholar: lookup
  11. Cooperstein, S. J. , Lazarow, A. , & Kurfess, N. J. (1950). A microspectrophotometric method for the determination of succinic dehydrogenase. Journal of Biological Chemistry, 186, 129u2013139.
    pubmed: 14778812
  12. Coyle, E. F. , Hopper, M. K. , & Coggan, A. R. (1990). Maximal oxygen uptake relative to plasma volume expansion. International Journal of Sports Medicine, 11, 116u2013119. 10.1055/s-2007-1024774
    doi: 10.1055/s-2007-1024774pubmed: 1692570google scholar: lookup
  13. Duvnjaku2010Zaknich, D. M. , Wallman, K. E. , Dawson, B. T. , & Peeling, P. (2019). Continuous and intermittent heat acclimation and decay in team sport athletes. European Journal of Sport Science, 19, 295u2013304. 10.1080/17461391.2018.1512653
    doi: 10.1080/17461391.2018.1512653pubmed: 30176216google scholar: lookup
  14. Ebisuda, Y. , Mukai, K. , Takahashi, Y. , & Ohmura, H. (2023). Effect of high ambient temperature on physiological responses during incremental exercise in Thoroughbred horses. Comparative Exercise Physiology, 19, 159u2013167. 10.3920/CEP220018
    doi: 10.3920/CEP220018google scholar: lookup
  15. Ebisuda, Y. , Mukai, K. , Takahashi, Y. , Yoshida, T. , Kawano, A. , Matsuhashi, T. , Miyata, H. , Kuwahara, M. , & Ohmura, H. (2023). Acute exercise in a hot environment increases heat shock protein 70 and peroxisome proliferatoru2010activated receptor u03b3 coactivator 1u03b1 mRNA in Thoroughbred horse skeletal muscle. Frontiers in Veterinary Science, 10, 1230212. 10.3389/fvets.2023.1230212
    doi: 10.3389/fvets.2023.1230212pmc: PMC10475567pubmed: 37671280google scholar: lookup
  16. Edgett, B. A. , Bonafiglia, J. T. , Baechler, B. L. , Quadrilatero, J. , & Gurd, B. J. (2016). The effect of acute and chronic sprintu2010interval training on LRP130, SIRT3, and PGCu20101u03b1 expression in human skeletal muscle. Physiological Reports, 4, e12879. 10.14814/phy2.12879
    doi: 10.14814/phy2.12879pmc: PMC5027339pubmed: 27604398google scholar: lookup
  17. Ely, B. R. , Cheuvront, S. N. , Kenefick, R. W. , & Sawka, M. N. (2010). Aerobic performance is degraded, despite modest hyperthermia, in hot environments. Medicine & Science in Sports & Exercise, 42, 135u2013141. 10.1249/MSS.0b013e3181adb9fb
    doi: 10.1249/MSS.0b013e3181adb9fbpubmed: 20010120google scholar: lookup
  18. Eto, D. , Yamano, S. , Mukai, K. , Sugiura, T. , Nasu, T. , Tokuriki, M. , & Miyata, H. (2004). Effect of high intensity training on anaerobic capacity of middle gluteal muscle in Thoroughbred horses. Research in Veterinary Science, 76, 139u2013144. 10.1016/j.rvsc.2003.08.010
    doi: 10.1016/j.rvsc.2003.08.010pubmed: 14672857google scholar: lookup
  19. Febbraio, M. A. , Snow, R. J. , Hargreaves, M. , Stathis, C. G. , Martin, I. K. , & Carey, M. F. (1994). Muscle metabolism during exercise and heat stress in trained men: Effect of acclimation. Journal of Applied Physiology, 76, 589u2013597. 10.1152/jappl.1994.76.2.589
    doi: 10.1152/jappl.1994.76.2.589pubmed: 8175568google scholar: lookup
  20. Fedak, M. A. , Rome, L. , & Seeherman, H. J. (1981). Oneu2010step N2u2010dilution technique for calibrating openu2010circuit VO2 measuring systems. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 51, 772u2013776. 10.1152/jappl.1981.51.3.772
    doi: 10.1152/jappl.1981.51.3.772pubmed: 7327980google scholar: lookup
  21. Geor, R. J. , McCutcheon, L. J. , Ecker, G. L. , & Lindinger, M. I. (2000). Heat storage in horses during submaximal exercise before and after humid heat acclimation. Journal of Applied Physiology, 89, 2283u20132293. 10.1152/jappl.2000.89.6.2283
    doi: 10.1152/jappl.2000.89.6.2283pubmed: 11090580google scholar: lookup
  22. Geor, R. J. , McCutcheon, L. J. , & Lindinger, M. I. (1996). Adaptations to daily exercise in hot and humid ambient conditions in trained Thoroughbred horses. Equine Veterinary Journal. Supplement, 22, 63u201368. 10.1111/j.2042-3306.1996.tb05033.x
  23. Gonzalezu2010Alonso, J. , & Calbet, J. A. (2003). Reductions in systemic and skeletal muscle blood flow and oxygen delivery limit maximal aerobic capacity in humans. Circulation, 107, 824u2013830. 10.1161/01.cir.0000049746.29175.3f
  24. Hafen, P. S. , Preece, C. N. , Sorensen, J. R. , Hancock, C. R. , & Hyldahl, R. D. (2018). Repeated exposure to heat stress induces mitochondrial adaptation in human skeletal muscle. Journal of Applied Physiology, 125, 1447u20131455. 10.1152/japplphysiol.00383.2018
  25. Hodgson, D. R. (2014). Thermoregulation. In Hodgson D. R., McKeever K. H., & McGowan C. M. (Eds.), The athletic horse; principles and practice of equine sports medicine (2nd ed.). St Louis.
  26. Hood, D. A. (2001). Invited review: Contractile activityu2010induced mitochondrial biogenesis in skeletal muscle. Journal of Applied Physiology, 90, 1137u20131157. 10.1152/jappl.2001.90.3.1137
    doi: 10.1152/jappl.2001.90.3.1137pubmed: 11181630google scholar: lookup
  27. Horowitz, M. , Parnes, S. , & Hasin, Y. (1993). Mechanical and metabolic performance of the rat heart: Effects of combined stress of heat acclimation and swimming training. Journal of Basic and Clinical Physiology and Pharmacology, 4, 139u2013156. 10.1515/JBCPP.1993.4.1-2.139
    doi: 10.1515/JBCPP.1993.4.1-2.139pubmed: 8679506google scholar: lookup
  28. Houmard, J. A. , Costill, D. L. , Davis, J. A. , Mitchell, J. B. , Pascoe, D. D. , & Robergs, R. A. (1990). The influence of exercise intensity on heat acclimation in trained subjects. Medicine & Science in Sports & Exercise, 22, 615u2013620. 10.1249/00005768-199010000-00012
  29. Jones, J. H. , Longworth, K. E. , Lindholm, A. , Conley, K. E. , Karas, R. H. , Kayar, S. R. , & Taylor, C. R. (1989). Oxygen transport during exercise in large mammals. I. Adaptive variation in oxygen demand. Journal of Applied Physiology, 67, 862u2013870. 10.1152/jappl.1989.67.2.862
    doi: 10.1152/jappl.1989.67.2.862pubmed: 2793686google scholar: lookup
  30. Kang, H. , Zsoldos, R. R. , Soleu2010Guitart, A. , Narayan, E. , Cawdellu2010Smith, A. J. , & Gaughan, J. B. (2023). Heat stress in horses: A literature review. International Journal of Biometeorology, 67, 957u2013973. 10.1007/s00484-023-02467-7
    doi: 10.1007/s00484-023-02467-7pmc: PMC10267279pubmed: 37060454google scholar: lookup
  31. Keiser, S. , Fluck, D. , Huppin, F. , Stravs, A. , Hilty, M. P. , & Lundby, C. (2015). Heat training increases exercise capacity in hot but not in temperate conditions: A mechanistic counteru2010balanced crossu2010over study. American Journal of Physiology. Heart and Circulatory Physiology, 309, 750u2013761. 10.1152/ajpheart.00138.2015
    doi: 10.1152/ajpheart.00138.2015pubmed: 26150574google scholar: lookup
  32. Kitaoka, Y. , Mukai, K. , Aida, H. , Hiraga, A. , Masuda, H. , Takemasa, T. , & Hatta, H. (2012). Effects of highu2010intensity training on lipid metabolism in Thoroughbreds. American Journal of Veterinary Research, 73, 1813u20131818. 10.2460/ajvr.73.11.1813
    doi: 10.2460/ajvr.73.11.1813pubmed: 23106469google scholar: lookup
  33. Kruger, K. , Reichel, T. , & Zeilinger, C. (2019). Role of heat shock proteins 70/90 in exercise physiology and exercise immunology and their diagnostic potential in sports. Journal of Applied Physiology, 126, 916u2013927. 10.1152/japplphysiol.01052.2018
  34. Kuennen, M. , Gillum, T. , Dokladny, K. , Bedrick, E. , Schneider, S. , & Moseley, P. (2011). Thermotolerance and heat acclimation may share a common mechanism in humans. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 301, 524u2013533. 10.1152/ajpregu.00039.2011
    doi: 10.1152/ajpregu.00039.2011pmc: PMC3154710pubmed: 21613575google scholar: lookup
  35. Levy, E. , Hasin, Y. , Navon, G. , & Horowitz, M. (1997). Chronic heat improves mechanical and metabolic response of trained rat heart on ischemia and reperfusion. American Journal of Physiology. Heart and Circulatory Physiology, 272, 2085u20132094. 10.1152/ajpheart.1997.272.5.H2085
  36. Liu, C. T. , & Brooks, G. A. (2012). Mild heat stress induces mitochondrial biogenesis in C2C12 myotubes. Journal of Applied Physiology, 112, 354u2013361. 10.1152/japplphysiol.00989.2011
  37. Lorenzo, S. , Halliwill, J. R. , Sawka, M. N. , & Minson, C. T. (2010). Heat acclimation improves exercise performance. Journal of Applied Physiology, 109, 1140u20131147. 10.1152/japplphysiol.00495.2010
  38. MacDougall, J. D. , Reddan, W. G. , Layton, C. R. , & Dempsey, J. A. (1974). Effects of metabolic hyperthermia on performance during heavy prolonged exercise. Journal of Applied Physiology, 36, 538u2013544. 10.1152/jappl.1974.36.5.538
    doi: 10.1152/jappl.1974.36.5.538pubmed: 4826315google scholar: lookup
  39. Mang, Z. A. , Fennel, Z. J. , Realzola, R. A. , Wells, A. D. , McKenna, Z. , Droemer, C. , Houck, J. M. , Nava, R. C. , Mermier, C. M. , & Amorim, F. T. (2021). Heat acclimation during lowu2010intensity exercise increases VO2max and Hsp72, but not markers of mitochondrial biogenesis and oxidative phosphorylation, in skeletal tissue. Experimental Physiology, 106, 290u2013301. 10.1113/EP088563
    doi: 10.1113/EP088563pubmed: 32627238google scholar: lookup
  40. Marlin, D. J. , Scott, C. M. , Schroter, R. C. , Harris, R. C. , Harris, P. A. , Roberts, C. A. , & Mills, P. C. (1999). Physiological responses of horses to a treadmill simulated speed and endurance test in high heat and humidity before and after humid heat acclimation. Equine Veterinary Journal, 31, 31u201342. 10.1111/j.2042-3306.1999.tb03788.x
  41. Maunder, E. , Plews, D. J. , Wallis, G. A. , Brick, M. J. , Leigh, W. B. , Chang, W. L. , Watkins, C. M. , & Kilding, A. E. (2021). Temperate performance and metabolic adaptations following endurance training performed under environmental heat stress. Physiological Reports, 9, e14849. 10.14814/phy2.14849
    doi: 10.14814/phy2.14849pmc: PMC8114151pubmed: 33977674google scholar: lookup
  42. McClung, J. P. , Hasday, J. D. , He, J. R. , Montain, S. J. , Cheuvront, S. N. , Sawka, M. N. , & Singh, I. S. (2008). Exerciseu2010heat acclimation in humans alters baseline levels and exu00a0vivo heat inducibility of HSP72 and HSP90 in peripheral blood mononuclear cells. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 294, 185u2013191. 10.1152/ajpregu.00532.2007
    doi: 10.1152/ajpregu.00532.2007pubmed: 17977914google scholar: lookup
  43. Mee, J. A. , Gibson, O. R. , Doust, J. , & Maxwell, N. S. (2015). A comparison of males and females' temporal patterning to shortu2010 and longu2010term heat acclimation. Scandinavian Journal of Medicine & Science in Sports, 25, 250u2013258. 10.1111/sms.12417
    doi: 10.1111/sms.12417pubmed: 25943676google scholar: lookup
  44. Mukai, K. , Ohmura, H. , Matsui, A. , Aida, H. , Takahashi, T. , & Jones, J. H. (2020). Highu2010intensity training in normobaric hypoxia enhances exercise performance and aerobic capacity in Thoroughbred horses: A randomized crossover study. Physiological Reports, 8, e14442. 10.14814/phy2.14442
    doi: 10.14814/phy2.14442pmc: PMC7243200pubmed: 32441408google scholar: lookup
  45. Nava, R. , & Zuhl, M. N. (2020). Heat acclimationu2010induced intracellular HSP70 in humans: A metau2010analysis. Cell Stress & Chaperones, 25, 35u201345. 10.1007/s12192-019-01059-y
    doi: 10.1007/s12192-019-01059-ypmc: PMC6985308pubmed: 31823288google scholar: lookup
  46. Nielsen, B. , Hales, J. R. , Strange, S. , Christensen, N. J. , Warberg, J. , & Saltin, B. (1993). Human circulatory and thermoregulatory adaptations with heat acclimation and exercise in a hot, dry environment. The Journal of Physiology, 460, 467u2013485. 10.1113/jphysiol.1993.sp019482
  47. No, M. , & Kwak, H. B. (2016). Effects of environmental temperature on physiological responses during submaximal and maximal exercises in soccer players. Integrative Medicine Research, 5, 216u2013222. 10.1016/j.imr.2016.06.002
    doi: 10.1016/j.imr.2016.06.002pmc: PMC5390419pubmed: 28462121google scholar: lookup
  48. Nybo, L. , Jensen, T. , Nielsen, B. , & Gonzalezu2010Alonso, J. (2001). Effects of marked hyperthermia with and without dehydration on VO2 kinetics during intense exercise. Journal of Applied Physiology, 90, 1057u20131064. 10.1152/jappl.2001.90.3.1057
    doi: 10.1152/jappl.2001.90.3.1057pubmed: 11181620google scholar: lookup
  49. Nybo, L. , & Nielsen, B. (2001). Middle cerebral artery blood velocity is reduced with hyperthermia during prolonged exercise in humans. The Journal of Physiology, 534, 279u2013286. 10.1111/j.1469-7793.2001.t01-1-00279.x
  50. Parkin, J. M. , Carey, M. F. , Zhao, S. , & Febbraio, M. A. (1999). Effect of ambient temperature on human skeletal muscle metabolism during fatiguing submaximal exercise. Journal of Applied Physiology, 86, 902u2013908. 10.1152/jappl.1999.86.3.902
    doi: 10.1152/jappl.1999.86.3.902pubmed: 10066703google scholar: lookup
  51. Patton, M. G. , Gillum, T. L. , Szymanski, M. C. , Gould, L. M. , Lauterbach, C. J. , Vaughan, R. A. , & Kuennen, M. R. (2018). Heat acclimation increases mitochondrial respiration capacity of C2C12 myotubes and protects against LPSu2010mediated energy deficit. Cell Stress and Chaperones, 23, 871u2013883. 10.1007/s12192-018-0894-1
    doi: 10.1007/s12192-018-0894-1pmc: PMC6111082pubmed: 29644563google scholar: lookup
  52. Periard, J. , Racinais, S. , & Sawka, M. N. (2015). Adaptations and mechanisms of human heat acclimation: Applications for competitive athletes and sports. Scandinavian Journal of Medicine & Science in Sports, 25, 20u201338. 10.1111/sms.12408
    doi: 10.1111/sms.12408pubmed: 25943654google scholar: lookup
  53. Periard, J. D. , Cramer, M. N. , Chapman, P. G. , Caillaud, C. , & Thompson, M. W. (2011). Cardiovascular strain impairs prolonged selfu2010paced exercise in the heat. Experimental Physiology, 96, 134u2013144. 10.1113/expphysiol.2010.054213
  54. Periard, J. D. , Eijsvogels, T. M. H. , & Daanen, H. A. M. (2021). Exercise under heat stress: Thermoregulation, hydration, performance implications, and mitigation strategies. Physiological Reviews, 101, 1873u20131979. 10.1152/physrev.00038.2020
    doi: 10.1152/physrev.00038.2020pubmed: 33829868google scholar: lookup
  55. Perry, C. G. , Lally, J. , Holloway, G. P. , Heigenhauser, G. J. , Bonen, A. , & Spriet, L. L. (2010). Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. The Journal of Physiology, 588, 4795u20134810. 10.1113/jphysiol.2010.199448
  56. Rowell, L. B. , Marx, H. J. , Bruce, R. A. , Conn, R. D. , & Kusumi, F. (1966). Reductions in cardiac output, central blood volume, and stroke volume with thermal stress in normal men during exercise. Journal of Clinical Investigation, 45, 1801u20131816. 10.1172/JCI105484
    doi: 10.1172/JCI105484pmc: PMC292862pubmed: 5926447google scholar: lookup
  57. Rowell, L. B. , Murray, J. A. , Brengelmann, G. L. , & Kraning, K. K., 2nd . (1969). Human cardiovascular adjustments to rapid changes in skin temperature during exercise. Circulation Research, 24, 711u2013724. 10.1161/01.res.24.5.711
    doi: 10.1161/01.res.24.5.711pubmed: 5770258google scholar: lookup
  58. Salgado, R. M. , White, A. C. , Schneider, S. M. , & Mermier, C. M. (2014). A novel mechanism for crossu2010adaptation between heat and altitude acclimation: The role of heat shock protein 90. Physiology Journal, 2014, 121402. 10.1155/2014/121402
    doi: 10.1155/2014/121402google scholar: lookup
  59. Sawka, M. N. , Young, A. J. , Cadarette, B. S. , Levine, L. , & Pandolf, K. B. (1985). Influence of heat stress and acclimation on maximal aerobic power. European Journal of Applied Physiology and Occupational Physiology, 53, 294u2013298. 10.1007/BF00422841
    doi: 10.1007/BF00422841pubmed: 4039255google scholar: lookup
  60. Takahashi, Y. , & Takahashi, T. (2020). Risk factors for exertional heat illness in Thoroughbred racehorses in flat races in Japan (2005u20102016). Equine Veterinary Journal, 52, 364u2013368. 10.1111/evj.13179
    doi: 10.1111/evj.13179pubmed: 31505059google scholar: lookup
  61. Tamura, Y. , Matsunaga, Y. , Masuda, H. , Takahashi, Y. , Takahashi, Y. , Terada, S. , Hoshino, D. , & Hatta, H. (2014). Postexercise whole body heat stress additively enhances endurance trainingu2010induced mitochondrial adaptations in mouse skeletal muscle. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 307, 931u2013943. 10.1152/ajpregu.00525.2013
    doi: 10.1152/ajpregu.00525.2013pubmed: 25080501google scholar: lookup
  62. Tucker, R. , Rauch, L. , Harley, Y. X. , & Noakes, T. D. (2004). Impaired exercise performance in the heat is associated with an anticipatory reduction in skeletal muscle recruitment. Pflu00fcgers Archiv, 448, 422u2013430. 10.1007/s00424-004-1267-4
    doi: 10.1007/s00424-004-1267-4pubmed: 15138825google scholar: lookup
  63. Wagner, P. D. , Gillespie, J. R. , Landgren, G. L. , Fedde, M. R. , Jones, B. W. , DeBowes, R. M. , Pieschl, R. L. , & Erickson, H. H. (1989). Mechanism of exerciseu2010induced hypoxemia in horses. Journal of Applied Physiology, 66, 1227u20131233. 10.1152/jappl.1989.66.3.1227
    doi: 10.1152/jappl.1989.66.3.1227pubmed: 2496088google scholar: lookup
  64. Watkins, A. M. , Cheek, D. J. , Harvey, A. E. , Blair, K. E. , & Mitchell, J. B. (2008). Heat acclimation and HSPu201072 expression in exercising humans. International Journal of Sports Medicine, 29, 269u2013276. 10.1055/s-2007-965331
    doi: 10.1055/s-2007-965331pubmed: 17879884google scholar: lookup

Citations

This article has been cited 0 times.