Journal of animal science and biotechnology2023; 14(1); 118; doi: 10.1186/s40104-023-00905-5

Paneth cells in farm animals: current status and future direction.

Abstract: A healthy intestine plays an important role in the growth and development of farm animals. In small intestine, Paneth cells are well known for their regulation of intestinal microbiota and intestinal stem cells (ISCs). Although there has been a lot of studies and reviews on human and murine Paneth cells under intestinal homeostasis or disorders, little is known about Paneth cells in farm animals. Most farm animals possess Paneth cells in their small intestine, as identified by various staining methods, and Paneth cells of various livestock species exhibit noticeable differences in cell shape, granule number, and intestinal distribution. Paneth cells in farm animals and their antimicrobial peptides (AMPs) are susceptible to multiple factors such as dietary nutrients and intestinal infection. Thus, the comprehensive understanding of Paneth cells in different livestock species will contribute to the improvement of intestinal health. This review first summarizes the current status of Paneth cells in pig, cattle, sheep, horse, chicken and rabbit, and points out future directions for the investigation of Paneth cells in the reviewed animals.
Publication Date: 2023-08-15 PubMed ID: 37582766PubMed Central: PMC10426113DOI: 10.1186/s40104-023-00905-5Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article
  • Review

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

The research article is a review on the current knowledge about Paneth cells in farm animals, including their roles, characteristics, and factors that influence them, and the implications for the health of these animals.

Overview of Paneth Cells in Farm Animals

  • The review attempts to fill a gap in the understanding of Paneth cells in farm animals. While studies and reviews have focused on human and murine Paneth cells in the context of intestinal disorders, information is limited on these cells in farm animals despite their vital functions.
  • Paneth cells have been identified in the small intestines of most farm animals, and they show distinctive characteristics in terms of cell shape, number of granules, and distribution in the intestine, based on the species.

Roles and Functions of Paneth Cells

  • Paneth cells play crucial roles in the health of farm animals by regulating intestinal microbiota and intestinal stem cells (ISCs).
  • Through the secretion of antimicrobial peptides (AMPs), these cells are involved in the defense against hostile bacteria and contribute to maintaining a balanced gut microbiome.

Influence of Dietary Nutrients and Infections

  • The review found that multiple factors, including dietary nutrients and intestinal infections, can affect Paneth cells and their production of AMPs in farm animals.
  • Changes in Paneth cells’ functions due to these factors can potentially lead to disruptions in intestinal health, underscoring the need for a better understanding of these cells in livestock species.

Implication for Improving Intestinal Health

  • Comprehensive knowledge about Paneth cells in different livestock species is important for improving their intestinal health. The livestock sector could potentially benefit from strategies that protect and enhance the functions of these cells to maintain a healthy gut flora and foster growth and development.
  • The researchers have identified future research directions for further exploration of Paneth cells in farm animals, suggesting the need for more species-specific studies incorporating broader aspects including diet and disease.

Cite This Article

APA
Cui C, Li L, Wu L, Wang X, Zheng Y, Wang F, Wei H, Peng J. (2023). Paneth cells in farm animals: current status and future direction. J Anim Sci Biotechnol, 14(1), 118. https://doi.org/10.1186/s40104-023-00905-5

Publication

ISSN: 1674-9782
NlmUniqueID: 101581293
Country: England
Language: English
Volume: 14
Issue: 1
Pages: 118
PII: 118

Researcher Affiliations

Cui, Chenbin
  • Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
Li, Lindeng
  • Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
Wu, Lin
  • Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
Wang, Xinru
  • Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
Zheng, Yao
  • Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
Wang, Fangke
  • Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
Wei, Hongkui
  • Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
Peng, Jian
  • Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. pengjian@mail.hzau.edu.cn.
  • The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 400700, China. pengjian@mail.hzau.edu.cn.

Grant Funding

  • U22A20511 / the Joint Funds of the National Natural Science Foundation of China
  • CARS-36 / China Agriculture Research System

Conflict of Interest Statement

The authors declare that they have no competing interests.

References

This article includes 127 references
  1. Peng J, Tang Y, Huang Y. Gut health: The results of microbial and mucosal immune interactions in pigs.. Anim Nutr 2021 Jun;7(2):282-294.
    doi: 10.1016/j.aninu.2021.01.001pmc: PMC8245825pubmed: 34258416google scholar: lookup
  2. Adewole DI, Kim IH, Nyachoti CM. Gut Health of Pigs: Challenge Models and Response Criteria with a Critical Analysis of the Effectiveness of Selected Feed Additives - A Review.. Asian-Australas J Anim Sci 2016 Jul;29(7):909-24.
    doi: 10.5713/ajas.15.0795pmc: PMC4932585pubmed: 26954144google scholar: lookup
  3. Blikslager AT, Moeser AJ, Gookin JL, Jones SL, Odle J. Restoration of barrier function in injured intestinal mucosa.. Physiol Rev 2007 Apr;87(2):545-64.
    doi: 10.1152/physrev.00012.2006pubmed: 17429041google scholar: lookup
  4. Pluske JR, Hampson DJ, Williams IH. Factors influencing the structure and function of the small intestine in the weaned pig: a review. Livest Prod Sci. 1997;51(1u20133):215u2013236. doi: 10.1016/S0301-6226(97)00057-2.
  5. Huang W, Kong D. The intestinal microbiota as a therapeutic target in the treatment of NAFLD and ALD.. Biomed Pharmacother 2021 Mar;135:111235.
    pubmed: 33561650doi: 10.1016/j.biopha.2021.111235google scholar: lookup
  6. Martu00ednez-Gonzu00e1lez AE, Andreo-Martu00ednez P. Prebiotics, probiotics and fecal microbiota transplantation in autism: A systematic review.. Rev Psiquiatr Salud Ment (Engl Ed) 2020 Jul-Sep;13(3):150-164.
    doi: 10.1016/j.rpsm.2020.06.002pubmed: 32684346google scholar: lookup
  7. Martini E, Krug SM, Siegmund B, Neurath MF, Becker C. Mend Your Fences: The Epithelial Barrier and its Relationship With Mucosal Immunity in Inflammatory Bowel Disease.. Cell Mol Gastroenterol Hepatol 2017 Jul;4(1):33-46.
    doi: 10.1016/j.jcmgh.2017.03.007pmc: PMC5439240pubmed: 28560287google scholar: lookup
  8. Allaire JM, Crowley SM, Law HT, Chang SY, Ko HJ, Vallance BA. The Intestinal Epithelium: Central Coordinator of Mucosal Immunity.. Trends Immunol 2018 Sep;39(9):677-696.
    doi: 10.1016/j.it.2018.04.002pubmed: 29716793google scholar: lookup
  9. Schwalbe G. Beitru00e4ge zur kenntniss der dru00fcsen in den darmwandungen, inu2019s besondere der brunneru2019schen dru00fcsen. Arch Mikrosk Anat. 1872;8(1):92u2013140. doi: 10.1007/BF02955835.
    doi: 10.1007/BF02955835google scholar: lookup
  10. Paneth J. Ueber die secernirenden zellen des du00fcnndarm-epithels. Arch Mikrosk Anat. 1887;31(1):113u2013191. doi: 10.1007/BF02955706.
    doi: 10.1007/BF02955706google scholar: lookup
  11. Clevers HC, Bevins CL. Paneth cells: maestros of the small intestinal crypts.. Annu Rev Physiol 2013;75:289-311.
  12. Gu00fcnther C, Martini E, Wittkopf N, Amann K, Weigmann B, Neumann H, Waldner MJ, Hedrick SM, Tenzer S, Neurath MF, Becker C. Caspase-8 regulates TNF-u03b1-induced epithelial necroptosis and terminal ileitis.. Nature 2011 Sep 14;477(7364):335-9.
    doi: 10.1038/nature10400pmc: PMC3373730pubmed: 21921917google scholar: lookup
  13. Strigli A, Gopalakrishnan S, Zeissig Y, Basic M, Wang J, Schwerd T, Doms S, Peuker K, Hartwig J, Harder J, Hu00f6nscheid P, Arnold P, Kurth T, Rost F, Petersen BS, Forster M, Franke A, Kelsen JR, Rohlfs M, Klein C, Muise AM, Warner N, Nambu R, Mayerle J, Tu00f6ru00f6k HP, Linkermann A, Muders MH, Baretton GB, Hampe J, Aust DE, Baines JF, Bleich A, Zeissig S. Deficiency in X-linked inhibitor of apoptosis protein promotes susceptibility to microbial triggers of intestinal inflammation.. Sci Immunol 2021 Nov 5;6(65):eabf7473.
    pubmed: 34739342doi: 10.1126/sciimmunol.abf7473google scholar: lookup
  14. White JR, Gong H, Pope B, Schlievert P, McElroy SJ. Paneth-cell-disruption-induced necrotizing enterocolitis in mice requires live bacteria and occurs independently of TLR4 signaling.. Dis Model Mech 2017 Jun 1;10(6):727-736.
    doi: 10.1242/dmm.028589pmc: PMC5483007pubmed: 28450472google scholar: lookup
  15. Zhou JY, Wang Z, Zhang SW, Lin HL, Gao CQ, Zhao JC, Yang C, Wang XQ. Methionine and Its Hydroxyl Analogues Improve Stem Cell Activity To Eliminate Deoxynivalenol-Induced Intestinal Injury by Reactivating Wnt/u03b2-Catenin Signaling.. J Agric Food Chem 2019 Oct 16;67(41):11464-11473.
    doi: 10.1021/acs.jafc.9b04442pubmed: 31532211google scholar: lookup
  16. Deng Z, Yu H, Yang Z, Hu L, Liu Q, Wang Y, Wei HK, Peng J. Gly-Pro-Ala peptide and FGSHF3 exert protective effects in DON-induced toxicity and intestinal damage via decreasing oxidative stress.. Food Res Int 2021 Jan;139:109840.
    pubmed: 33509464doi: 10.1016/j.foodres.2020.109840google scholar: lookup
  17. Wallaeys C, Garcia-Gonzalez N, Libert C. Paneth cells as the cornerstones of intestinal and organismal health: a primer.. EMBO Mol Med 2023 Feb 8;15(2):e16427.
    pmc: PMC9906427pubmed: 36573340doi: 10.15252/emmm.202216427google scholar: lookup
  18. Cui C, Wang F, Zheng Y, Wei H, Peng J. From birth to death: The hardworking life of Paneth cell in the small intestine.. Front Immunol 2023;14:1122258.
    doi: 10.3389/fimmu.2023.1122258pmc: PMC10036411pubmed: 36969191google scholar: lookup
  19. Yokoi Y, Nakamura K, Yoneda T, Kikuchi M, Sugimoto R, Shimizu Y, Ayabe T. Paneth cell granule dynamics on secretory responses to bacterial stimuli in enteroids.. Sci Rep 2019 Feb 25;9(1):2710.
    doi: 10.1038/s41598-019-39610-7pmc: PMC6389922pubmed: 30804449google scholar: lookup
  20. Lueschow SR, Stumphy J, Gong H, Kern SL, Elgin TG, Underwood MA, Kalanetra KM, Mills DA, Wong MH, Meyerholz DK, Good M, McElroy SJ. Loss of murine Paneth cell function alters the immature intestinal microbiome and mimics changes seen in neonatal necrotizing enterocolitis.. PLoS One 2018;13(10):e0204967.
  21. Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, Barker N, Shroyer NF, van de Wetering M, Clevers H. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts.. Nature 2011 Jan 20;469(7330):415-8.
    doi: 10.1038/nature09637pmc: PMC3547360pubmed: 21113151google scholar: lookup
  22. Yilmaz u00d6H, Katajisto P, Lamming DW, Gu00fcltekin Y, Bauer-Rowe KE, Sengupta S, Birsoy K, Dursun A, Yilmaz VO, Selig M, Nielsen GP, Mino-Kenudson M, Zukerberg LR, Bhan AK, Deshpande V, Sabatini DM. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake.. Nature 2012 Jun 28;486(7404):490-5.
    doi: 10.1038/nature11163pmc: PMC3387287pubmed: 22722868google scholar: lookup
  23. Mu00f6ller P, Walczak H, Reidl S, Stru00e4ter J, Krammer PH. Paneth cells express high levels of CD95 ligand transcripts: a unique property among gastrointestinal epithelia.. Am J Pathol 1996 Jul;149(1):9-13.
    pmc: PMC1865214pubmed: 8686766
  24. Shankman LS, Fleury ST, Evans WB, Penberthy KK, Arandjelovic S, Blumberg RS, Agaisse H, Ravichandran KS. Efferocytosis by Paneth cells within the intestine.. Curr Biol 2021 Jun 7;31(11):2469-2476.e5.
    doi: 10.1016/j.cub.2021.03.055pmc: PMC8281366pubmed: 33852873google scholar: lookup
  25. Cui C, Wang X, Li L, Wei H, Peng J. Multifaceted involvements of Paneth cells in various diseases within intestine and systemically.. Front Immunol 2023;14:1115552.
    doi: 10.3389/fimmu.2023.1115552pmc: PMC10040535pubmed: 36993974google scholar: lookup
  26. Myer MS. Paneth cells in the pig-a controversial issue.. J S Afr Vet Assoc 1982 Mar;53(1):69.
    pubmed: 7097712
  27. Gonzalez LM, Moeser AJ, Blikslager AT. Porcine models of digestive disease: the future of large animal translational research.. Transl Res 2015 Jul;166(1):12-27.
    doi: 10.1016/j.trsl.2015.01.004pmc: PMC4458388pubmed: 25655839google scholar: lookup
  28. Myer MS. The presence of Paneth cells confirmed in the pig.. Onderstepoort J Vet Res 1982 Jun;49(2):131-2.
    pubmed: 6184660
  29. Obremski K, Gajecka M, Zielonka L, Jakimiuk E, Gajecki M. Morphology and ultrastructure of small intestine mucosa in gilts with zearalenone mycotoxicosis.. Pol J Vet Sci 2005;8(4):301-7.
    pubmed: 16385855
  30. Gonzalez LM, Williamson I, Piedrahita JA, Blikslager AT, Magness ST. Cell lineage identification and stem cell culture in a porcine model for the study of intestinal epithelial regeneration.. PLoS One 2013;8(6):e66465.
  31. Verdile N, Mirmahmoudi R, Brevini TAL, Gandolfi F. Evolution of pig intestinal stem cells from birth to weaning.. Animal 2019 Dec;13(12):2830-2839.
    doi: 10.1017/s1751731119001319pubmed: 31199215google scholar: lookup
  32. Valini GAC, Duarte MS, Calderano AA, Teixeira LM, Rodrigues GA, Fernandes KM, Veroneze R, Seru00e3o NVL, Mantovani HC, Rocha GC. Dietary nucleotide supplementation as an alternative to in-feed antibiotics in weaned piglets.. Animal 2021 Jan;15(1):100021.
    pubmed: 33573936doi: 10.1016/j.animal.2020.100021google scholar: lookup
  33. van der Hee B, Loonen LMP, Taverne N, Taverne-Thiele JJ, Smidt H, Wells JM. Optimized procedures for generating an enhanced, near physiological 2D culture system from porcine intestinal organoids.. Stem Cell Res 2018 Apr;28:165-171.
    doi: 10.1016/j.scr.2018.02.013pubmed: 29499500google scholar: lookup
  34. Li H, Wang X, Wang Y, Zhang M, Hong F, Wang H, Cui A, Zhao J, Ji W, Chen YG. Cross-species single-cell transcriptomic analysis reveals divergence of cell composition and functions in mammalian ileum epithelium.. Cell Regen 2022 May 5;11(1):19.
    doi: 10.1186/s13619-022-00118-7pmc: PMC9072607pubmed: 35511361google scholar: lookup
  35. Chen YM, Helm ET, Gabler N, Hostetter JM, Burrough ER. Alterations in Intestinal Innate Mucosal Immunity of Weaned Pigs During Porcine Epidemic Diarrhea Virus Infection.. Vet Pathol 2020 Sep;57(5):642-652.
    doi: 10.1177/0300985820932140pubmed: 32880235google scholar: lookup
  36. Seeger B. Farm Animal-derived Models of the Intestinal Epithelium: Recent Advances and Future Applications of Intestinal Organoids.. Altern Lab Anim 2020 Sep-Nov;48(5-6):215-233.
    doi: 10.1177/0261192920974026pubmed: 33337913google scholar: lookup
  37. Luo H, Zheng J, Chen Y, Wang T, Zhang Z, Shan Y, Xu J, Yue M, Fang W, Li X. Utility Evaluation of Porcine Enteroids as PDCoV Infection Model in vitro.. Front Microbiol 2020;11:821.
    doi: 10.3389/fmicb.2020.00821pmc: PMC7191032pubmed: 32390999google scholar: lookup
  38. Rothenberg ME, Nusse Y, Kalisky T, Lee JJ, Dalerba P, Scheeren F, Lobo N, Kulkarni S, Sim S, Qian D, Beachy PA, Pasricha PJ, Quake SR, Clarke MF. Identification of a cKit(+) colonic crypt base secretory cell that supports Lgr5(+) stem cells in mice.. Gastroenterology 2012 May;142(5):1195-1205.e6.
  39. Han X, Wang R, Zhou Y, Fei L, Sun H, Lai S, Saadatpour A, Zhou Z, Chen H, Ye F, Huang D, Xu Y, Huang W, Jiang M, Jiang X, Mao J, Chen Y, Lu C, Xie J, Fang Q, Wang Y, Yue R, Li T, Huang H, Orkin SH, Yuan GC, Chen M, Guo G. Mapping the Mouse Cell Atlas by Microwell-Seq.. Cell 2018 Feb 22;172(5):1091-1107.e17.
    doi: 10.1016/j.cell.2018.02.001pubmed: 29474909google scholar: lookup
  40. Meng Q, Chen L, Xiong B, Kang B, Zhang P, Tang S, Han H, Shen W, Feng X, Feng S, Zhong R, Tang X, Zhang S, Zhang H, Zhao Y. Single-Cell Transcriptome Sequencing and Proteomics Reveal Neonatal Ileum Dynamic Developmental Potentials.. mSystems 2021 Oct 26;6(5):e0072521.
    pmc: PMC8547457pubmed: 34546071doi: 10.1128/mSystems.00725-21google scholar: lookup
  41. Saqui-Salces M, Huang Z, Vila MF, Li J, Mielke JA, Urriola PE, Shurson GC. Modulation of intestinal cell differentiation in growing pigs is dependent on the fiber source in the diet.. J Anim Sci 2017 Mar;95(3):1179-1190.
    doi: 10.2527/jas.2016.0947pubmed: 28380527google scholar: lookup
  42. Wang LX, Zhu F, Li JZ, Li YL, Ding XQ, Yin J, Xiong X, Yang HS. Epidermal growth factor promotes intestinal secretory cell differentiation in weaning piglets via Wnt/u03b2-catenin signalling.. Animal 2020 Apr;14(4):790-798.
    doi: 10.1017/s1751731119002581pubmed: 31650938google scholar: lookup
  43. Zhao L, Zhang L, Xu Z, Liu X, Chen L, Dai J, Karrow NA, Sun L. Occurrence of Aflatoxin B(1), deoxynivalenol and zearalenone in feeds in China during 2018-2020.. J Anim Sci Biotechnol 2021 Jul 10;12(1):74.
    doi: 10.1186/s40104-021-00603-0pmc: PMC8272344pubmed: 34243805google scholar: lookup
  44. Wang S, Yang J, Zhang B, Wu K, Yang A, Li C, Zhang J, Zhang C, Rajput SA, Zhang N, Sun L, Qi D. Deoxynivalenol Impairs Porcine Intestinal Host Defense Peptide Expression in Weaned Piglets and IPEC-J2 Cells.. Toxins (Basel) 2018 Dec 15;10(12).
    doi: 10.3390/toxins10120541pmc: PMC6315515pubmed: 30558299google scholar: lookup
  45. Shan Y, Liu ZQ, Li GW, Chen C, Luo H, Liu YJ, Zhuo XH, Shi XF, Fang WH, Li XL. Nucleocapsid protein from porcine epidemic diarrhea virus isolates can antagonize interferon-u03bb production by blocking the nuclear factor-u03baB nuclear translocation.. J Zhejiang Univ Sci B 2018 Jul;19(7):570-580.
    pmc: PMC6052364pubmed: 29971995doi: 10.1631/jzus.B1700283google scholar: lookup
  46. Shi P, Su Y, Li R, Liang Z, Dong S, Huang J. PEDV nsp16 negatively regulates innate immunity to promote viral proliferation.. Virus Res 2019 May;265:57-66.
  47. Delorme-Axford E, Klionsky DJ. Secretory autophagy holds the key to lysozyme secretion during bacterial infection of the intestine.. Autophagy 2018;14(3):365-367.
  48. Okumura R, Takeda K. Roles of intestinal epithelial cells in the maintenance of gut homeostasis.. Exp Mol Med 2017 May 26;49(5):e338.
    pmc: PMC5454438pubmed: 28546564doi: 10.1038/emm.2017.20google scholar: lookup
  49. Mu00f6rbe UM, Ju00f8rgensen PB, Fenton TM, von Burg N, Riis LB, Spencer J, Agace WW. Human gut-associated lymphoid tissues (GALT); diversity, structure, and function.. Mucosal Immunol 2021 Jul;14(4):793-802.
    doi: 10.1038/s41385-021-00389-4pubmed: 33753873google scholar: lookup
  50. Wu A, Yu B, Zhang K, Xu Z, Wu D, He J, Luo J, Luo Y, Yu J, Zheng P, Che L, Mao X, Huang Z, Wang L, Zhao J, Chen D. Transmissible gastroenteritis virus targets Paneth cells to inhibit the self-renewal and differentiation of Lgr5 intestinal stem cells via Notch signaling.. Cell Death Dis 2020 Jan 20;11(1):40.
    doi: 10.1038/s41419-020-2233-6pmc: PMC6971083pubmed: 31959773google scholar: lookup
  51. Powell RH, Behnke MS. WRN conditioned media is sufficient for in vitro propagation of intestinal organoids from large farm and small companion animals.. Biol Open 2017 May 15;6(5):698-705.
    doi: 10.1242/bio.021717pmc: PMC5450310pubmed: 28347989google scholar: lookup
  52. Derricott H, Luu L, Fong WY, Hartley CS, Johnston LJ, Armstrong SD, Randle N, Duckworth CA, Campbell BJ, Wastling JM, Coombes JL. Developing a 3D intestinal epithelium model for livestock species.. Cell Tissue Res 2019 Feb;375(2):409-424.
    doi: 10.1007/s00441-018-2924-9pmc: PMC6373265pubmed: 30259138google scholar: lookup
  53. Hamilton CA, Young R, Jayaraman S, Sehgal A, Paxton E, Thomson S, Katzer F, Hope J, Innes E, Morrison LJ, Mabbott NA. Development of in vitro enteroids derived from bovine small intestinal crypts.. Vet Res 2018 Jul 3;49(1):54.
    doi: 10.1186/s13567-018-0547-5pmc: PMC6029049pubmed: 29970174google scholar: lookup
  54. Tarver AP, Clark DP, Diamond G, Russell JP, Erdjument-Bromage H, Tempst P, Cohen KS, Jones DE, Sweeney RW, Wines M, Hwang S, Bevins CL. Enteric beta-defensin: molecular cloning and characterization of a gene with inducible intestinal epithelial cell expression associated with Cryptosporidium parvum infection.. Infect Immun 1998 Mar;66(3):1045-56.
  55. Luenser K, Ludwig A. Variability and evolution of bovine beta-defensin genes.. Genes Immun 2005 Mar;6(2):115-22.
    doi: 10.1038/sj.gene.6364153pubmed: 15674371google scholar: lookup
  56. Hansen GH, Rasmussen K, Niels-Christiansen LL, Danielsen EM. Lipopolysaccharide-binding protein: localization in secretory granules of Paneth cells in the mouse small intestine.. Histochem Cell Biol 2009 Jun;131(6):727-32.
    doi: 10.1007/s00418-009-0572-6pubmed: 19234712google scholar: lookup
  57. Hailman E, Lichenstein HS, Wurfel MM, Miller DS, Johnson DA, Kelley M, Busse LA, Zukowski MM, Wright SD. Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14.. J Exp Med 1994 Jan 1;179(1):269-77.
    doi: 10.1084/jem.179.1.269pmc: PMC2191344pubmed: 7505800google scholar: lookup
  58. Rahman MM, Lecchi C, Avallone G, Roccabianca P, Sartorelli P, Ceciliani F. Lipopolysaccharide-binding protein: Local expression in bovine extrahepatic tissues.. Vet Immunol Immunopathol 2010 Sep 15;137(1-2):28-35.
    doi: 10.1016/j.vetimm.2010.04.006pubmed: 20452064google scholar: lookup
  59. Pemberton AD, Knight PA, Gamble J, Colledge WH, Lee JK, Pierce M, Miller HR. Innate BALB/c enteric epithelial responses to Trichinella spiralis: inducible expression of a novel goblet cell lectin, intelectin-2, and its natural deletion in C57BL/10 mice.. J Immunol 2004 Aug 1;173(3):1894-901.
    doi: 10.4049/jimmunol.173.3.1894pubmed: 15265922google scholar: lookup
  60. Suzuki YA, Lopez V, Lu00f6nnerdal B. Mammalian lactoferrin receptors: structure and function.. Cell Mol Life Sci 2005 Nov;62(22):2560-75.
    doi: 10.1007/s00018-005-5371-1pubmed: 16261254google scholar: lookup
  61. Blanco Vu00e1zquez C, Balseiro A, Alonso-Hearn M, Juste RA, Iglesias N, Canive M, Casais R. Bovine Intelectin 2 Expression as a Biomarker of Paratuberculosis Disease Progression.. Animals (Basel) 2021 May 12;11(5).
    doi: 10.3390/ani11051370pmc: PMC8151335pubmed: 34065919google scholar: lookup
  62. Alonso-Hearn M, Canive M, Blanco-Vazquez C, Torremocha R, Balseiro A, Amado J, Varela-Martinez E, Ramos R, Jugo BM, Casais R. RNA-Seq analysis of ileocecal valve and peripheral blood from Holstein cattle infected with Mycobacterium avium subsp. paratuberculosis revealed dysregulation of the CXCL8/IL8 signaling pathway.. Sci Rep 2019 Oct 16;9(1):14845.
    doi: 10.1038/s41598-019-51328-0pmc: PMC6795908pubmed: 31619718google scholar: lookup
  63. Ergun E, Ergun L, Asti RN, Kurum A. Light and electron microscopic morphology of paneth cells in the sheep small intestine. Rev Med Vet-Toulouse. 2003;154(5):351u2013355.
  64. Meyerholz DK, Gallup JM, Grubor BM, Evans RB, Tack BF, McCray PB Jr, Ackermann MR. Developmental expression and distribution of sheep beta-defensin-2.. Dev Comp Immunol 2004 Feb;28(2):171-8.
    doi: 10.1016/s0145-305x(03)00105-8pubmed: 12969802google scholar: lookup
  65. Coughlin MA, Werner NL, Church JT, Perkins EM, Bryner BS, Barks JD, Bentley JK, Hershenson MB, Rabah R, Bartlett RH, Mychaliska GB. An Artificial Placenta Protects Against Lung Injury and Promotes Continued Lung Development in Extremely Premature Lambs.. ASAIO J 2019 Sep Oct;65(7):690-697.
    doi: 10.1097/mat.0000000000000939pubmed: 30585874google scholar: lookup
  66. McLeod JS, Church JT, Yerramilli P, Coughlin MA, Perkins EM, Rabah R, Bartlett RH, Rojas-Pena A, Greenson JK, Perrone EE, Mychaliska GB. Gastrointestinal mucosal development and injury in premature lambs supported by the artificial placenta.. J Pediatr Surg 2018 Jun;53(6):1240-1245.
  67. Kaup FJ, Deegen E. An ultrastructural study of intranuclear bodies in granular epithelial cells of the equine small intestine.. Equine Vet J 1994 Mar;26(2):156-8.
  68. Takehana K, Masty J, Yamaguchi M, Kobayashi A, Yamada O, Kuroda M, Park YS, Iwasa K, Abe M. Fine structural and histochemical study of equine Paneth cells.. Anat Histol Embryol 1998 Apr;27(2):125-9.
  69. Wong VW, Stange DE, Page ME, Buczacki S, Wabik A, Itami S, van de Wetering M, Poulsom R, Wright NA, Trotter MW, Watt FM, Winton DJ, Clevers H, Jensen KB. Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling.. Nat Cell Biol 2012 Mar 4;14(4):401-8.
    doi: 10.1038/ncb2464pmc: PMC3378643pubmed: 22388892google scholar: lookup
  70. Gonzalez LM, Kinnin LA, Blikslager AT. Characterization of discrete equine intestinal epithelial cell lineages.. Am J Vet Res 2015 Apr;76(4):358-66.
    doi: 10.2460/ajvr.76.4.358pmc: PMC4517574pubmed: 25815577google scholar: lookup
  71. Rocchigiani G, Ricci E, Navarro MA, Samol MA, Uzal FA. Leukocyte numbers and intestinal mucosal morphometrics in horses with no clinical intestinal disease.. J Vet Diagn Invest 2022 May;34(3):389-395.
    doi: 10.1177/10406387211031944pmc: PMC9254073pubmed: 34293980google scholar: lookup
  72. Bruhn O, Paul S, Tetens J, Thaller G. The repertoire of equine intestinal alpha-defensins.. BMC Genomics 2009 Dec 23;10:631.
    doi: 10.1186/1471-2164-10-631pmc: PMC2803202pubmed: 20030839google scholar: lookup
  73. Bruhn O, Regenhard P, Michalek M, Paul S, Gelhaus C, Jung S, Thaller G, Podschun R, Leippe M, Gru00f6tzinger J, Kalm E. A novel horse alpha-defensin: gene transcription, recombinant expression and characterization of the structure and function.. Biochem J 2007 Oct 15;407(2):267-76.
    doi: 10.1042/bj20070747pmc: PMC2049026pubmed: 17620056google scholar: lookup
  74. Bruhn O, Cauchard J, Schlusselhuber M, Gelhaus C, Podschun R, Thaller G, Laugier C, Leippe M, Gru00f6tzinger J. Antimicrobial properties of the equine alpha-defensin DEFA1 against bacterial horse pathogens.. Vet Immunol Immunopathol 2009 Jul 15;130(1-2):102-6.
    doi: 10.1016/j.vetimm.2009.01.005pubmed: 19211153google scholar: lookup
  75. Jacks SS, Giguu00e8re S, Nguyen A. In vitro susceptibilities of Rhodococcus equi and other common equine pathogens to azithromycin, clarithromycin, and 20 other antimicrobials.. Antimicrob Agents Chemother 2003 May;47(5):1742-5.
  76. Michalek M, Jung S, Shomali MR, Cauchard S, Su00f6nnichsen FD, Gru00f6tzinger J. Solution structure and functional studies of the highly potent equine antimicrobial peptide DEFA1.. Biochem Biophys Res Commun 2015 Apr 17;459(4):668-72.
    doi: 10.1016/j.bbrc.2015.02.168pubmed: 25769951google scholar: lookup
  77. Masty J, Stradley RP. Paneth cell degranulation and lysozyme secretion during acute equine alimentary laminitis.. Histochemistry 1991;95(5):529-33.
    doi: 10.1007/bf00315751pubmed: 1869451google scholar: lookup
  78. Hellman S. Generation of equine enteroids and enteroid-derived 2D monolayers that are responsive to microbial mimics.. Vet Res 2021 Aug 14;52(1):108.
    doi: 10.1186/s13567-021-00976-0pmc: PMC8364015pubmed: 34391473google scholar: lookup
  79. Thorne CA, Chen IW, Sanman LE, Cobb MH, Wu LF, Altschuler SJ. Enteroid Monolayers Reveal an Autonomous WNT and BMP Circuit Controlling Intestinal Epithelial Growth and Organization.. Dev Cell 2018 Mar 12;44(5):624-633.e4.
  80. Humphrey CD, Turk DE. The ultrastructure of normal chick intestinal epithelium.. Poult Sci 1974 May;53(3):990-1000.
    doi: 10.3382/ps.0530990pubmed: 4841685google scholar: lookup
  81. Nile CJ, Townes CL, Michailidis G, Hirst BH, Hall J. Identification of chicken lysozyme g2 and its expression in the intestine.. Cell Mol Life Sci 2004 Nov;61(21):2760-6.
    doi: 10.1007/s00018-004-4345-zpubmed: 15549179google scholar: lookup
  82. Wang L, Li J, Li J Jr, Li RX, Lv CF, Li S, Mi YL, Zhang CQ. Identification of the Paneth cells in chicken small intestine.. Poult Sci 2016 Jul 1;95(7):1631-1635.
    doi: 10.3382/ps/pew079pubmed: 27030696google scholar: lookup
  83. Bar Shira E, Friedman A. Innate immune functions of avian intestinal epithelial cells: Response to bacterial stimuli and localization of responding cells in the developing avian digestive tract.. PLoS One 2018;13(7):e0200393.
  84. Orr B, Sutton K, Christian S, Nash T, Niemann H, Hansen LL, McGrew MJ, Jensen SR, Vervelde L. Novel chicken two-dimensional intestinal model comprising all key epithelial cell types and a mesenchymal sub-layer.. Vet Res 2021 Nov 24;52(1):142.
    doi: 10.1186/s13567-021-01010-zpmc: PMC8611946pubmed: 34819162google scholar: lookup
  85. Zhao D, Farnell MB, Kogut MH, Genovese KJ, Chapkin RS, Davidson LA, Berghman LR, Farnell YZ. From crypts to enteroids: establishment and characterization of avian intestinal organoids.. Poult Sci 2022 Mar;101(3):101642.
    pmc: PMC8749297pubmed: 35016046doi: 10.1016/j.psj.2021.101642google scholar: lookup
  86. Losada-Medina D, Yitbarek A, Nazeer N, Uribe-Diaz S, Ahmed M, Rodriguez-Lecompte JC. Identification, tissue characterization, and innate immune role of Angiogenin-4 expression in young broiler chickens.. Poult Sci 2020 Jun;99(6):2992-3000.
    doi: 10.1016/j.psj.2020.03.022pmc: PMC7597696pubmed: 32475434google scholar: lookup
  87. Theerawatanasirikul S, Koomkrong N, Kayan A, Boonkaewwan C. Intestinal barrier and mucosal immunity in broilers, thai betong, and native thai praduhangdum chickens. TurkJ Vet Anim Sci. 2017;41(3):357u2013364. doi: 10.3906/vet-1609-58.
    doi: 10.3906/vet-1609-58google scholar: lookup
  88. Hooper LV, Stappenbeck TS, Hong CV, Gordon JI. Angiogenins: a new class of microbicidal proteins involved in innate immunity.. Nat Immunol 2003 Mar;4(3):269-73.
    doi: 10.1038/ni888pubmed: 12548285google scholar: lookup
  89. Adolph TE, Tomczak MF, Niederreiter L, Ko HJ, Bu00f6ck J, Martinez-Naves E, Glickman JN, Tschurtschenthaler M, Hartwig J, Hosomi S, Flak MB, Cusick JL, Kohno K, Iwawaki T, Billmann-Born S, Raine T, Bharti R, Lucius R, Kweon MN, Marciniak SJ, Choi A, Hagen SJ, Schreiber S, Rosenstiel P, Kaser A, Blumberg RS. Paneth cells as a site of origin for intestinal inflammation.. Nature 2013 Nov 14;503(7475):272-6.
    doi: 10.1038/nature12599pmc: PMC3862182pubmed: 24089213google scholar: lookup
  90. Yu L, Xie X, Jiang K, Hong Y, Zhou Z, Mi Y, Zhang C, Li J. Paneth cells mediated the response of intestinal stem cells at the early stage of intestinal inflammation in the chicken.. Poult Sci 2021 Feb;100(2):615-622.
    doi: 10.1016/j.psj.2020.11.055pmc: PMC7858177pubmed: 33518114google scholar: lookup
  91. Wang Y, Hou Q, Wu Y, Xu Y, Liu Y, Chen J, Xu L, Guo Y, Gao S, Yuan J. Methionine deficiency and its hydroxy analogue influence chicken intestinal 3-dimensional organoid development.. Anim Nutr 2022 Mar;8(1):38-51.
    doi: 10.1016/j.aninu.2021.06.001pmc: PMC8669257pubmed: 34977374google scholar: lookup
  92. Agrizzi Verediano T, Stampini Duarte Martino H, Kolba N, Fu Y, Cristina Dias Paes M, Tako E. Black corn (Zea mays L.) soluble extract showed anti-inflammatory effects and improved the intestinal barrier integrity in vivo (Gallus gallus).. Food Res Int 2022 Jul;157:111227.
    pubmed: 35761543doi: 10.1016/j.foodres.2022.111227google scholar: lookup
  93. Agrizzi Verediano T, Agarwal N, Stampini Duarte Martino H, Kolba N, Grancieri M, Dias Paes MC, Tako E. Effect of Black Corn Anthocyanin-Rich Extract (Zea mays L.) on Cecal Microbial Populations In Vivo (Gallus gallus).. Nutrients 2022 Nov 4;14(21).
    pmc: PMC9655515pubmed: 36364942doi: 10.3390/nu14214679google scholar: lookup
  94. Jackson C, Shukla V, Kolba N, Agarwal N, Padilla-Zakour OI, Tako E. Empire Apple (Malus domestica) Juice, Pomace, and Pulp Modulate Intestinal Functionality, Morphology, and Bacterial Populations In Vivo (Gallus gallus).. Nutrients 2022 Nov 22;14(23).
    pmc: PMC9735615pubmed: 36500984doi: 10.3390/nu14234955google scholar: lookup
  95. Agarwal N, Kolba N, Khen N, Even C, Turjeman S, Koren O, Tako E. Quinoa Soluble Fiber and Quercetin Alter the Composition of the Gut Microbiome and Improve Brush Border Membrane Morphology In Vivo (Gallus gallus).. Nutrients 2022 Jan 20;14(3).
    pmc: PMC8838577pubmed: 35276807doi: 10.3390/nu14030448google scholar: lookup
  96. Agarwal N, Kolba N, Jung Y, Cheng J, Tako E. Saffron (Crocus sativus L.) Flower Water Extract Disrupts the Cecal Microbiome, Brush Border Membrane Functionality, and Morphology In Vivo (Gallus gallus).. Nutrients 2022 Jan 5;14(1).
    pmc: PMC8747550pubmed: 35011095doi: 10.3390/nu14010220google scholar: lookup
  97. Bialkowski S, Toschi A, Yu LE, Schlitzkus L, Mann P, Grilli E, Li Y. Effects of microencapsulated blend of organic acids and botanicals on growth performance, intestinal barrier function, inflammatory cytokines, and endocannabinoid system gene expression in broiler chickens.. Poult Sci 2023 Mar;102(3):102460.
    pmc: PMC10014334pubmed: 36680863doi: 10.1016/j.psj.2022.102460google scholar: lookup
  98. Hong Y, Zhou Z, Yu L, Jiang K, Xia J, Mi Y, Zhang C, Li J. Lactobacillus salivarius and Lactobacillus agilis feeding regulates intestinal stem cells activity by modulating crypt niche in hens.. Appl Microbiol Biotechnol 2021 Dec;105(23):8823-8835.
    doi: 10.1007/s00253-021-11606-2pubmed: 34708278google scholar: lookup
  99. Zanuzzi CN, Fontana PA, Barbeito CG, Portiansky EL, Gimeno EJ. Paneth cells: histochemical and morphometric study in control and Solanum glaucophyllum intoxicated rabbits.. Eur J Histochem 2008 Apr-Jun;52(2):93-100.
    doi: 10.4081/1193pubmed: 18591155google scholar: lookup
  100. Ergun E, Ergun L, Ozen A, Kurum A. Studies on the morphology, histochemistry and ultrastructure of paneth cells in the small intestine of the angora rabbit. Ankara Univ Vet Fak. 2009;56(1):25u201330.
  101. Kardia E, Frese M, Smertina E, Strive T, Zeng XL, Estes M, Hall RN. Culture and differentiation of rabbit intestinal organoids and organoid-derived cell monolayers.. Sci Rep 2021 Mar 8;11(1):5401.
    doi: 10.1038/s41598-021-84774-wpmc: PMC7940483pubmed: 33686141google scholar: lookup
  102. Satoh Y, Yamano M, Matsuda M, Ono K. Ultrastructure of Paneth cells in the intestine of various mammals.. J Electron Microsc Tech 1990 Sep;16(1):69-80.
    doi: 10.1002/jemt.1060160109pubmed: 2213233google scholar: lookup
  103. Ninfali P, Malatesta M, Biagiotti E, Aluigi G, Gazzanelli G. Glucose-6-phosphate dehydrogenase in small intestine of rabbit: biochemical properties and subcellular localization.. Acta Histochem 2001 Jul;103(3):287-303.
    doi: 10.1078/0065-1281-00599pubmed: 11482375google scholar: lookup
  104. Leopold JA, Cap A, Scribner AW, Stanton RC, Loscalzo J. Glucose-6-phosphate dehydrogenase deficiency promotes endothelial oxidant stress and decreases endothelial nitric oxide bioavailability.. FASEB J 2001 Aug;15(10):1771-3.
    doi: 10.1096/fj.00-0893fjepubmed: 11481225google scholar: lookup
  105. Zhang W, Ni C, Sheng J, Hua Y, Ma J, Wang L, Zhao Y, Xing Y. TLQP-21 protects human umbilical vein endothelial cells against high-glucose-induced apoptosis by increasing G6PD expression.. PLoS One 2013;8(11):e79760.
  106. Nu00f3brega-Pereira S, Fernandez-Marcos PJ, Brioche T, Gomez-Cabrera MC, Salvador-Pascual A, Flores JM, Viu00f1a J, Serrano M. G6PD protects from oxidative damage and improves healthspan in mice.. Nat Commun 2016 Mar 15;7:10894.
    doi: 10.1038/ncomms10894pmc: PMC4796314pubmed: 26976705google scholar: lookup
  107. Ouellette AJ, Lualdi JC. A novel mouse gene family coding for cationic, cysteine-rich peptides. Regulation in small intestine and cells of myeloid origin.. J Biol Chem 1990 Jun 15;265(17):9831-7.
    doi: 10.1016/S0021-9258(19)38746-0pubmed: 2351676google scholar: lookup
  108. Rumio C, Besusso D, Palazzo M, Selleri S, Sfondrini L, Dubini F, Mu00e9nard S, Balsari A. Degranulation of paneth cells via toll-like receptor 9.. Am J Pathol 2004 Aug;165(2):373-81.
  109. Shen XM, Cui HX, Xu XR. Orally administered Lactobacillus casei exhibited several probiotic properties in artificially suckling rabbits.. Asian-Australas J Anim Sci 2020 Aug 1;33(8):1352-1359.
    doi: 10.5713/ajas.18.0973pmc: PMC7322641pubmed: 31010962google scholar: lookup
  110. Wen M, Zhao H, Liu G, Chen X, Wu B, Tian G, Cai J, Jia G. Effect of Zinc Supplementation on Growth Performance, Intestinal Development, and Intestinal Barrier-Related Gene Expression in Pekin Ducks.. Biol Trace Elem Res 2018 Jun;183(2):351-360.
    doi: 10.1007/s12011-017-1143-7pubmed: 28895044google scholar: lookup
  111. Anwar SM, Abd-Elhafeez HH, Abdel-Maksoud FM, Abdalla KEH. Morph-anatomic and histochemical study of ileum of goose (Alopochen egyptiacus) with special references to immune cells, mucous and serous goblet cells, telocytes, and dark and light smooth muscle fibers.. Microsc Res Tech 2021 Jun;84(6):1328-1347.
    doi: 10.1002/jemt.23692pubmed: 33405349google scholar: lookup
  112. da Silva JM, da Silva AV, Arau00fajo EJ, Sant'ana Dde M. [The effects of the infection caused by Toxoplasma gondii on the cat duodenal wall].. Rev Bras Parasitol Vet 2010 Jan-Mar;19(1):55-61.
    pubmed: 20385061doi: 10.4322/rbpv.01901010google scholar: lookup
  113. Zhang C, Sherman MP, Prince LS, Bader D, Weitkamp JH, Slaughter JC, McElroy SJ. Paneth cell ablation in the presence of Klebsiella pneumoniae induces necrotizing enterocolitis (NEC)-like injury in the small intestine of immature mice.. Dis Model Mech 2012 Jul;5(4):522-32.
    doi: 10.1242/dmm.009001pmc: PMC3380715pubmed: 22328592google scholar: lookup
  114. Durand A, Donahue B, Peignon G, Letourneur F, Cagnard N, Slomianny C, Perret C, Shroyer NF, Romagnolo B. Functional intestinal stem cells after Paneth cell ablation induced by the loss of transcription factor Math1 (Atoh1).. Proc Natl Acad Sci U S A 2012 Jun 5;109(23):8965-70.
    doi: 10.1073/pnas.1201652109pmc: PMC3384132pubmed: 22586121google scholar: lookup
  115. Mori-Akiyama Y, van den Born M, van Es JH, Hamilton SR, Adams HP, Zhang J, Clevers H, de Crombrugghe B. SOX9 is required for the differentiation of paneth cells in the intestinal epithelium.. Gastroenterology 2007 Aug;133(2):539-46.
    doi: 10.1053/j.gastro.2007.05.020pubmed: 17681175google scholar: lookup
  116. Wu L, Tang Z, Chen H, Ren Z, Ding Q, Liang K, Sun Z. Mutual interaction between gut microbiota and protein/amino acid metabolism for host mucosal immunity and health.. Anim Nutr 2021 Mar;7(1):11-16.
    doi: 10.1016/j.aninu.2020.11.003pmc: PMC8110859pubmed: 33997326google scholar: lookup
  117. Meyer AR, Brown ME, McGrath PS, Dempsey PJ. Injury-Induced Cellular Plasticity Drives Intestinal Regeneration.. Cell Mol Gastroenterol Hepatol 2022;13(3):843-856.
    doi: 10.1016/j.jcmgh.2021.12.005pmc: PMC8803615pubmed: 34915204google scholar: lookup
  118. Hu X, Deng J, Yu T, Chen S, Ge Y, Zhou Z, Guo Y, Ying H, Zhai Q, Chen Y, Yuan F, Niu Y, Shu W, Chen H, Ma C, Liu Z, Guo F. ATF4 Deficiency Promotes Intestinal Inflammation in Mice by Reducing Uptake of Glutamine and Expression of Antimicrobial Peptides.. Gastroenterology 2019 Mar;156(4):1098-1111.
    doi: 10.1053/j.gastro.2018.11.033pubmed: 30452920google scholar: lookup
  119. Fu Y, Mei Q, Yin N, Huang Z, Li B, Luo S, Xu B, Fan J, Huang C, Zeng Y. Paneth Cells Protect against Acute Pancreatitis via Modulating Gut Microbiota Dysbiosis.. mSystems 2022 Jun 28;7(3):e0150721.
    pmc: PMC9239092pubmed: 35491818doi: 10.1128/msystems.01507-21google scholar: lookup
  120. Larsen IS, Jensen BAH, Bonazzi E, Choi BSY, Kristensen NN, Schmidt EGW, Su00fcenderhauf A, Morin L, Olsen PB, Hansen LBS, Schru00f6der T, Sina C, Chassaing B, Marette A. Fungal lysozyme leverages the gut microbiota to curb DSS-induced colitis.. Gut Microbes 2021 Jan-Dec;13(1):1988836.
  121. Garas LC, Hamilton MK, Dawson MW, Wang JL, Murray JD, Raybould HE, Maga EA. Lysozyme-rich milk mitigates effects of malnutrition in a pig model of malnutrition and infection.. Br J Nutr 2018 Nov;120(10):1131-1148.
    doi: 10.1017/s0007114518002507pubmed: 30400999google scholar: lookup
  122. Liu D, Guo Y, Wang Z, Yuan J. Exogenous lysozyme influences Clostridium perfringens colonization and intestinal barrier function in broiler chickens.. Avian Pathol 2010 Feb;39(1):17-24.
    doi: 10.1080/03079450903447404pubmed: 20390532google scholar: lookup
  123. Lee HT, Kim M, Kim JY, Brown KM, Ham A, D'Agati VD, Mori-Akiyama Y. Critical role of interleukin-17A in murine intestinal ischemia-reperfusion injury.. Am J Physiol Gastrointest Liver Physiol 2013 Jan 1;304(1):G12-25.
    doi: 10.1152/ajpgi.00201.2012pubmed: 23125155google scholar: lookup
  124. Park SW, Kim M, Brown KM, D'Agati VD, Lee HT. Paneth cell-derived interleukin-17A causes multiorgan dysfunction after hepatic ischemia and reperfusion injury.. Hepatology 2011 May;53(5):1662-75.
    doi: 10.1002/hep.24253pmc: PMC3082595pubmed: 21360570google scholar: lookup
  125. Hirao LA, Grishina I, Bourry O, Hu WK, Somrit M, Sankaran-Walters S, Gaulke CA, Fenton AN, Li JA, Crawford RW, Chuang F, Tarara R, Marco ML, Bu00e4umler AJ, Cheng H, Dandekar S. Early mucosal sensing of SIV infection by paneth cells induces IL-1u03b2 production and initiates gut epithelial disruption.. PLoS Pathog 2014 Aug;10(8):e1004311.
  126. Patankar JV, Becker C. Cell death in the gut epithelium and implications for chronic inflammation.. Nat Rev Gastroenterol Hepatol 2020 Sep;17(9):543-556.
    doi: 10.1038/s41575-020-0326-4pubmed: 32651553google scholar: lookup
  127. Liu Y, Xu Q, Wang Y, Liang T, Li X, Wang D, Wang X, Zhu H, Xiao K. Necroptosis is active and contributes to intestinal injury in a piglet model with lipopolysaccharide challenge.. Cell Death Dis 2021 Jan 11;12(1):62.
    doi: 10.1038/s41419-020-03365-1pmc: PMC7801412pubmed: 33431831google scholar: lookup

Citations

This article has been cited 0 times.