Biological trace element research2022; 201(4); 1695-1703; doi: 10.1007/s12011-022-03270-y

Influence of Dietary Selenium on the Oxidative Stress in Horses.

Abstract: The objective of this review was to analyze the effect of dietary selenium on oxidative stress in horses by considering past and recent bibliographic sources. Some research was done on oxidative stress, related pathologies and how selenium regulates oxidative stress. Oxidizing molecules are molecules that can accept electrons from the substances with which they react. Oxidizing These molecules, of oxidizing, are found naturally in any organism, and there are antioxidant mechanisms that regulate its activity. However, when the body is stressed, oxidizing molecules outperform the antioxidants, causing an imbalance known as oxidative stress. Among antioxidant molecules, selenium can act as an important antioxidant in the body. The antioxidant activity is based on an enzyme called glutathione peroxidase, which depends on selenium and controls the activity of oxidizing molecules.
Publication Date: 2022-05-08 PubMed ID: 35526205PubMed Central: 4298223DOI: 10.1007/s12011-022-03270-yGoogle Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article
  • Review

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

The research article deals with the analysis of how dietary selenium influences oxidative stress in horses. Through a comprehensive study of past and current references, it discusses the role of selenium in regulating oxidizing molecules and how it contributes to antioxidant activities.

Understanding oxidative stress and selenium’s role

  • The review begins by shedding light on the concept of oxidative stress. This state of imbalance arises in an organism when oxidizing molecules, which inherently accept electrons from other substances during a reaction, outnumber the body’s antioxidant mechanisms.
  • These oxidizing molecules naturally present in any organism are kept in check by various antioxidant mechanisms.
  • However, during periods of stress, the quantity of these molecules surpasses the antioxidants, leading to a state known as oxidative stress.
  • The research emphasizes the role of selenium, a compound that can function as a significant antioxidant in the body. Its antioxidative property relies on an enzyme termed glutathione peroxidase.
  • This enzyme, which depends on selenium for functioning, effectively regulates the activity of oxidizing molecules and helps to maintain a balance in the body.

Selenium and related pathologies

  • The research additionally investigates the connection between oxidative stress and related pathologies. An intense focus is laid on the correlation between selenium and these ailments.
  • The research investigates whether an increase or decrease in selenium input in the horse’s diet might influence their antioxidant capacities and, consequently, lead to diseases related to oxidative stress.

Implications of the findings

  • The findings of this research are potentially beneficial for equine health management. An understanding of the influence of dietary selenium levels on the oxidative stress in horses can provide valuable insights that may help in forming better dietary plans for horses, thereby improving their overall health and well-being.
  • This understanding could also support and enhance effective treatment strategies for diseases related to oxidative stress.

Cite This Article

APA
Culhuac EB, Elghandour MMMY, Adegbeye MJ, Barbabosa-Pliego A, Salem AZM. (2022). Influence of Dietary Selenium on the Oxidative Stress in Horses. Biol Trace Elem Res, 201(4), 1695-1703. https://doi.org/10.1007/s12011-022-03270-y

Publication

ISSN: 1559-0720
NlmUniqueID: 7911509
Country: United States
Language: English
Volume: 201
Issue: 4
Pages: 1695-1703

Researcher Affiliations

Culhuac, Erick Bahena
  • Facultad de Ciencias, Universidad Autu00f3noma del Estado de Mu00e9xico, Toluca, Estado de Mu00e9xico, Mu00e9xico.
Elghandour, Mona M M Y
  • Facultad de Medicina Veterinaria Y Zootecnia, Universidad Autu00f3noma del Estado de Mu00e9xico, Toluca, Estado de Mu00e9xico, Mu00e9xico. mmohamede@uaemex.mx.
Adegbeye, Moyosore J
  • Department of Animal Production and Health, Federal University of Technology, Akure, P.M.B. 704, Nigeria.
Barbabosa-Pliego, Alberto
  • Facultad de Medicina Veterinaria Y Zootecnia, Universidad Autu00f3noma del Estado de Mu00e9xico, Toluca, Estado de Mu00e9xico, Mu00e9xico.
Salem, Abdelfattah Z M
  • Facultad de Medicina Veterinaria Y Zootecnia, Universidad Autu00f3noma del Estado de Mu00e9xico, Toluca, Estado de Mu00e9xico, Mu00e9xico.

MeSH Terms

  • Horses
  • Animals
  • Antioxidants / metabolism
  • Selenium / pharmacology
  • Oxidative Stress
  • Glutathione Peroxidase / metabolism

References

This article includes 53 references
  1. Joshua Loke WS, Lim MY, Lewis CR (2014) Thomas PS. Oxidative stress in lung cancer. Cancer Oxidative Stress and Dietary Antioxidants 2014:23u201332. https://doi.org/10.1016/B978-0-12-405205-5.00003-9
  2. Kirschvink N, de Moffarts B, Lekeux P. The oxidant/antioxidant equilibrium in horses.. Vet J 2008 Aug;177(2):178-91.
    doi: 10.1016/J.TVJL.2007.07.033pubmed: 17897849google scholar: lookup
  3. Mou D, Ding D, Yang M, Jiang X, Zhao L, Che L, Fang Z, Xu S, Lin Y, Zhuo Y, Li J, Huang C, Zou Y, Li L, Wu D, Feng B. Maternal organic selenium supplementation during gestation improves the antioxidant capacity and reduces the inflammation level in the intestine of offspring through the NF-u03baB and ERK/Beclin-1 pathways.. Food Funct 2021 Jan 7;12(1):315-327.
    pubmed: 33300903doi: 10.1039/D0FO02274Hgoogle scholar: lookup
  4. Williams CA. The effect of oxidative stress during exercise in the horse.. J Anim Sci 2016 Oct;94(10):4067-4075.
    pubmed: 27898872doi: 10.2527/jas.2015-9988google scholar: lookup
  5. Zakeri N, Klishadi MR, Asbaghi O, Naeini F, Afshafar M, Mirzadeh E, Naserizadeh K (2021) Selenium supplementation and oxidative stress: a review.u00a0PharmNutrition 17:100263
  6. Mills PC, Smith NC, Casas I, Harris P, Harris RC, Marlin DJ (1996) Effects of exercise intensity and environmental stress on indices of oxidative stress and iron homeostasis during exercise in the horse. Eur J Appl Physiol 74:60u201366
    doi: 10.1007/BF00376495google scholar: lookup
  7. Wunderlich F, Al-Quraishy S, Steinbrenner H, Sies H, Dkhil MA. Towards identifying novel anti-Eimeria agents: trace elements, vitamins, and plant-based natural products.. Parasitol Res 2014 Oct;113(10):3547-56.
    pubmed: 25185667doi: 10.1007/s00436-014-4101-8google scholar: lookup
  8. Bhabak KP, Mugesh G. Functional mimics of glutathione peroxidase: bioinspired synthetic antioxidants.. Acc Chem Res 2010 Nov 16;43(11):1408-19.
    pubmed: 20690615doi: 10.1021/ar100059ggoogle scholar: lookup
  9. Brummer M, Hayes S, Dawson KA, Lawrence LM. Measures of antioxidant status of the horse in response to selenium depletion and repletion.. J Anim Sci 2013 May;91(5):2158-68.
    pubmed: 23463557doi: 10.2527/jas.2012-5794google scholar: lookup
  10. Mrazova J, Kopcekova J, Debreceni O, Habanova M, Jancichova K (2021) Effect of short term consumption of pork supplemented by organic selenium on selenium concentration, antioxidant status and lipid parameters of consumers.u00a0u00a0J Environ Sci Health Part B 56:884u2013890
  11. Radakovic M, Davitkov D, Borozan S, Stojanovic S, Stevanovic J, Krstic V, Stanimirovic Z. Oxidative stress and DNA damage in horses naturally infected with Theileria equi.. Vet J 2016 Nov;217:112-118.
    pubmed: 27810201doi: 10.1016/j.tvjl.2016.10.003google scholar: lookup
  12. Lykkesfeldt J, Svendsen O. Oxidants and antioxidants in disease: oxidative stress in farm animals.. Vet J 2007 May;173(3):502-11.
    pubmed: 16914330doi: 10.1016/j.tvjl.2006.06.005google scholar: lookup
  13. Ball BA. Oxidative stress, osmotic stress and apoptosis: impacts on sperm function and preservation in the horse.. Anim Reprod Sci 2008 Sep;107(3-4):257-67.
  14. Alexander SL, Irvine CH. The effect of social stress on adrenal axis activity in horses: the importance of monitoring corticosteroid-binding globulin capacity.. J Endocrinol 1998 Jun;157(3):425-32.
    doi: 10.1677/joe.0.1570425pubmed: 9691975google scholar: lookup
  15. Spiers JG, Chen HJ, Sernia C, Lavidis NA. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress.. Front Neurosci 2014;8:456.
    pubmed: 25646076pmc: 4298223doi: 10.3389/fnins.2014.00456google scholar: lookup
  16. Rojkind M, Domu00ednguez-Rosales JA, Nieto N, Greenwel P. Role of hydrogen peroxide and oxidative stress in healing responses.. Cell Mol Life Sci 2002 Nov;59(11):1872-91.
    pubmed: 12530519doi: 10.1007/PL00012511google scholar: lookup
  17. Turrens JF. Mitochondrial formation of reactive oxygen species.. J Physiol 2003 Oct 15;552(Pt 2):335-44.
    pubmed: 14561818pmc: 2343396doi: 10.1113/jphysiol.2003.049478google scholar: lookup
  18. Barchielli G, Capperucci A, Tanini D (2022) The role of selenium in pathologies: an updated review. Antioxidant 11:251
    doi: 10.3390/antiox11020251google scholar: lookup
  19. Derochette S, Franck T, Mouithys-Mickalad A, Ceusters J, Deby-Dupont G, Lejeune JP, Neven P, Serteyn D. Curcumin and resveratrol act by different ways on NADPH oxidase activity and reactive oxygen species produced by equine neutrophils.. Chem Biol Interact 2013 Nov 25;206(2):186-93.
    pubmed: 24060679doi: 10.1016/j.cbi.2013.09.011google scholar: lookup
  20. Youssef MA, El-Khodery SA, Ibrahim HM. Antioxidant trace elements in serum of draft horses with acute and chronic lower airway disease.. Biol Trace Elem Res 2012 Dec;150(1-3):123-9.
    pubmed: 22767430doi: 10.1007/s12011-012-9471-0google scholar: lookup
  21. Cardenas E, Ghosh R. Vitamin E: a dark horse at the crossroad of cancer management.. Biochem Pharmacol 2013 Oct 1;86(7):845-52.
    pubmed: 23919929pmc: 4100069doi: 10.1016/j.bcp.2013.07.018google scholar: lookup
  22. Divers TJ, Cummings JE, de Lahunta A, Hintz HF, Mohammed HO. Evaluation of the risk of motor neuron disease in horses fed a diet low in vitamin E and high in copper and iron.. Am J Vet Res 2006 Jan;67(1):120-6.
    pubmed: 16426221doi: 10.2460/ajvr.67.1.120google scholar: lookup
  23. McGorum BC, Fry SC, Wallace G, Coenen K, Robb J, Williamson G, Aruoma OI. Properties of herbage in relation to equine dysautonomia: biochemical composition and antioxidant and prooxidant actions.. J Agric Food Chem 2000 Jun;48(6):2346-52.
    pubmed: 10888548doi: 10.1021/jf991101ngoogle scholar: lookup
  24. Burns EN, Finno CJ (2018) Equine degenerative myeloencephalopathy: prevalence, impact, and management. Vet Med Res Rep 9:63
  25. Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease.. FASEB J 2003 Jul;17(10):1195-214.
    pubmed: 12832285doi: 10.1096/fj.02-0752revgoogle scholar: lookup
  26. Waris G, Ahsan H (2006) Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinogenesis 5:14
    doi: 10.1186/1477-3163-5-14google scholar: lookup
  27. Barelli S, Canellini G, Thadikkaran L, Crettaz D, Quadroni M, Rossier JS (2008) Oxidation of proteins: basic principles and perspectives for blood proteomics. PROTEOMICSu2013Clin Applications 2:142u201357
    doi: 10.1002/prca.200780009google scholar: lookup
  28. Ayala A, Muu00f1oz MF, Argu00fcelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:2014
    doi: 10.1155/2014/360438google scholar: lookup
  29. Santos-Su00e1nchez NF, Salas-Coronado R, Villanueva-Cau00f1ongo C, Hernu00e1ndez-Carlos B. (2019) Antioxidant compounds and their antioxidant mechanism. IntechOpen London, UK; 2019
  30. Deaton CM. The role of oxidative stress in an equine model of human asthma.. Redox Rep 2006;11(2):46-52.
    pubmed: 16686994doi: 10.1179/135100006X101057google scholar: lookup
  31. Alfonso-Prieto M, Biarnu00e9s X, Vidossich P, Rovira C. The molecular mechanism of the catalase reaction.. J Am Chem Soc 2009 Aug 26;131(33):11751-61.
    pubmed: 19653683doi: 10.1021/ja9018572google scholar: lookup
  32. Prabhakar R, Vreven T, Morokuma K, Musaev DG. Elucidation of the mechanism of selenoprotein glutathione peroxidase (GPx)-catalyzed hydrogen peroxide reduction by two glutathione molecules: a density functional study.. Biochemistry 2005 Sep 6;44(35):11864-71.
    pubmed: 16128588doi: 10.1021/bi050815qgoogle scholar: lookup
  33. Hart PJ, Balbirnie MM, Ogihara NL, Nersissian AM, Weiss MS, Valentine JS, Eisenberg D. A structure-based mechanism for copper-zinc superoxide dismutase.. Biochemistry 1999 Feb 16;38(7):2167-78.
    pubmed: 10026301doi: 10.1021/bi982284ugoogle scholar: lookup
  34. Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants.. J Exp Bot 2002 May;53(372):1331-41.
    pubmed: 11997379doi: 10.1093/jexbot/53.372.1331google scholar: lookup
  35. Wang X, Quinn PJ. The location and function of vitamin E in membranes (review).. Mol Membr Biol 2000 Jul-Sep;17(3):143-56.
    pubmed: 11128973doi: 10.1080/09687680010000311google scholar: lookup
  36. Mukai K, Tokunaga A, Itoh S, Kanesaki Y, Ohara K, Nagaoka S, Abe K. Structure-activity relationship of the free-radical-scavenging reaction by vitamin E (alpha-, beta-, gamma-, delta-Tocopherols) and ubiquinol-10: pH dependence of the reaction rates.. J Phys Chem B 2007 Jan 25;111(3):652-62.
    pubmed: 17228924doi: 10.1021/jp0650580google scholar: lookup
  37. Tu YJ, Njus D, Schlegel HB. A theoretical study of ascorbic acid oxidation and HOOu02d9/O(2)u02d9(-) radical scavenging.. Org Biomol Chem 2017 May 23;15(20):4417-4431.
    pubmed: 28485446doi: 10.1039/C7OB00791Dgoogle scholar: lookup
  38. Pu00e1lla T, Mirzahosseini A, Noszu00e1l B. Species-Specific, pH-Independent, Standard Redox Potential of Selenocysteine and Selenocysteamine.. Antioxidants (Basel) 2020 Jun 1;9(6).
    pubmed: 32492814pmc: 7346207doi: 10.3390/antiox9060465google scholar: lookup
  39. Brasted, R.C (2019) Selenium. Encyclopedia Britannica. https://www.britannica.com/science/selenium . Accessedu00a028 Aug 2019
  40. Calamari L, Ferrari A, Bertin G. Effect of selenium source and dose on selenium status of mature horses.. J Anim Sci 2009 Jan;87(1):167-78.
    pubmed: 18791154doi: 10.2527/jas.2007-0746google scholar: lookup
  41. Whanger PD. Selenocompounds in plants and animals and their biological significance.. J Am Coll Nutr 2002 Jun;21(3):223-32.
  42. Esmaeili S, Khosravi-Darani K, Pourahmad R, Komeili R (2012) An experimental design for production of selenium-enriched yeast. World Appl Sci 19:31u201337
  43. Ellis AD, Hill J (2005) Nutritional physiology of the horse. Nottingham University Press,u00a0Nottingham, pp 361
  44. Seale LA. Selenocysteine u03b2-Lyase: Biochemistry, Regulation and Physiological Role of the Selenocysteine Decomposition Enzyme.. Antioxidants (Basel) 2019 Sep 1;8(9).
    pubmed: 31480609pmc: 6770646doi: 10.3390/antiox8090357google scholar: lookup
  45. Kang D, Lee J, Wu C, Guo X, Lee BJ, Chun JS, Kim JH. The role of selenium metabolism and selenoproteins in cartilage homeostasis and arthropathies.. Exp Mol Med 2020 Aug;52(8):1198-1208.
    pubmed: 32788658pmc: 7423502doi: 10.1038/s12276-020-0408-ygoogle scholar: lookup
  46. Huang Z, Rose AH, Hoffmann PR. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities.. Antioxid Redox Signal 2012 Apr 1;16(7):705-43.
    pubmed: 21955027pmc: 3277928doi: 10.1089/ars.2011.4145google scholar: lookup
  47. Tinggi U. Selenium: its role as antioxidant in human health.. Environ Health Prev Med 2008 Mar;13(2):102-8.
    pubmed: 19568888pmc: 2698273doi: 10.1007/s12199-007-0019-4google scholar: lookup
  48. Roman M, Jitaru P, Barbante C. Selenium biochemistry and its role for human health.. Metallomics 2014 Jan;6(1):25-54.
    pubmed: 24185753doi: 10.1039/C3MT00185Ggoogle scholar: lookup
  49. Chavatte L, Brown BA, Driscoll DM. Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes.. Nat Struct Mol Biol 2005 May;12(5):408-16.
    pubmed: 15821744doi: 10.1038/nsmb922google scholar: lookup
  50. Howard MT, Copeland PR. New Directions for Understanding the Codon Redefinition Required for Selenocysteine Incorporation.. Biol Trace Elem Res 2019 Nov;192(1):18-25.
    pubmed: 31342342pmc: 6801069doi: 10.1007/s12011-019-01827-ygoogle scholar: lookup
  51. Wang J, Zhang J, Zhong Y, Qin L, Li J (2021) Sex-dimorphic distribution and antioxidative effects of selenomethionine and se-methylselenocysteine supplementation. J Food Sci 85:5424u20135438
    doi: 10.1111/1750-3841.15970google scholar: lookup
  52. Lv H, Zhen C, Liu J, Yang P, Hu L, Shang P (2019) Unraveling the potential role of glutathione in multiple forms of cell death in cancer therapy. Oxid Med Cell Longev 2019:2019
    doi: 10.1155/2019/3150145google scholar: lookup
  53. Chang C, Worley BL, Phau00ebton R, Hempel N. Extracellular Glutathione Peroxidase GPx3 and Its Role in Cancer.. Cancers (Basel) 2020 Aug 6;12(8).
    pubmed: 32781581pmc: 7464599doi: 10.3390/cancers12082197google scholar: lookup

Citations

This article has been cited 2 times.
  1. Culhuac EB, Maggiolino A, Elghandour MMMY, De Palo P, Salem AZM. Antioxidant and Anti-Inflammatory Properties of Phytochemicals Found in the Yucca Genus.. Antioxidants (Basel) 2023 Feb 24;12(3).
    doi: 10.3390/antiox12030574pubmed: 36978823google scholar: lookup
  2. Wru00f3blewski M, Wru00f3blewska J, Nuszkiewicz J, Pawu0142owska M, Wesou0142owski R, Wou017aniak A. The Role of Selected Trace Elements in Oxidoreductive Homeostasis in Patients with Thyroid Diseases.. Int J Mol Sci 2023 Mar 2;24(5).
    doi: 10.3390/ijms24054840pubmed: 36902266google scholar: lookup