Journal of molecular biology2010; 400(2); 121-128; doi: 10.1016/j.jmb.2010.04.066

Horse prion protein NMR structure and comparisons with related variants of the mouse prion protein.

Abstract: The NMR structure of the horse (Equus caballus) cellular prion protein at 25 degrees C exhibits the typical PrP(C) [cellular form of prion protein (PrP)] global architecture, but in contrast to most other mammalian PrP(C)s, it contains a well-structured loop connecting the beta2 strand with the alpha2 helix. Comparison with designed variants of the mouse prion protein resulted in the identification of a single amino acid exchange within the loop, D167S, which correlates with the high structural order of this loop in the solution structure at 25 degrees C and is unique to the PrP sequences of equine species. The beta2-alpha2 loop and the alpha3 helix form a protein surface epitope that has been proposed to be the recognition area for a hypothetical chaperone, "protein X," which would promote conversion of PrP(C) into the disease-related scrapie form and thus mediate intermolecular interactions related to the transmission barrier for transmissible spongiform encephalopathies (TSEs) between different species. The present results are evaluated in light of recent indications from in vivo experiments that the local beta2-alpha2 loop structure affects the susceptibility of transgenic mice to TSEs and the fact that there are no reports on TSE in horses.
Publication Date: 2010-05-08 PubMed ID: 20460128DOI: 10.1016/j.jmb.2010.04.066Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article
  • Research Support
  • Non-U.S. Gov't

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

The research focuses on understanding the structure of the prion protein in horses and how it relates to the disease-causing prion forms. It specifically highlights a variant protein structure which is unique to equine species and may play a role in the species’ observed resistance to prion-related diseases.

Study on Horse Prion Protein

The study utilized nuclear magnetic resonance (NRM) to study the structure of the horse cellular prion protein at 25 degrees Celsius. This method allowed researchers to determine:

  • The horse prion protein displayed the typical cellular form of a prion protein (PrP(C)).
  • Distinct from most mammalian PrP(C)s, the horse prion protein has a well-structured loop connecting the beta2 strand with the alpha2 helix.

Comparison with Mouse Prion Protein Variants

In comparing the horse prion protein structure with designed variants of a mouse prion protein, researchers found:

  • A single amino acid exchange within the loop, labelled as D167S. This variant correlates with the high structural order of this loop in the protein structure.
  • The D167S variant is unique to prion proteins sequences of equine species. This might be a significant contributing factor to their unique immunity against prion-related diseases.

Implications for Prion Diseases

The study further discusses the role of this unique beta2-alpha2 loop in prion diseases:

  • The beta2-alpha2 loop and the alpha3 helix in the horse prion protein form a surface epitope. This surface epitope is speculated to be the recognition area for a hypothetical chaperone protein known as “protein X”.
  • Protein X is proposed to promote the conversion of PrP(C) into the disease-related scrapie form. This, in turn, mediates intermolecular interactions associated with the transmission barrier for transmissible spongiform encephalopathies (TSEs) between different species.
  • The results are consistent with recent findings suggesting that the beta2-alpha2 loop structure can influence the susceptibility of an organism to TSEs. This strengthens the understanding of prion diseases and could help in developing therapies and interventions.

Significance Regarding Prion Diseases in Horses

Contrary to the general existence of prion diseases in mammals, no TSE has been reported in horses. The structural uniqueness of the horse prion protein, as reported in this research, may provide an explanation for this remarkable resistance.

Cite This Article

APA
Pu00e9rez DR, Damberger FF, Wu00fcthrich K. (2010). Horse prion protein NMR structure and comparisons with related variants of the mouse prion protein. J Mol Biol, 400(2), 121-128. https://doi.org/10.1016/j.jmb.2010.04.066

Publication

ISSN: 1089-8638
NlmUniqueID: 2985088R
Country: Netherlands
Language: English
Volume: 400
Issue: 2
Pages: 121-128

Researcher Affiliations

Pu00e9rez, Daniel R
  • Institute of Molecular Biology and Biophysics, ETH Zurich, Schafmattstrasse 20, CH-8093 Zurich, Switzerland.
Damberger, Fred F
    Wu00fcthrich, Kurt

      MeSH Terms

      • Amino Acid Sequence
      • Animals
      • Horses
      • Humans
      • Mice
      • Mice, Transgenic
      • Models, Molecular
      • Molecular Sequence Data
      • Nuclear Magnetic Resonance, Biomolecular
      • Prion Diseases / genetics
      • Prion Diseases / metabolism
      • Prions / chemistry
      • Prions / genetics
      • Prions / metabolism
      • Protein Isoforms / chemistry
      • Protein Isoforms / genetics
      • Protein Isoforms / metabolism
      • Protein Structure, Secondary
      • Sequence Alignment

      Citations

      This article has been cited 53 times.
      1. Cembran A, Fernandez-Funez P. Intrinsic determinants of prion protein neurotoxicity in Drosophila: from sequence to (dys)function.. Front Mol Neurosci 2023;16:1231079.
        doi: 10.3389/fnmol.2023.1231079pubmed: 37645703google scholar: lookup
      2. Cortez LM, Morrison AJ, Garen CR, Patterson S, Uyesugi T, Petrosyan R, Sekar RV, Harms MJ, Woodside MT, Sim VL. Probing the origin of prion protein misfolding via reconstruction of ancestral proteins.. Protein Sci 2022 Dec;31(12):e4477.
        doi: 10.1002/pro.4477pubmed: 36254680google scholar: lookup
      3. Kim KH, Kim YC, Jeong BH. Novel Polymorphisms and Genetic Characteristics of the Prion Protein Gene in Pheasants.. Front Vet Sci 2022;9:935476.
        doi: 10.3389/fvets.2022.935476pubmed: 35903139google scholar: lookup
      4. Block AJ, Bartz JC. Prion strains: shining new light on old concepts.. Cell Tissue Res 2023 Apr;392(1):113-133.
        doi: 10.1007/s00441-022-03665-2pubmed: 35796874google scholar: lookup
      5. Myers RR, Sanchez-Garcia J, Leving DC, Melvin RG, Fernandez-Funez P. New Drosophila models to uncover the intrinsic and extrinsic factors that mediate the toxicity of the human prion protein.. Dis Model Mech 2022 Apr 1;15(4).
        doi: 10.1242/dmm.049184pubmed: 35142350google scholar: lookup
      6. Gielnik M, Taube M, Zhukova L, Zhukov I, Wu00e4rmlu00e4nder SKTS, Svedruu017eiu0107 u017d, Kwiatek WM, Gru00e4slund A, Kozak M. Zn(II) binding causes interdomain changes in the structure and flexibility of the human prion protein.. Sci Rep 2021 Nov 4;11(1):21703.
        doi: 10.1038/s41598-021-00495-0pubmed: 34737343google scholar: lookup
      7. Arifin MI, Hannaoui S, Chang SC, Thapa S, Schatzl HM, Gilch S. Cervid Prion Protein Polymorphisms: Role in Chronic Wasting Disease Pathogenesis.. Int J Mol Sci 2021 Feb 25;22(5).
        doi: 10.3390/ijms22052271pubmed: 33668798google scholar: lookup
      8. Jeong MJ, Kim YC, Jeong BH. The First Report of the Prion Protein Gene (PRNP) Sequence in Pekin Ducks (Anas platyrhynchos domestica): The Potential Prion Disease Susceptibility in Ducks.. Genes (Basel) 2021 Jan 28;12(2).
        doi: 10.3390/genes12020193pubmed: 33525657google scholar: lookup
      9. Myers R, Cembran A, Fernandez-Funez P. Insight From Animals Resistant to Prion Diseases: Deciphering the Genotype - Morphotype - Phenotype Code for the Prion Protein.. Front Cell Neurosci 2020;14:254.
        doi: 10.3389/fncel.2020.00254pubmed: 33013324google scholar: lookup
      10. Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernu00e1ndez Escu00e1mez PS, Gironu00e9s R, Herman L, Koutsoumanis K, Lindqvist R, Nu00f8rrung B, Robertson L, Sanaa M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Threlfall J, Wahlstru00f6m H, Benestad S, Gavier-Widen D, Miller MW, Ru G, Telling GC, Tryland M, Ortiz Pelaez A, Simmons M. Chronic wasting disease (CWD) inu00a0cervids.. EFSA J 2017 Jan;15(1):e04667.
        doi: 10.2903/j.efsa.2017.4667pubmed: 32625260google scholar: lookup
      11. Won SY, Kim YC, Do K, Jeong BH. Absence of Strong Genetic Linkage Disequilibrium between Single Nucleotide Polymorphisms (SNPs) in the Prion Protein Gene (PRNP) and the Prion-Like Protein Gene (PRND) in the Horse, a Prion-Resistant Species.. Genes (Basel) 2020 May 7;11(5).
        doi: 10.3390/genes11050518pubmed: 32392732google scholar: lookup
      12. Won SY, Kim YC, Kim SK, Jeong BH. The First Report of Genetic and Structural Diversities in the SPRN Gene in the Horse, an Animal Resistant to Prion Disease.. Genes (Basel) 2019 Dec 28;11(1).
        doi: 10.3390/genes11010039pubmed: 31905681google scholar: lookup
      13. Piolanti N, Del Chiaro A, Matassi F, Nistri L, Graceffa A, Marcucci M. Bone integration in acetabular revision hip arthroplasty using equine-derived bone grafts: a retrospective study.. Eur J Orthop Surg Traumatol 2020 May;30(4):575-581.
        doi: 10.1007/s00590-019-02613-1pubmed: 31858258google scholar: lookup
      14. Gu00fcere ME, Vu00e5ge J, Tharaldsen H, Benestad SL, Viku00f8ren T, Madslien K, Hopp P, Rolandsen CM, Ru00f8ed KH, Tranulis MA. Chronic wasting disease associated with prion protein gene (PRNP) variation in Norwegian wild reindeer (Rangifer tarandus).. Prion 2020 Dec;14(1):1-10.
        doi: 10.1080/19336896.2019.1702446pubmed: 31852336google scholar: lookup
      15. Slapu0161ak U, Salzano G, Ilc G, Giachin G, Bian J, Telling G, Legname G, Plavec J. Unique Structural Features of Mule Deer Prion Protein Provide Insights into Chronic Wasting Disease.. ACS Omega 2019 Nov 26;4(22):19913-19924.
        doi: 10.1021/acsomega.9b02824pubmed: 31788624google scholar: lookup
      16. Baral PK, Yin J, Aguzzi A, James MNG. Transition of the prion protein from a structured cellular form (PrP(C) ) to the infectious scrapie agent (PrP(Sc) ).. Protein Sci 2019 Dec;28(12):2055-2063.
        doi: 10.1002/pro.3735pubmed: 31583788google scholar: lookup
      17. Bian J, Christiansen JR, Moreno JA, Kane SJ, Khaychuk V, Gallegos J, Kim S, Telling GC. Primary structural differences at residue 226 of deer and elk PrP dictate selection of distinct CWD prion strains in gene-targeted mice.. Proc Natl Acad Sci U S A 2019 Jun 18;116(25):12478-12487.
        doi: 10.1073/pnas.1903947116pubmed: 31147460google scholar: lookup
      18. Harrathi C, Fernu00e1ndez-Borges N, Erau00f1a H, Elezgarai SR, Venegas V, Charco JM, Castilla J. Insights into the Bidirectional Properties of the Sheep-Deer Prion Transmission Barrier.. Mol Neurobiol 2019 Aug;56(8):5287-5303.
        doi: 10.1007/s12035-018-1443-8pubmed: 30592012google scholar: lookup
      19. Kim YC, Jeong BH. The first report of polymorphisms and genetic characteristics of the prion protein gene (PRNP) in horses.. Prion 2018;12(3-4):245-252.
        doi: 10.1080/19336896.2018.1513316pubmed: 30165784google scholar: lookup
      20. Sanchez-Garcia J, Fernandez-Funez P. D159 and S167 are protective residues in the prion protein from dog and horse, two prion-resistant animals.. Neurobiol Dis 2018 Nov;119:1-12.
        doi: 10.1016/j.nbd.2018.07.011pubmed: 30010001google scholar: lookup
      21. Fernu00e1ndez-Borges N, Erau00f1a H, Castilla J. Behind the potential evolution towards prion resistant species.. Prion 2018 Mar 4;12(2):83-87.
        doi: 10.1080/19336896.2018.1435935pubmed: 29388474google scholar: lookup
      22. Fernu00e1ndez-Borges N, Parra B, Vidal E, Erau00f1a H, Su00e1nchez-Martu00edn MA, de Castro J, Elezgarai SR, Pumarola M, Mayoral T, Castilla J. Unraveling the key to the resistance of canids to prion diseases.. PLoS Pathog 2017 Nov;13(11):e1006716.
        doi: 10.1371/journal.ppat.1006716pubmed: 29131852google scholar: lookup
      23. Erau00f1a H, Fernu00e1ndez-Borges N, Elezgarai SR, Harrathi C, Charco JM, Chianini F, Dagleish MP, Ortega G, Millet u00d3, Castilla J. In Vitro Approach To Identify Key Amino Acids in Low Susceptibility of Rabbit Prion Protein to Misfolding.. J Virol 2017 Dec 15;91(24).
        doi: 10.1128/JVI.01543-17pubmed: 28978705google scholar: lookup
      24. Moreno JA, Telling GC. Insights into Mechanisms of Transmission and Pathogenesis from Transgenic Mouse Models of Prion Diseases.. Methods Mol Biol 2017;1658:219-252.
        doi: 10.1007/978-1-4939-7244-9_16pubmed: 28861793google scholar: lookup
      25. Caldarulo E, Barducci A, Wu00fcthrich K, Parrinello M. Prion protein u03b22-u03b12 loop conformational landscape.. Proc Natl Acad Sci U S A 2017 Sep 5;114(36):9617-9622.
        doi: 10.1073/pnas.1712155114pubmed: 28827331google scholar: lookup
      26. Leske H, Hornemann S, Herrmann US, Zhu C, Dametto P, Li B, Laferriere F, Polymenidou M, Pelczar P, Reimann RR, Schwarz P, Rushing EJ, Wu00fcthrich K, Aguzzi A. Protease resistance of infectious prions is suppressed by removal of a single atom in the cellular prion protein.. PLoS One 2017;12(2):e0170503.
        doi: 10.1371/journal.pone.0170503pubmed: 28207746google scholar: lookup
      27. Moreno JA, Telling GC. Molecular Mechanisms of Chronic Wasting Disease Prion Propagation.. Cold Spring Harb Perspect Med 2018 Jun 1;8(6).
        doi: 10.1101/cshperspect.a024448pubmed: 28193766google scholar: lookup
      28. Bian J, Khaychuk V, Angers RC, Fernu00e1ndez-Borges N, Vidal E, Meyerett-Reid C, Kim S, Calvi CL, Bartz JC, Hoover EA, Agrimi U, Richt JA, Castilla J, Telling GC. Prion replication without host adaptation during interspecies transmissions.. Proc Natl Acad Sci U S A 2017 Jan 31;114(5):1141-1146.
        doi: 10.1073/pnas.1611891114pubmed: 28096357google scholar: lookup
      29. Sanchez-Garcia J, Jensen K, Zhang Y, Rincon-Limas DE, Fernandez-Funez P. A single amino acid (Asp159) from the dog prion protein suppresses the toxicity of the mouse prion protein in Drosophila.. Neurobiol Dis 2016 Nov;95:204-9.
        doi: 10.1016/j.nbd.2016.07.025pubmed: 27477054google scholar: lookup
      30. Centonze R, Agostini E, Massaccesi S, Toninelli S, Morabito L. A novel equine-derived pericardium membrane for dural repair: A preliminary, short-term investigation.. Asian J Neurosurg 2016 Jul-Sep;11(3):201-5.
        doi: 10.4103/1793-5482.179645pubmed: 27366245google scholar: lookup
      31. Kurt TD, Sigurdson CJ. Cross-species transmission of CWD prions.. Prion 2016;10(1):83-91.
        doi: 10.1080/19336896.2015.1118603pubmed: 26809254google scholar: lookup
      32. Agarwal S, Du00f6ring K, Gierusz LA, Iyer P, Lane FM, Graham JF, Goldmann W, Pinheiro TJ, Gill AC. Complex folding and misfolding effects of deer-specific amino acid substitutions in the u03b22-u03b12 loop of murine prion protein.. Sci Rep 2015 Oct 22;5:15528.
        doi: 10.1038/srep15528pubmed: 26490404google scholar: lookup
      33. Qing LL, Zhao H, Liu LL. Progress on low susceptibility mechanisms of transmissible spongiform encephalopathies.. Dongwuxue Yanjiu 2014 Sep;35(5):436-45.
      34. Angers R, Christiansen J, Nalls AV, Kang HE, Hunter N, Hoover E, Mathiason CK, Sheetz M, Telling GC. Structural effects of PrP polymorphisms on intra- and interspecies prion transmission.. Proc Natl Acad Sci U S A 2014 Jul 29;111(30):11169-74.
        doi: 10.1073/pnas.1404739111pubmed: 25034251google scholar: lookup
      35. Chen W, van der Kamp MW, Daggett V. Structural and dynamic properties of the human prion protein.. Biophys J 2014 Mar 4;106(5):1152-63.
        doi: 10.1016/j.bpj.2013.12.053pubmed: 24606939google scholar: lookup
      36. Kurt TD, Jiang L, Bett C, Eisenberg D, Sigurdson CJ. A proposed mechanism for the promotion of prion conversion involving a strictly conserved tyrosine residue in the u03b22-u03b12 loop of PrPC.. J Biol Chem 2014 Apr 11;289(15):10660-10667.
        doi: 10.1074/jbc.M114.549030pubmed: 24596090google scholar: lookup
      37. Kurt TD, Bett C, Fernu00e1ndez-Borges N, Joshi-Barr S, Hornemann S, Ru00fclicke T, Castilla J, Wu00fcthrich K, Aguzzi A, Sigurdson CJ. Prion transmission prevented by modifying the u03b22-u03b12 loop structure of host PrPC.. J Neurosci 2014 Jan 15;34(3):1022-7.
      38. Giachin G, Biljan I, Ilc G, Plavec J, Legname G. Probing early misfolding events in prion protein mutants by NMR spectroscopy.. Molecules 2013 Aug 7;18(8):9451-76.
        doi: 10.3390/molecules18089451pubmed: 23966072google scholar: lookup
      39. Kyle LM, John TR, Schu00e4tzl HM, Lewis RV. Introducing a rigid loop structure from deer into mouse prion protein increases its propensity for misfolding in vitro.. PLoS One 2013;8(6):e66715.
        doi: 10.1371/journal.pone.0066715pubmed: 23825561google scholar: lookup
      40. Christen B, Damberger FF, Pu00e9rez DR, Hornemann S, Wu00fcthrich K. Structural plasticity of the cellular prion protein and implications in health and disease.. Proc Natl Acad Sci U S A 2013 May 21;110(21):8549-54.
        doi: 10.1073/pnas.1306178110pubmed: 23650394google scholar: lookup
      41. Poggiolini I, Legname G. Mapping the prion protein distribution in marsupials: insights from comparing opossum with mouse CNS.. PLoS One 2012;7(11):e50370.
        doi: 10.1371/journal.pone.0050370pubmed: 23209725google scholar: lookup
      42. Stanker LH, Scotcher MC, Lin A, McGarvey J, Prusiner SB, Hnasko R. Novel epitopes identified by anti-PrP monoclonal antibodies produced following immunization of Prnp0/0 Balb/cJ mice with purified scrapie prions.. Hybridoma (Larchmt) 2012 Oct;31(5):314-24.
        doi: 10.1089/hyb.2012.0022pubmed: 23098297google scholar: lookup
      43. Bett C, Fernu00e1ndez-Borges N, Kurt TD, Lucero M, Nilsson KP, Castilla J, Sigurdson CJ. Structure of the u03b22-u03b12 loop and interspecies prion transmission.. FASEB J 2012 Jul;26(7):2868-76.
        doi: 10.1096/fj.11-200923pubmed: 22490928google scholar: lookup
      44. Legname G. Early structural features in mammalian prion conformation conversion.. Prion 2012 Jan-Mar;6(1):37-9.
        doi: 10.4161/pri.6.1.18425pubmed: 22453176google scholar: lookup
      45. Scouras AD, Daggett V. Disruption of the X-loop turn of the prion protein linked to scrapie resistance.. Protein Eng Des Sel 2012 May;25(5):243-9.
        doi: 10.1093/protein/gzs009pubmed: 22447804google scholar: lookup
      46. Damberger FF, Christen B, Pu00e9rez DR, Hornemann S, Wu00fcthrich K. Cellular prion protein conformation and function.. Proc Natl Acad Sci U S A 2011 Oct 18;108(42):17308-13.
        doi: 10.1073/pnas.1106325108pubmed: 21987789google scholar: lookup
      47. Linden R, Cordeiro Y, Lima LM. Allosteric function and dysfunction of the prion protein.. Cell Mol Life Sci 2012 Apr;69(7):1105-24.
        doi: 10.1007/s00018-011-0847-7pubmed: 21984610google scholar: lookup
      48. Fernandez-Funez P, Zhang Y, Sanchez-Garcia J, Jensen K, Zou WQ, Rincon-Limas DE. Pulling rabbits to reveal the secrets of the prion protein.. Commun Integr Biol 2011 May;4(3):262-6.
        doi: 10.4161/cib.4.3.15054pubmed: 21980555google scholar: lookup
      49. Sigurdson CJ, Joshi-Barr S, Bett C, Winson O, Manco G, Schwarz P, Ru00fclicke T, Nilsson KP, Margalith I, Raeber A, Peretz D, Hornemann S, Wu00fcthrich K, Aguzzi A. Spongiform encephalopathy in transgenic mice expressing a point mutation in the u03b22-u03b12 loop of the prion protein.. J Neurosci 2011 Sep 28;31(39):13840-7.
      50. Thakur AK, Srivastava AK, Srinivas V, Chary KVR, Rao CM. Copper alters aggregation behavior of prion protein and induces novel interactions between its N- and C-terminal regions.. J Biol Chem 2011 Nov 4;286(44):38533-38545.
        doi: 10.1074/jbc.M111.265645pubmed: 21900252google scholar: lookup
      51. Prigent S, Rezaei H. PrP assemblies: spotting the responsible regions in prion propagation.. Prion 2011 Apr-Jun;5(2):69-75.
        doi: 10.4161/pri.5.2.16383pubmed: 21788728google scholar: lookup
      52. Hafner-Bratkoviu010d I, Jerala R. Disulfide mapping reveals the domain swapping as the crucial process of the structural conversion of prion protein.. Prion 2011 Apr-Jun;5(2):56-9.
        doi: 10.4161/pri.5.2.16232pubmed: 21555920google scholar: lookup
      53. Wen Y, Li J, Yao W, Xiong M, Hong J, Peng Y, Xiao G, Lin D. Unique structural characteristics of the rabbit prion protein.. J Biol Chem 2010 Oct 8;285(41):31682-93.
        doi: 10.1074/jbc.M110.118844pubmed: 20639199google scholar: lookup