Frontiers in veterinary science2018; 4; 235; doi: 10.3389/fvets.2017.00235

Molecular Characteristics of the Equine Periodontal Ligament.

Abstract: The equine periodontal ligament (PDL) is a fibrous connective tissue that covers the intra-alveolar parts of the tooth and anchors it to the alveolar bone-it, therefore, provides a similar function to a tendinous structure. While several studies have considered the formation and structure of tendons, there is insufficient information particularly on the molecular composition of the PDL. Especially for the equine PDL, there is limited knowledge concerning the expression of genes commonly regarded as typical for tendon tissue. In this study, the gene expression of, e.g., (, and fibrocartilage markers was examined in the functional mature equine PDL compared with immature and mature equine tendon tissue. PDL samples were obtained from incisor, premolar, and molar teeth from seven adult horses. Additionally, tendon samples were collected from four adult horses and five foals at different sampling locations. Analyses of gene expression were performed using real-time quantitative polymerase chain reaction (qRT-PCR). Significantly higher expression levels of and were found in the mature equine PDL in comparison with mature tendon, indicating higher rates of collagen production and turnover in the mature equine PDL. The expression levels of , a specific marker for tenogenic-differentiated cells, were on a similar level in functional mature PDL and in mature tendon tissue. Evidence of chondrogenic metaplasia, often found in tendon entheses or in pressurized regions of tendons, was not found in the mature equine PDL. The obtained results justify further experiments focused on the possible use of equine PDL cells for cell-based regenerative therapies.
Publication Date: 2018-01-11 PubMed ID: 29376061PubMed Central: PMC5768624DOI: 10.3389/fvets.2017.00235Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

This research provides an in-depth study about the molecular composition of the equine periodontal ligament (PDL). The study compares its gene expression levels with immature and mature equine tendon tissue, revealing higher rates of collagen production and turnover in the mature equine PDL.

Study Overview

  • In this research, the authors have conducted a comparative study to gain insights into the molecular composition of the equine periodontal ligament (PDL), a fibrous connective tissue that secures the tooth to the alveolar bone.
  • The researchers aimed to fill in the gaps within existing knowledge about the equine PDL, particularly its gene expression for typical tendon tissue markers.

Methodology

  • PDL samples were taken from the incisor, premolar, and molar teeth of seven adult horses for this examination. Additionally, tendon samples were also procured from four adult horses and five foals from varied sampling sites.
  • The gene expression analyses were conducted using real-time quantitative polymerase chain reaction (qRT-PCR)–a common laboratory technique used for detecting and quantifying a specific DNA sequence.

Findings

  • The results unveiled elevated expression levels of collagen in the mature equine PDL as compared to mature tendon. This suggests that the production and turnover of collagen—a key protein in connective tissues—are higher in the PDL.
  • While the expression levels of a specific marker for tenogenic-differentiated cells were similar in mature PDL and mature tendon tissue, the researchers found no signs of chondrogenic metaplasia in the mature equine PDL. Chondrogenic metaplasia is a condition often observed in tendon entheses or in areas of tendons experiencing high pressure.

Implications and Future Research

  • The comprehensive assessments and results of this study lend support to more research into the potential advantages of equine PDL cells for cell-based regenerative therapies.
  • The identified differences in gene expression between equine PDL and tendon tissue can help develop more effective treatments for injuries or diseases affecting these similar yet distinct fibrous connective tissues.

Cite This Article

APA
Pu00f6schke A, Kru00e4hling B, Failing K, Staszyk C. (2018). Molecular Characteristics of the Equine Periodontal Ligament. Front Vet Sci, 4, 235. https://doi.org/10.3389/fvets.2017.00235

Publication

ISSN: 2297-1769
NlmUniqueID: 101666658
Country: Switzerland
Language: English
Volume: 4
Pages: 235
PII: 235

Researcher Affiliations

Pu00f6schke, Antje
  • Institute of Veterinary-Anatomy, -Histology and -Embryology, Justus Liebig University Giessen, Giessen, Germany.
Kru00e4hling, Bastian
  • Institute of Veterinary-Anatomy, -Histology and -Embryology, Justus Liebig University Giessen, Giessen, Germany.
Failing, Klaus
  • Department of Biomathematics, Justus Liebig University Giessen, Giessen, Germany.
Staszyk, Carsten
  • Institute of Veterinary-Anatomy, -Histology and -Embryology, Justus Liebig University Giessen, Giessen, Germany.

References

This article includes 75 references
  1. Staszyk C, Bienert-Zeit A. The equine periodontium: the (re)model tissue.. Vet J 2012 Dec;194(3):280-1.
    doi: 10.1016/j.tvjl.2012.08.015pubmed: 23031306google scholar: lookup
  2. Cho MI, Garant PR. Development and general structure of the periodontium.. Periodontol 2000 2000 Oct;24:9-27.
  3. Lee YH, Nahm DS, Jung YK, Choi JY, Kim SG, Cho M, Kim MH, Chae CH, Kim SG. Differential gene expression of periodontal ligament cells after loading of static compressive force.. J Periodontol 2007 Mar;78(3):446-52.
    doi: 10.1902/jop.2007.060240pubmed: 17335367google scholar: lookup
  4. McCormack SW, Witzel U, Watson PJ, Fagan MJ, Gru00f6ning F. The biomechanical function of periodontal ligament fibres in orthodontic tooth movement.. PLoS One 2014;9(7):e102387.
  5. Feller L, Khammissa RA, Schechter I, Thomadakis G, Fourie J, Lemmer J. Biological Events in Periodontal Ligament and Alveolar Bone Associated with Application of Orthodontic Forces.. ScientificWorldJournal 2015;2015:876509.
    doi: 10.1155/2015/876509pmc: PMC4572431pubmed: 26421314google scholar: lookup
  6. Staszyk C, Gasse H. Distinct fibro-vascular arrangements in the periodontal ligament of the horse.. Arch Oral Biol 2005 Apr;50(4):439-47.
  7. Berkovitz BK. The structure of the periodontal ligament: an update.. Eur J Orthod 1990 Feb;12(1):51-76.
    doi: 10.1093/ejo/12.1.51pubmed: 2180728google scholar: lookup
  8. Beertsen W, McCulloch CA, Sodek J. The periodontal ligament: a unique, multifunctional connective tissue.. Periodontol 2000 1997 Feb;13:20-40.
  9. Dixon PM, Dacre I. A review of equine dental disorders.. Vet J 2005 Mar;169(2):165-87.
    doi: 10.1016/j.tvjl.2004.03.022pubmed: 15727909google scholar: lookup
  10. Schrock P, Lu00fcpke M, Seifert H, Staszyk C. Finite element analysis of equine incisor teeth. Part 2: investigation of stresses and strain energy densities in the periodontal ligament and surrounding bone during tooth movement.. Vet J 2013 Dec;198(3):590-8.
    doi: 10.1016/j.tvjl.2013.10.010pubmed: 24252223google scholar: lookup
  11. Thorpe CT, Birch HL, Clegg PD, Screen HR. The role of the non-collagenous matrix in tendon function.. Int J Exp Pathol 2013 Aug;94(4):248-59.
    doi: 10.1111/iep.12027pmc: PMC3721456pubmed: 23718692google scholar: lookup
  12. Franchi M, Triru00e8 A, Quaranta M, Orsini E, Ottani V. Collagen structure of tendon relates to function.. ScientificWorldJournal 2007 Mar 30;7:404-20.
    doi: 10.1100/tsw.2007.92pmc: PMC5901217pubmed: 17450305google scholar: lookup
  13. Zhang G, Young BB, Ezura Y, Favata M, Soslowsky LJ, Chakravarti S, Birk DE. Development of tendon structure and function: regulation of collagen fibrillogenesis.. J Musculoskelet Neuronal Interact 2005 Mar;5(1):5-21.
    pubmed: 15788867
  14. Kannus P. Structure of the tendon connective tissue.. Scand J Med Sci Sports 2000 Dec;10(6):312-20.
  15. Benjamin M, Ralphs JR. Fibrocartilage in tendons and ligaments--an adaptation to compressive load.. J Anat 1998 Nov;193 ( Pt 4)(Pt 4):481-94.
  16. Benjamin M, McGonagle D. Entheses: tendon and ligament attachment sites.. Scand J Med Sci Sports 2009 Aug;19(4):520-7.
  17. Connizzo BK, Yannascoli SM, Soslowsky LJ. Structure-function relationships of postnatal tendon development: a parallel to healing.. Matrix Biol 2013 Mar 11;32(2):106-16.
  18. Stoll C, John T, Endres M, Rosen C, Kaps C, Kohl B, Sittinger M, Ertel W, Schulze-Tanzil G. Extracellular matrix expression of human tenocytes in three-dimensional air-liquid and PLGA cultures compared with tendon tissue: implications for tendon tissue engineering.. J Orthop Res 2010 Sep;28(9):1170-7.
    doi: 10.1002/jor.21109pubmed: 20187116google scholar: lookup
  19. Yang G, Rothrauff BB, Tuan RS. Tendon and ligament regeneration and repair: clinical relevance and developmental paradigm.. Birth Defects Res C Embryo Today 2013 Sep;99(3):203-222.
    doi: 10.1002/bdrc.21041pmc: PMC4041869pubmed: 24078497google scholar: lookup
  20. Chen X, Yin Z, Chen JL, Shen WL, Liu HH, Tang QM, Fang Z, Lu LR, Ji J, Ouyang HW. Force and scleraxis synergistically promote the commitment of human ES cells derived MSCs to tenocytes.. Sci Rep 2012;2:977.
    doi: 10.1038/srep00977pmc: PMC3522101pubmed: 23243495google scholar: lookup
  21. Brent AE, Schweitzer R, Tabin CJ. A somitic compartment of tendon progenitors.. Cell 2003 Apr 18;113(2):235-48.
    doi: 10.1016/S0092-8674(03)00268-Xpubmed: 12705871google scholar: lookup
  22. Schweitzer R, Chyung JH, Murtaugh LC, Brent AE, Rosen V, Olson EN, Lassar A, Tabin CJ. Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments.. Development 2001 Oct;128(19):3855-66.
    pubmed: 11585810doi: 10.1242/dev.128.19.3855google scholar: lookup
  23. Cserjesi P, Brown D, Ligon KL, Lyons GE, Copeland NG, Gilbert DJ, Jenkins NA, Olson EN. Scleraxis: a basic helix-loop-helix protein that prefigures skeletal formation during mouse embryogenesis.. Development 1995 Apr;121(4):1099-110.
    pubmed: 7743923doi: 10.1242/dev.121.4.1099google scholar: lookup
  24. Murchison ND, Price BA, Conner DA, Keene DR, Olson EN, Tabin CJ, Schweitzer R. Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons.. Development 2007 Jul;134(14):2697-708.
    doi: 10.1242/dev.001933pubmed: 17567668google scholar: lookup
  25. Benjamin M, Qin S, Ralphs JR. Fibrocartilage associated with human tendons and their pulleys.. J Anat 1995 Dec;187 ( Pt 3)(Pt 3):625-33.
    pmc: PMC1167465pubmed: 8586561
  26. DiCesare P, Hauser N, Lehman D, Pasumarti S, Paulsson M. Cartilage oligomeric matrix protein (COMP) is an abundant component of tendon.. FEBS Lett 1994 Nov 7;354(2):237-40.
    doi: 10.1016/0014-5793(94)01134-6pubmed: 7957930google scholar: lookup
  27. Floyd A, Mansmann RA. Equine Podiatry. London: Elsevier Health Sciences; (2007). 477 p.
  28. Marinovich R, Soenjaya Y, Wallace GQ, Zuskov A, Dunkman A, Foster BL, Ao M, Bartman K, Lam V, Rizkalla A, Beier F, Somerman MJ, Holdsworth DW, Soslowsky LJ, Lagugnu00e9-Labarthet F, Goldberg HA. The role of bone sialoprotein in the tendon-bone insertion.. Matrix Biol 2016 May-Jul;52-54:325-338.
  29. Sharma P, Maffulli N. Biology of tendon injury: healing, modeling and remodeling.. J Musculoskelet Neuronal Interact 2006 Apr-Jun;6(2):181-90.
    pubmed: 16849830
  30. Ippolito E, Natali PG, Postacchini F, Accinni L, De Martino C. Morphological, immunochemical, and biochemical study of rabbit achilles tendon at various ages.. J Bone Joint Surg Am 1980;62(4):583-98.
  31. Heinemeier KM, Schjerling P, Heinemeier J, Magnusson SP, Kjaer M. Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb (14)C.. FASEB J 2013 May;27(5):2074-9.
    doi: 10.1096/fj.12-225599pmc: PMC3633810pubmed: 23401563google scholar: lookup
  32. Fenwick SA, Hazleman BL, Riley GP. The vasculature and its role in the damaged and healing tendon.. Arthritis Res 2002;4(4):252-60.
    doi: 10.1186/ar416pmc: PMC128932pubmed: 12106496google scholar: lookup
  33. Mu00fcller SA, Todorov A, Heisterbach PE, Martin I, Majewski M. Tendon healing: an overview of physiology, biology, and pathology of tendon healing and systematic review of state of the art in tendon bioengineering.. Knee Surg Sports Traumatol Arthrosc 2015 Jul;23(7):2097-105.
    doi: 10.1007/s00167-013-2680-zpubmed: 24057354google scholar: lookup
  34. Magnusson SP, Heinemeier KM, Kjaer M. Collagen Homeostasis and Metabolism.. Adv Exp Med Biol 2016;920:11-25.
    doi: 10.1007/978-3-319-33943-6_2pubmed: 27535245google scholar: lookup
  35. Beertsen W, Everts V. The site of remodeling of collagen in the periodontal ligament of the mouse incisor.. Anat Rec 1977 Nov;189(3):479-97.
    doi: 10.1002/ar.1091890308pubmed: 920976google scholar: lookup
  36. Lekic P, McCulloch CA. Periodontal ligament cell population: the central role of fibroblasts in creating a unique tissue.. Anat Rec 1996 Jun;245(2):327-41.
  37. Warhonowicz M, Staszyk C, Rohn K, Gasse H. The equine periodontium as a continuously remodeling system: morphometrical analysis of cell proliferation.. Arch Oral Biol 2006 Dec;51(12):1141-9.
  38. Warhonowicz M, Staszyk C, Gasse H. Immunohistochemical detection of matrix metalloproteinase-1 in the periodontal ligament of equine cheek teeth.. Tissue Cell 2007 Dec;39(6):369-76.
    doi: 10.1016/j.tice.2007.07.005pubmed: 17915275google scholar: lookup
  39. Perera KA, Tonge CH. Fibroblast cell proliferation in the mouse molar periodontal ligament.. J Anat 1981 Aug;133(Pt 1):77-90.
    pmc: PMC1167726pubmed: 7319901
  40. Nanci A. Ten Cateu2019s Oral Histology: Development, Structure and Function. St. Louis: Elsevier; (2013).
  41. Henneman S, Von den Hoff JW, Maltha JC. Mechanobiology of tooth movement.. Eur J Orthod 2008 Jun;30(3):299-306.
    doi: 10.1093/ejo/cjn020pubmed: 18540017google scholar: lookup
  42. Chen X, Li N, LeleYang, Liu J, Chen J, Liu H. Expression of collagen I, collagen III and MMP-1 on the tension side of distracted tooth using periodontal ligament distraction osteogenesis in beagle dogs.. Arch Oral Biol 2014 Nov;59(11):1217-25.
  43. Dixon WJ. BMDP Statistical Software Manual: To Accompany the 7.0 Software Release. Berkeley: University of California Press; (1992).
  44. Frisbie DD, Smith RK. Clinical update on the use of mesenchymal stem cells in equine orthopaedics.. Equine Vet J 2010 Jan;42(1):86-9.
    doi: 10.2746/042516409X477263pubmed: 20121921google scholar: lookup
  45. Burk J, Badylak SF, Kelly J, Brehm W. Equine cellular therapy--from stall to bench to bedside?. Cytometry A 2013 Jan;83(1):103-13.
    doi: 10.1002/cyto.a.22216pubmed: 23081833google scholar: lookup
  46. Raabe O, Shell K, Goessl A, Crispens C, Delhasse Y, Eva A, Scheiner-Bobis G, Wenisch S, Arnhold S. Effect of extracorporeal shock wave on proliferation and differentiation of equine adipose tissue-derived mesenchymal stem cells in vitro.. Am J Stem Cells 2013;2(1):62-73.
    pmc: PMC3636727pubmed: 23671817
  47. Raabe O, Shell K, Fietz D, Freitag C, Ohrndorf A, Christ HJ, Wenisch S, Arnhold S. Tenogenic differentiation of equine adipose-tissue-derived stem cells under the influence of tensile strain, growth differentiation factors and various oxygen tensions.. Cell Tissue Res 2013 Jun;352(3):509-21.
    doi: 10.1007/s00441-013-1574-1pubmed: 23430474google scholar: lookup
  48. Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source.. Arthritis Rheum 2005 Aug;52(8):2521-9.
    doi: 10.1002/art.21212pubmed: 16052568google scholar: lookup
  49. Burk J, Gittel C, Heller S, Pfeiffer B, Paebst F, Ahrberg AB, Brehm W. Gene expression of tendon markers in mesenchymal stromal cells derived from different sources.. BMC Res Notes 2014 Nov 20;7:826.
    doi: 10.1186/1756-0500-7-826pmc: PMC4247609pubmed: 25412928google scholar: lookup
  50. Martinello T, Bronzini I, Perazzi A, Testoni S, De Benedictis GM, Negro A, Caporale G, Mascarello F, Iacopetti I, Patruno M. Effects of in vivo applications of peripheral blood-derived mesenchymal stromal cells (PB-MSCs) and platlet-rich plasma (PRP) on experimentally injured deep digital flexor tendons of sheep.. J Orthop Res 2013 Feb;31(2):306-14.
    doi: 10.1002/jor.22205pubmed: 22893604google scholar: lookup
  51. Watts AE, Yeager AE, Kopyov OV, Nixon AJ. Fetal derived embryonic-like stem cells improve healing in a large animal flexor tendonitis model.. Stem Cell Res Ther 2011 Jan 27;2(1):4.
    doi: 10.1186/scrt45pmc: PMC3092144pubmed: 21272343google scholar: lookup
  52. Schnabel LV, Lynch ME, van der Meulen MC, Yeager AE, Kornatowski MA, Nixon AJ. Mesenchymal stem cells and insulin-like growth factor-I gene-enhanced mesenchymal stem cells improve structural aspects of healing in equine flexor digitorum superficialis tendons.. J Orthop Res 2009 Oct;27(10):1392-8.
    doi: 10.1002/jor.20887pubmed: 19350658google scholar: lookup
  53. Violini S, Ramelli P, Pisani LF, Gorni C, Mariani P. Horse bone marrow mesenchymal stem cells express embryo stem cell markers and show the ability for tenogenic differentiation by in vitro exposure to BMP-12.. BMC Cell Biol 2009 Apr 22;10:29.
    doi: 10.1186/1471-2121-10-29pmc: PMC2678092pubmed: 19383177google scholar: lookup
  54. Yin Z, Guo J, Wu TY, Chen X, Xu LL, Lin SE, Sun YX, Chan KM, Ouyang H, Li G. Stepwise Differentiation of Mesenchymal Stem Cells Augments Tendon-Like Tissue Formation and Defect Repair In Vivo.. Stem Cells Transl Med 2016 Aug;5(8):1106-16.
    doi: 10.5966/sctm.2015-0215pmc: PMC4954446pubmed: 27280798google scholar: lookup
  55. Vandenberghe A, Broeckx SY, Beerts C, Seys B, Zimmerman M, Verweire I, Suls M, Spaas JH. Tenogenically Induced Allogeneic Mesenchymal Stem Cells for the Treatment of Proximal Suspensory Ligament Desmitis in a Horse.. Front Vet Sci 2015;2:49.
    doi: 10.3389/fvets.2015.00049pmc: PMC4672201pubmed: 26664976google scholar: lookup
  56. Hsieh CF, Alberton P, Loffredo-Verde E, Volkmer E, Pietschmann M, Mu00fcller PE, Schieker M, Docheva D. Periodontal ligament cells as alternative source for cell-based therapy of tendon injuries: in vivo study of full-size Achilles tendon defect in a rat model.. Eur Cell Mater 2016 Oct 20;32:228-240.
    doi: 10.22203/eCM.v032a15pubmed: 27763655google scholar: lookup
  57. Freezer SR, Sims MR. A transmission electron-microscope stereological study of the blood vessels, oxytalan fibres and nerves of mouse-molar periodontal ligament.. Arch Oral Biol 1987;32(6):407-12.
    doi: 10.1016/0003-9969(87)90075-6pubmed: 3479081google scholar: lookup
  58. McCulloch CA. Origins and functions of cells essential for periodontal repair: the role of fibroblasts in tissue homeostasis.. Oral Dis 1995 Dec;1(4):271-8.
  59. Svensson RB, Heinemeier KM, Couppu00e9 C, Kjaer M, Magnusson SP. Effect of aging and exercise on the tendon.. J Appl Physiol (1985) 2016 Dec 1;121(6):1237-1246.
  60. Thorpe CT, Streeter I, Pinchbeck GL, Goodship AE, Clegg PD, Birch HL. Aspartic acid racemization and collagen degradation markers reveal an accumulation of damage in tendon collagen that is enhanced with aging.. J Biol Chem 2010 May 21;285(21):15674-81.
    doi: 10.1074/jbc.M109.077503pmc: PMC2871433pubmed: 20308077google scholar: lookup
  61. Kalson NS, Lu Y, Taylor SH, Starborg T, Holmes DF, Kadler KE. A structure-based extracellular matrix expansion mechanism of fibrous tissue growth.. Elife 2015 May 20;4.
    doi: 10.7554/eLife.05958pmc: PMC4438642pubmed: 25992598google scholar: lookup
  62. Birk DE, Mayne R. Localization of collagen types I, III and V during tendon development. Changes in collagen types I and III are correlated with changes in fibril diameter.. Eur J Cell Biol 1997 Apr;72(4):352-61.
    pubmed: 9127735
  63. Liu X, Wu H, Byrne M, Krane S, Jaenisch R. Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development.. Proc Natl Acad Sci U S A 1997 Mar 4;94(5):1852-6.
    doi: 10.1073/pnas.94.5.1852pmc: PMC20006pubmed: 9050868google scholar: lookup
  64. Tozer S, Duprez D. Tendon and ligament: development, repair and disease.. Birth Defects Res C Embryo Today 2005 Sep;75(3):226-36.
    doi: 10.1002/bdrc.20049pubmed: 16187327google scholar: lookup
  65. Butler WT, Birkedal-Hansen H, Beegle WF, Taylor RE, Chung E. Proteins of the periodontium. Identification of collagens with the [alpha1(I)]2alpha2 and [alpha1(III)]3 structures in bovine periodontal ligament.. J Biol Chem 1975 Dec 10;250(23):8907-12.
    pubmed: 1194268
  66. Pandav G, Saxena D, Kaur H, Jain S, Dewan A. Collagen: basis of life. Univ Res J Dentistry (2014) 4:1.10.4103/2249-9725.127046
    doi: 10.4103/2249-9725.127046google scholar: lookup
  67. Shuttleworth CA, Forrest L. Changes in guinea-pig dermal collagen during development.. Eur J Biochem 1975 Jul 1;55(2):391-5.
  68. Epstein EH Jr. (Alpha1(3))3 human skin collagen. Release by pepsin digestion and preponderance in fetal life.. J Biol Chem 1974 May 25;249(10):3225-31.
    pubmed: 4598122
  69. Takimoto A, Kawatsu M, Yoshimoto Y, Kawamoto T, Seiryu M, Takano-Yamamoto T, Hiraki Y, Shukunami C. Scleraxis and osterix antagonistically regulate tensile force-responsive remodeling of the periodontal ligament and alveolar bone.. Development 2015 Feb 15;142(4):787-96.
    doi: 10.1242/dev.116228pubmed: 25670797google scholar: lookup
  70. Lu00e9jard V, Brideau G, Blais F, Salingcarnboriboon R, Wagner G, Roehrl MH, Noda M, Duprez D, Houillier P, Rossert J. Scleraxis and NFATc regulate the expression of the pro-alpha1(I) collagen gene in tendon fibroblasts.. J Biol Chem 2007 Jun 15;282(24):17665-75.
    doi: 10.1074/jbc.M610113200pubmed: 17430895google scholar: lookup
  71. Maeda T, Sakabe T, Sunaga A, Sakai K, Rivera AL, Keene DR, Sasaki T, Stavnezer E, Iannotti J, Schweitzer R, Ilic D, Baskaran H, Sakai T. Conversion of mechanical force into TGF-u03b2-mediated biochemical signals.. Curr Biol 2011 Jun 7;21(11):933-41.
    doi: 10.1016/j.cub.2011.04.007pmc: PMC3118584pubmed: 21600772google scholar: lookup
  72. Mori N, Majima T, Iwasaki N, Kon S, Miyakawa K, Kimura C, Tanaka K, Denhardt DT, Rittling S, Minami A, Uede T. The role of osteopontin in tendon tissue remodeling after denervation-induced mechanical stress deprivation.. Matrix Biol 2007 Jan;26(1):42-53.
    doi: 10.1016/j.matbio.2006.09.002pubmed: 17055235google scholar: lookup
  73. Cordes V, Lu00fcpke M, Gardemin M, Seifert H, Staszyk C. Periodontal biomechanics: finite element simulations of closing stroke and power stroke in equine cheek teeth.. BMC Vet Res 2012 Jul 11;8:60.
    doi: 10.1186/1746-6148-8-60pmc: PMC3583254pubmed: 22607543google scholar: lookup
  74. Schrock P, Lu00fcpke M, Seifert H, Borchers L, Staszyk C. Finite element analysis of equine incisor teeth. Part 1: determination of the material parameters of the periodontal ligament.. Vet J 2013 Dec;198(3):583-9.
    doi: 10.1016/j.tvjl.2013.10.009pubmed: 24220347google scholar: lookup
  75. Xiong J, Gronthos S, Bartold PM. Role of the epithelial cell rests of Malassez in the development, maintenance and regeneration of periodontal ligament tissues.. Periodontol 2000 2013 Oct;63(1):217-33.
    doi: 10.1111/prd.12023pubmed: 23931062google scholar: lookup

Citations

This article has been cited 1 times.
  1. Tsai MT, Huang HL, Yang SG, Su KC, Fuh LJ, Hsu JT. Biomechanical analysis of occlusal modes on the periodontal ligament while orthodontic force applied.. Clin Oral Investig 2021 Oct;25(10):5661-5670.
    doi: 10.1007/s00784-021-03868-xpubmed: 33665683google scholar: lookup