Refined genome-wide comparative map of the domestic horse, donkey and human based on cross-species chromosome painting: insight into the occasional fertility of mules.

Abstract: We have made a complete set of painting probes for the domestic horse by degenerate oligonucleotide-primed PCR amplification of flow-sorted horse chromosomes. The horse probes, together with a full set of those available for human, were hybridized onto metaphase chromosomes of human, horse and mule. Based on the hybridization results, we have generated genome-wide comparative chromosome maps involving the domestic horse, donkey and human. These maps define the overall distribution and boundaries of evolutionarily conserved chromosomal segments in the three genomes. Our results shed further light on the karyotypic relationships among these species and, in particular, the chromosomal rearrangements that underlie hybrid sterility and the occasional fertility of mules.
Publication Date: 2004-02-27 PubMed ID: 14984103DOI: 10.1023/b:chro.0000009298.02689.8aGoogle Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Comparative Study
  • Journal Article
  • Research Support
  • Non-U.S. Gov't

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

The researchers successfully developed a comparative map of the domestic horse, donkey, and human genomes, shedding light on the evolutionary chromosomal similarities and differences. They also provided insights into the occasional fertility of mules, which are usually sterile.

Development of Painting Probes

  • The team created a complete set of ‘painting probes’ for the domestic horse using a process called degenerate oligonucleotide-primed PCR amplification on flow-sorted horse chromosomes.
  • This process helps to highlight specific chromosomes or parts of chromosomes (painting probes), allowing for easier identification and comparison.

Cross Species Hybridisation

  • The horse probes, along with a full set available for humans, were then hybridized onto metaphase chromosomes of humans, horses, and mules.
  • Metaphase is a stage during cell division where chromosomes are at their most condensed and visible under a microscope, making this the ideal time to apply the painting probes.

Generation of Comparative Chromosome Maps

  • Using the results of the probe hybridization, the scientists produced genome-wide comparative chromosome maps involving the domestic horse, donkey and human.
  • These maps present a comprehensive visualization of the distribution and boundaries of evolutionarily conserved chromosomal segments shared across these three species.

Insights into Hybrid Fertility

  • The findings helped to further understand the chromosomal relationships between these species, especially the chromosomal changes that cause the usual sterility of mules – a hybrid species of horse and donkey.
  • Despite mules being predominantly infertile, there are occasional exceptions. The research findings might shed light on the chromosomal factors influencing this rare mule fertility.

Cite This Article

APA
Yang F, Fu B, O'Brien PC, Nie W, Ryder OA, Ferguson-Smith MA. (2004). Refined genome-wide comparative map of the domestic horse, donkey and human based on cross-species chromosome painting: insight into the occasional fertility of mules. Chromosome Res, 12(1), 65-76. https://doi.org/10.1023/b:chro.0000009298.02689.8a

Publication

ISSN: 0967-3849
NlmUniqueID: 9313452
Country: Netherlands
Language: English
Volume: 12
Issue: 1
Pages: 65-76

Researcher Affiliations

Yang, Fengtang
  • Centre for Veterinary Science, University of Cambridge, Cambridge CB3 0ES, UK. fy@mole.bio.cam.ac.uk
Fu, Beiyuan
    O'Brien, Patricia C M
      Nie, Wenhui
        Ryder, Oliver A
          Ferguson-Smith, Malcolm A

            MeSH Terms

            • Animals
            • Chromosome Mapping / methods
            • Chromosome Painting / methods
            • Chromosomes
            • Chromosomes, Human
            • Equidae / genetics
            • Female
            • Fertility / genetics
            • Genome
            • Genome, Human
            • Horses / genetics
            • Humans
            • Karyotyping
            • Metaphase
            • Sequence Homology

            References

            This article includes 29 references
            1. Chandley AC, Jones RC, Dott HM, Allen WR, Short RV. Meiosis in interspecific equine hybrids. I. The male mule (Equus asinus X E. caballus) and hinny (E. caballus X E. asinus).. Cytogenet Cell Genet 1974;13(4):330-41.
              pubmed: 4430187doi: 10.1159/000130284google scholar: lookup
            2. Taylor MJ, Short RV. Development of the germ cells in the ovary of the mule and hinny.. J Reprod Fertil 1973 Mar;32(3):441-5.
              pubmed: 4692339doi: 10.1530/jrf.0.0320441google scholar: lookup
            3. Richard F, Messaoudi C, Lombard M, Dutrillaux B. Chromosome homologies between man and mountain zebra (Equus zebra hartmannae) and description of a new ancestral synteny involving sequences homologous to human chromosomes 4 and 8.. Cytogenet Cell Genet 2001;93(3-4):291-6.
              pubmed: 11528128doi: 10.1159/000057000google scholar: lookup
            4. Raudsepp T, Chowdhary BP. Construction of chromosome-specific paints for meta- and submetacentric autosomes and the sex chromosomes in the horse and their use to detect homologous chromosomal segments in the donkey.. Chromosome Res 1999;7(2):103-14.
              pubmed: 10328622doi: 10.1023/a:1009234814635google scholar: lookup
            5. Raudsepp T, Fru00f6nicke L, Scherthan H, Gustavsson I, Chowdhary BP. Zoo-FISH delineates conserved chromosomal segments in horse and man.. Chromosome Res 1996 Apr;4(3):218-25.
              pubmed: 8793207doi: 10.1007/BF02254963google scholar: lookup
            6. Telenius H, Pelmear AH, Tunnacliffe A, Carter NP, Behmel A, Ferguson-Smith MA, Nordenskju00f6ld M, Pfragner R, Ponder BA. Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes.. Genes Chromosomes Cancer 1992 Apr;4(3):257-63.
              pubmed: 1382568doi: 10.1002/gcc.2870040311google scholar: lookup
            7. Yang F, Fu B, O'Brien PC, Robinson TJ, Ryder OA, Ferguson-Smith MA. Karyotypic relationships of horses and zebras: results of cross-species chromosome painting.. Cytogenet Genome Res 2003;102(1-4):235-43.
              pubmed: 14970709doi: 10.1159/000075755google scholar: lookup
            8. Milenkovic D, Oustry-Vaiman A, Lear TL, Billault A, Mariat D, Piumi F, Schibler L, Cribiu E, Guu00e9rin G. Cytogenetic localization of 136 genes in the horse: comparative mapping with the human genome.. Mamm Genome 2002 Sep;13(9):524-34.
              pubmed: 12370783doi: 10.1007/s00335-001-2137-4google scholar: lookup
            9. Chowdhary BP, Raudsepp T, Kata SR, Goh G, Millon LV, Allan V, Piumi F, Guu00e9rin G, Swinburne J, Binns M, Lear TL, Mickelson J, Murray J, Antczak DF, Womack JE, Skow LC. The first-generation whole-genome radiation hybrid map in the horse identifies conserved segments in human and mouse genomes.. Genome Res 2003 Apr;13(4):742-51.
              pubmed: 12671008doi: 10.1101/gr.917503google scholar: lookup
            10. Ryder OA, Chemnick LG, Bowling AT, Benirschke K. Male mule foal qualifies as the offspring of a female mule and jack donkey.. J Hered 1985 Sep-Oct;76(5):379-81.
              pubmed: 4056372
            11. Yang F, Alkalaeva EZ, Perelman PL, Pardini AT, Harrison WR, O'Brien PC, Fu B, Graphodatsky AS, Ferguson-Smith MA, Robinson TJ. Reciprocal chromosome painting among human, aardvark, and elephant (superorder Afrotheria) reveals the likely eutherian ancestral karyotype.. Proc Natl Acad Sci U S A 2003 Feb 4;100(3):1062-6.
              pubmed: 12552116doi: 10.1073/pnas.0335540100google scholar: lookup
            12. Ried T, Baldini A, Rand TC, Ward DC. Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy.. Proc Natl Acad Sci U S A 1992 Feb 15;89(4):1388-92.
              pubmed: 1741394doi: 10.1073/pnas.89.4.1388google scholar: lookup
            13. Rong R, Chandley AC, Song J, McBeath S, Tan PP, Bai Q, Speed RM. A fertile mule and hinny in China.. Cytogenet Cell Genet 1988;47(3):134-9.
              pubmed: 3378453doi: 10.1159/000132531google scholar: lookup
            14. Pinkel D, Landegent J, Collins C, Fuscoe J, Segraves R, Lucas J, Gray J. Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4.. Proc Natl Acad Sci U S A 1988 Dec;85(23):9138-42.
              pubmed: 2973607doi: 10.1073/pnas.85.23.9138google scholar: lookup
            15. Chowdhary BP, Raudsepp T. Chromosome painting in farm, pet and wild animal species.. Methods Cell Sci 2001;23(1-3):37-55.
              pubmed: 11741143doi: 10.1007/978-94-010-0330-8_6google scholar: lookup
            16. Ryder OA, Epel NC, Benirschke K. Chromosome banding studies of the Equidae.. Cytogenet Cell Genet 1978;20(1-6):332-50.
              pubmed: 648186
            17. Zong E, Fan G. The variety of sterility and gradual progression to fertility in hybrids of the horse and donkey.. Heredity (Edinb) 1989 Jun;62 ( Pt 3):393-406.
              pubmed: 2753743doi: 10.1038/hdy.1989.54google scholar: lookup
            18. Seabright M. The use of proteolytic enzymes for the mapping of structural rearrangements in the chromosomes of man.. Chromosoma 1972;36(2):204-10.
              pubmed: 5016007doi: 10.1007/BF00285214google scholar: lookup
            19. Bowling AT, Breen M, Chowdhary BP, Hirota K, Lear T, Millon LV, Ponce de Leon FA, Raudsepp T, Stranzinger G. International system for cytogenetic nomenclature of the domestic horse. Report of the Third International Committee for the Standardization of the domestic horse karyotype, Davis, CA, USA, 1996.. Chromosome Res 1997 Nov;5(7):433-43.
              pubmed: 9421259doi: 10.1023/a:1018408811881google scholar: lookup
            20. Richer CL, Power MM, Klunder LR, McFeely RA, Kent MG. Standard karyotype of the domestic horse (Equus caballus). Committee for standardized karyotype of Equus caballus. The Second International Conference for Standardization of Domestic Animal Karyotypes, INRA, Jouy-en Josas, France, 22nd-26th May 1989.. Hereditas 1990;112(3):289-93.
            21. Ford CE, Pollock DL, Gustavsson I. Proceedings of the First International Conference for the Standardisation of Banded Karyotypes of Domestic Animals. University of Reading Reading, England. 2nd-6th August 1976.. Hereditas 1980;92(1):145-62.
            22. Scherthan H, Cremer T, Arnason U, Weier HU, Lima-de-Faria A, Fru00f6nicke L. Comparative chromosome painting discloses homologous segments in distantly related mammals.. Nat Genet 1994 Apr;6(4):342-7.
              pubmed: 8054973doi: 10.1038/ng0494-342google scholar: lookup
            23. Wienberg J, Jauch A, Stanyon R, Cremer T. Molecular cytotaxonomy of primates by chromosomal in situ suppression hybridization.. Genomics 1990 Oct;8(2):347-50.
              pubmed: 2249853doi: 10.1016/0888-7543(90)90292-3google scholar: lookup
            24. Caetano AR, Shiue YL, Lyons LA, O'Brien SJ, Laughlin TF, Bowling AT, Murray JD. A comparative gene map of the horse (Equus caballus).. Genome Res 1999 Dec;9(12):1239-49.
              pubmed: 10613847doi: 10.1101/gr.9.12.1239google scholar: lookup
            25. Yang F, Mu00fcller S, Just R, Ferguson-Smith MA, Wienberg J. Comparative chromosome painting in mammals: human and the Indian muntjac (Muntiacus muntjak vaginalis).. Genomics 1997 Feb 1;39(3):396-401.
              pubmed: 9119378doi: 10.1006/geno.1996.4497google scholar: lookup
            26. Yang F, Carter NP, Shi L, Ferguson-Smith MA. A comparative study of karyotypes of muntjacs by chromosome painting.. Chromosoma 1995 May;103(9):642-52.
              pubmed: 7587587doi: 10.1007/BF00357691google scholar: lookup
            27. Raudsepp T, Kijas J, Godard S, Guu00e9rin G, Andersson L, Chowdhary BP. Comparison of horse chromosome 3 with donkey and human chromosomes by cross-species painting and heterologous FISH mapping.. Mamm Genome 1999 Mar;10(3):277-82.
              pubmed: 10051324doi: 10.1007/s003359900986google scholar: lookup
            28. Yang F, O'Brien PC, Milne BS, Graphodatsky AS, Solanky N, Trifonov V, Rens W, Sargan D, Ferguson-Smith MA. A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps.. Genomics 1999 Dec 1;62(2):189-202.
              pubmed: 10610712doi: 10.1006/geno.1999.5989google scholar: lookup
            29. Raudsepp T, Christensen K, Chowdhar BP. Cytogenetics of donkey chromosomes: nomenclature proposal based on GTG-banded chromosomes and depiction of NORs and telomeric sites.. Chromosome Res 2000;8(8):659-70.
              pubmed: 11196129doi: 10.1023/a:1026707002538google scholar: lookup

            Citations

            This article has been cited 34 times.
            1. Ghosh S, Kju00f6llerstru00f6m J, Metcalfe L, Reed S, Juras R, Raudsepp T. The Second Case of Non-Mosaic Trisomy of Chromosome 26 with Homologous Fusion 26q;26q in the Horse.. Animals (Basel) 2022 Mar 22;12(7).
              doi: 10.3390/ani12070803pubmed: 35405793google scholar: lookup
            2. Li S, Zhao G, Han H, Li Y, Li J, Wang J, Cao G, Li X. Genome collinearity analysis illuminates the evolution of donkey chromosome 1 and horse chromosome 5 in perissodactyls: A comparative study.. BMC Genomics 2021 Sep 15;22(1):665.
              doi: 10.1186/s12864-021-07984-6pubmed: 34521340google scholar: lookup
            3. Bugno-Poniewierska M, Raudsepp T. Horse Clinical Cytogenetics: Recurrent Themes and Novel Findings.. Animals (Basel) 2021 Mar 16;11(3).
              doi: 10.3390/ani11030831pubmed: 33809432google scholar: lookup
            4. Karamysheva TV, Gayner TA, Muzyka VV, Orishchenko KE, Rubtsov NB. Two Separate Cases: Complex Chromosomal Abnormality Involving Three Chromosomes and Small Supernumerary Marker Chromosome in Patients with Impaired Reproductive Function.. Genes (Basel) 2020 Dec 17;11(12).
              doi: 10.3390/genes11121511pubmed: 33348590google scholar: lookup
            5. Leonida SRL, Bennett NC, Leitch AR, Faulkes CG. Patterns of telomere length with age in African mole-rats: New insights from quantitative fluorescence in situ hybridisation (qFISH).. PeerJ 2020;8:e10498.
              doi: 10.7717/peerj.10498pubmed: 33335813google scholar: lookup
            6. Balzano E, Giunta S. Centromeres under Pressure: Evolutionary Innovation in Conflict with Conserved Function.. Genes (Basel) 2020 Aug 10;11(8).
              doi: 10.3390/genes11080912pubmed: 32784998google scholar: lookup
            7. Scardino R, Milioto V, Proskuryakova AA, Serdyukova NA, Perelman PL, Dumas F. Evolution of the Human Chromosome 13 Synteny: Evolutionary Rearrangements, Plasticity, Human Disease Genes and Cancer Breakpoints.. Genes (Basel) 2020 Apr 1;11(4).
              doi: 10.3390/genes11040383pubmed: 32244767google scholar: lookup
            8. Nergadze SG, Piras FM, Gamba R, Corbo M, Cerutti F, McCarter JGW, Cappelletti E, Gozzo F, Harman RM, Antczak DF, Miller D, Scharfe M, Pavesi G, Raimondi E, Sullivan KF, Giulotto E. Birth, evolution, and transmission of satellite-free mammalian centromeric domains.. Genome Res 2018 Jun;28(6):789-799.
              doi: 10.1101/gr.231159.117pubmed: 29712753google scholar: lookup
            9. Frohlich J, Kubickova S, Musilova P, Cernohorska H, Muskova H, Vodicka R, Rubes J. Karyotype relationships among selected deer species and cattle revealed by bovine FISH probes.. PLoS One 2017;12(11):e0187559.
              doi: 10.1371/journal.pone.0187559pubmed: 29112970google scholar: lookup
            10. Iannuzzi A, Pereira J, Iannuzzi C, Fu B, Ferguson-Smith M. Pooling strategy and chromosome painting characterize a living zebroid for the first time.. PLoS One 2017;12(7):e0180158.
              doi: 10.1371/journal.pone.0180158pubmed: 28700625google scholar: lookup
            11. Bertolini F, Scimone C, Geraci C, Schiavo G, Utzeri VJ, Chiofalo V, Fontanesi L. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus) Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms.. PLoS One 2015;10(7):e0131925.
              doi: 10.1371/journal.pone.0131925pubmed: 26151450google scholar: lookup
            12. Musilova P, Kubickova S, Vahala J, Rubes J. Subchromosomal karyotype evolution in Equidae.. Chromosome Res 2013 Apr;21(2):175-87.
              doi: 10.1007/s10577-013-9346-zpubmed: 23532666google scholar: lookup
            13. Doan R, Cohen N, Harrington J, Veazey K, Juras R, Cothran G, McCue ME, Skow L, Dindot SV. Identification of copy number variants in horses.. Genome Res 2012 May;22(5):899-907.
              doi: 10.1101/gr.128991.111pubmed: 22383489google scholar: lookup
            14. Volleth M, Yang F, Mu00fcller S. High-resolution chromosome painting reveals the first genetic signature for the chiropteran suborder Pteropodiformes (Mammalia: Chiroptera).. Chromosome Res 2011 May;19(4):507-19.
              doi: 10.1007/s10577-011-9196-5pubmed: 21394511google scholar: lookup
            15. Ding XJ, Liu MX, Ao L, Liang YR, Cao Y. Frequent loss of heterozygosity on chromosome 12q in non-small-cell lung carcinomas.. Virchows Arch 2011 May;458(5):561-9.
              doi: 10.1007/s00428-011-1042-9pubmed: 21279520google scholar: lookup
            16. Alkan C, Cardone MF, Catacchio CR, Antonacci F, O'Brien SJ, Ryder OA, Purgato S, Zoli M, Della Valle G, Eichler EE, Ventura M. Genome-wide characterization of centromeric satellites from multiple mammalian genomes.. Genome Res 2011 Jan;21(1):137-45.
              doi: 10.1101/gr.111278.110pubmed: 21081712google scholar: lookup
            17. Brosnahan MM, Brooks SA, Antczak DF. Equine clinical genomics: A clinician's primer.. Equine Vet J 2010 Oct;42(7):658-70.
            18. Piras FM, Nergadze SG, Magnani E, Bertoni L, Attolini C, Khoriauli L, Raimondi E, Giulotto E. Uncoupling of satellite DNA and centromeric function in the genus Equus.. PLoS Genet 2010 Feb 12;6(2):e1000845.
              doi: 10.1371/journal.pgen.1000845pubmed: 20169180google scholar: lookup
            19. Musilova P, Kubickova S, Horin P, Vodicka R, Rubes J. Karyotypic relationships in Asiatic asses (kulan and kiang) as defined using horse chromosome arm-specific and region-specific probes.. Chromosome Res 2009;17(6):783-90.
              doi: 10.1007/s10577-009-9069-3pubmed: 19731053google scholar: lookup
            20. Kulemzina AI, Trifonov VA, Perelman PL, Rubtsova NV, Volobuev V, Ferguson-Smith MA, Stanyon R, Yang F, Graphodatsky AS. Cross-species chromosome painting in Cetartiodactyla: reconstructing the karyotype evolution in key phylogenetic lineages.. Chromosome Res 2009;17(3):419-36.
              doi: 10.1007/s10577-009-9032-3pubmed: 19350402google scholar: lookup
            21. Hepperger C, Mayer A, Merz J, Vanderwall DK, Dietzel S. Parental genomes mix in mule and human cell nuclei.. Chromosoma 2009 Jun;118(3):335-47.
              doi: 10.1007/s00412-008-0200-6pubmed: 19198867google scholar: lookup
            22. Nie W, O'Brien PC, Ng BL, Fu B, Volobouev V, Carter NP, Ferguson-Smith MA, Yang F. Avian comparative genomics: reciprocal chromosome painting between domestic chicken (Gallus gallus) and the stone curlew (Burhinus oedicnemus, Charadriiformes)--an atypical species with low diploid number.. Chromosome Res 2009;17(1):99-113.
              doi: 10.1007/s10577-009-9021-6pubmed: 19172404google scholar: lookup
            23. Raudsepp T, Gustafson-Seabury A, Durkin K, Wagner ML, Goh G, Seabury CM, Brinkmeyer-Langford C, Lee EJ, Agarwala R, Stallknecht-Rice E, Schu00e4ffer AA, Skow LC, Tozaki T, Yasue H, Penedo MC, Lyons LA, Khazanehdari KA, Binns MM, MacLeod JN, Distl O, Guu00e9rin G, Leeb T, Mickelson JR, Chowdhary BP. A 4,103 marker integrated physical and comparative map of the horse genome.. Cytogenet Genome Res 2008;122(1):28-36.
              doi: 10.1159/000151313pubmed: 18931483google scholar: lookup
            24. Mao X, Nie W, Wang J, Su W, Feng Q, Wang Y, Dobigny G, Yang F. Comparative cytogenetics of bats (Chiroptera): the prevalence of Robertsonian translocations limits the power of chromosomal characters in resolving interfamily phylogenetic relationships.. Chromosome Res 2008;16(1):155-70.
              doi: 10.1007/s10577-007-1206-2pubmed: 18293110google scholar: lookup
            25. Trifonov VA, Stanyon R, Nesterenko AI, Fu B, Perelman PL, O'Brien PC, Stone G, Rubtsova NV, Houck ML, Robinson TJ, Ferguson-Smith MA, Dobigny G, Graphodatsky AS, Yang F. Multidirectional cross-species painting illuminates the history of karyotypic evolution in Perissodactyla.. Chromosome Res 2008;16(1):89-107.
              doi: 10.1007/s10577-007-1201-7pubmed: 18293107google scholar: lookup
            26. Chowdhary BP, Raudsepp T. The horse genome derby: racing from map to whole genome sequence.. Chromosome Res 2008;16(1):109-27.
              doi: 10.1007/s10577-008-1204-zpubmed: 18274866google scholar: lookup
            27. Mao X, Nie W, Wang J, Su W, Ao L, Feng Q, Wang Y, Volleth M, Yang F. Karyotype evolution in Rhinolophus bats (Rhinolophidae, Chiroptera) illuminated by cross-species chromosome painting and G-banding comparison.. Chromosome Res 2007;15(7):835-48.
              doi: 10.1007/s10577-007-1167-5pubmed: 17899409google scholar: lookup
            28. Musilova P, Kubickova S, Zrnova E, Horin P, Vahala J, Rubes J. Karyotypic relationships among Equus grevyi, Equus burchelli and domestic horse defined using horse chromosome arm-specific probes.. Chromosome Res 2007;15(6):807-13.
              doi: 10.1007/s10577-007-1164-8pubmed: 17874215google scholar: lookup
            29. Balmus G, Trifonov VA, Biltueva LS, O'Brien PC, Alkalaeva ES, Fu B, Skidmore JA, Allen T, Graphodatsky AS, Yang F, Ferguson-Smith MA. Cross-species chromosome painting among camel, cattle, pig and human: further insights into the putative Cetartiodactyla ancestral karyotype.. Chromosome Res 2007;15(4):499-515.
              doi: 10.1007/s10577-007-1154-xpubmed: 17671843google scholar: lookup
            30. Ao L, Mao X, Nie W, Gu X, Feng Q, Wang J, Su W, Wang Y, Volleth M, Yang F. Karyotypic evolution and phylogenetic relationships in the order Chiroptera as revealed by G-banding comparison and chromosome painting.. Chromosome Res 2007;15(3):257-67.
              doi: 10.1007/s10577-007-1120-7pubmed: 17310301google scholar: lookup
            31. Yang F, Graphodatsky AS, Li T, Fu B, Dobigny G, Wang J, Perelman PL, Serdukova NA, Su W, O'Brien PC, Wang Y, Ferguson-Smith MA, Volobouev V, Nie W. Comparative genome maps of the pangolin, hedgehog, sloth, anteater and human revealed by cross-species chromosome painting: further insight into the ancestral karyotype and genome evolution of eutherian mammals.. Chromosome Res 2006;14(3):283-96.
              doi: 10.1007/s10577-006-1045-6pubmed: 16628499google scholar: lookup
            32. Brinkmeyer-Langford C, Raudsepp T, Lee EJ, Goh G, Schu00e4ffer AA, Agarwala R, Wagner ML, Tozaki T, Skow LC, Womack JE, Mickelson JR, Chowdhary BP. A high-resolution physical map of equine homologs of HSA19 shows divergent evolution compared with other mammals.. Mamm Genome 2005 Aug;16(8):631-49.
              doi: 10.1007/s00335-005-0023-1pubmed: 16180145google scholar: lookup
            33. Ventura M, Weigl S, Carbone L, Cardone MF, Misceo D, Teti M, D'Addabbo P, Wandall A, Bju00f6rck E, de Jong PJ, She X, Eichler EE, Archidiacono N, Rocchi M. Recurrent sites for new centromere seeding.. Genome Res 2004 Sep;14(9):1696-703.
              doi: 10.1101/gr.2608804pubmed: 15342555google scholar: lookup
            34. Li T, O'Brien PC, Biltueva L, Fu B, Wang J, Nie W, Ferguson-Smith MA, Graphodatsky AS, Yang F. Evolution of genome organizations of squirrels (Sciuridae) revealed by cross-species chromosome painting.. Chromosome Res 2004;12(4):317-35.