Genes2023; 14(7); doi: 10.3390/genes14071511

The Genetic Diversity of Stallions of Different Breeds in Russia.

Abstract: The specifics of breeding and selection significantly affect genetic diversity and variability within a breed. We present the data obtained from the genetic analysis of 21 thoroughbred and warmblood horse breeds. The most detailed information is described from the following breeds: Arabian, Trakehner, French Trotter, Standardbred, and Soviet Heavy Horse. The analysis of 509,617 SNP variants in 87 stallions from 21 populations made it possible to estimate the genetic diversity at the genome-wide level and distinguish the studied horse breeds from each other. In this study, we searched for heterozygous and homozygous ROH regions, evaluated inbreeding using FROH analysis, and generated a population structure using Admixture 1.3 software. Our findings indicate that the Arabian breed is an ancestor of many horse breeds. The study of the full-genome architectonics of breeds is of great practical importance for preserving the genetic characteristics of breeds and managing breeding. Studies were carried out to determine homozygous regions in individual breeds and search for candidate genes in these regions. Fifty-six candidate genes for the influence of selection pressure were identified. Our research reveals genetic diversity consistent with breeding directions and the breeds' history of origin.
Publication Date: 2023-07-24 PubMed ID: 37510415PubMed Central: PMC10378902DOI: 10.3390/genes14071511Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article
  • Research Support
  • Non-U.S. Gov't

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

This study explores the genetic diversity and specific characteristics of various horse breeds in Russia, examining over half a million Single Nucleotide Polymorphism (SNP) variants in 87 stallions across 21 breeds. The research establishes relationships between different equine breeds, highlighting the Arabian horse as a common ancestry. In addition, the study identified genes potentially influenced by selection pressures and provides valuable insights into breed origins and breeding strategies.

Study Design and Data Collection

  • The study centers around genetic exploration of 21 thoroughbred and warmblood horse breeds, primarily focusing on Arabian, Trakehner, French Trotter, Standardbred, and Soviet Heavy Horse breeds.
  • Researchers analyzed 509,617 SNP variants from 87 stallions across the different breeds. This massive data set allowed for an understanding of the genome-wide level of horse breeds and their distinctive variances.
  • The research effort aimed to locate homogenous and heterogenous Runs of Homozygosity (ROH) regions and evaluated inbreeding using the method called FROH analysis. This method helps identify regions with a consecutive string of similar genes in a line of horses and is commonly used to examine genetic diversity in a population.

Genetic Analysis and Software Used

  • Genetic analysis was carried out through the Admixture 1.3 software, a software tool that employs a statistical method to extract meaningful information about population structure and ancestry.
  • Using this software, the team generated a population structure that provided insights into the genetic interconnections among different horse breeds.

Key Findings and Future Perspectives

  • The findings indicate that the Arabian breed is a common ancestor of many horse breeds, underscoring its importance in the genus.
  • This study also went beyond identifying genetic traits and looked for candidate genes influenced by selection pressure. Here, selection pressure refers to the different environmental factors that can cause specific traits to become more prevalent in a population over time. This research uncovered 56 genes that were likely influenced by selection pressure.
  • The researchers highlight that understanding the full-genome architecture of breeds has significant practical implications. It aids in preserving the unique genetic characteristics of various breeds and provides insights for managing breeding processes effectively.
  • The research also has implications for the ongoing efforts to preserve equine biodiversity, and it offers areas of further exploration for genetic research in the context of breed preservation and development.

Cite This Article

APA
Dementieva N, Nikitkina E, Shcherbakov Y, Nikolaeva O, Mitrofanova O, Ryabova A, Atroshchenko M, Makhmutova O, Zaitsev A. (2023). The Genetic Diversity of Stallions of Different Breeds in Russia. Genes (Basel), 14(7). https://doi.org/10.3390/genes14071511

Publication

ISSN: 2073-4425
NlmUniqueID: 101551097
Country: Switzerland
Language: English
Volume: 14
Issue: 7

Researcher Affiliations

Dementieva, Natalia
  • Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, 55A, Moskovskoye Sh., Tyarlevo, Pushkin, St. Petersburg 196625, Russia.
Nikitkina, Elena
  • Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, 55A, Moskovskoye Sh., Tyarlevo, Pushkin, St. Petersburg 196625, Russia.
Shcherbakov, Yuri
  • Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, 55A, Moskovskoye Sh., Tyarlevo, Pushkin, St. Petersburg 196625, Russia.
Nikolaeva, Olga
  • Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, 55A, Moskovskoye Sh., Tyarlevo, Pushkin, St. Petersburg 196625, Russia.
Mitrofanova, Olga
  • Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, 55A, Moskovskoye Sh., Tyarlevo, Pushkin, St. Petersburg 196625, Russia.
Ryabova, Anna
  • Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, 55A, Moskovskoye Sh., Tyarlevo, Pushkin, St. Petersburg 196625, Russia.
Atroshchenko, Mikhail
  • All-Russian Research Institute of Horse Breeding (ARRIH), Ryazan Region, Divovo, Rybnovskij District 391105, Russia.
Makhmutova, Oksana
  • All-Russian Research Institute of Horse Breeding (ARRIH), Ryazan Region, Divovo, Rybnovskij District 391105, Russia.
Zaitsev, Alexander
  • All-Russian Research Institute of Horse Breeding (ARRIH), Ryazan Region, Divovo, Rybnovskij District 391105, Russia.

MeSH Terms

  • Horses / genetics
  • Animals
  • Male
  • Polymorphism, Single Nucleotide / genetics
  • Homozygote
  • Inbreeding
  • Genome
  • Russia

Conflict of Interest Statement

The authors declare no conflict of interest.

References

This article includes 74 references
  1. Librado P, Fages A, Gaunitz C, Leonardi M, Wagner S, Khan N, Hanghu00f8j K, Alquraishi SA, Alfarhan AH, Al-Rasheid KA, Der Sarkissian C, Schubert M, Orlando L. The Evolutionary Origin and Genetic Makeup of Domestic Horses.. Genetics 2016 Oct;204(2):423-434.
    doi: 10.1534/genetics.116.194860pmc: PMC5068837pubmed: 27729493google scholar: lookup
  2. Noskova M.V., Arkhilaeva M.S. Economic Problems and Prospects for the Development of Horse Breeding in Russia. Bull. Altai State Agrar. Univ. 2009;12:98u2013103.
  3. Yun J, Oyungerel B, Kong HS. Genetic diversity and population structure of Mongolian regional horses with 14 microsatellite markers.. Anim Biosci 2022 Aug;35(8):1121-1128.
    doi: 10.5713/ab.21.0497pmc: PMC9262727pubmed: 35240022google scholar: lookup
  4. Luttman AM, Komine M, Thaiwong T, Carpenter T, Ewart SL, Kiupel M, Langohr IM, Venta PJ. Development of a 17-Plex of Penta- and Tetra-Nucleotide Microsatellites for DNA Profiling and Paternity Testing in Horses.. Front Vet Sci 2022;9:861623.
    doi: 10.3389/fvets.2022.861623pmc: PMC9021955pubmed: 35464354google scholar: lookup
  5. Petersen JL, Mickelson JR, Cothran EG, Andersson LS, Axelsson J, Bailey E, Bannasch D, Binns MM, Borges AS, Brama P, da Cu00e2mara Machado A, Distl O, Felicetti M, Fox-Clipsham L, Graves KT, Guu00e9rin G, Haase B, Hasegawa T, Hemmann K, Hill EW, Leeb T, Lindgren G, Lohi H, Lopes MS, McGivney BA, Mikko S, Orr N, Penedo MC, Piercy RJ, Raekallio M, Rieder S, Ru00f8ed KH, Silvestrelli M, Swinburne J, Tozaki T, Vaudin M, M Wade C, McCue ME. Genetic diversity in the modern horse illustrated from genome-wide SNP data.. PLoS One 2013;8(1):e54997.
  6. Rosengren MK, Siguru00f0ardu00f3ttir H, Eriksson S, Naboulsi R, Jouni A, Novoa-Bravo M, Albertsdu00f3ttir E, Kristju00e1nsson u00de, Rhodin M, Viklund u00c5, Velie BD, Negro JJ, Solu00e9 M, Lindgren G. A QTL for conformation of back and croup influences lateral gait quality in Icelandic horses.. BMC Genomics 2021 Apr 14;22(1):267.
    doi: 10.1186/s12864-021-07454-zpmc: PMC8048352pubmed: 33853519google scholar: lookup
  7. Nikitkina EV, Dementieva NV, Shcherbakov YS, Atroshchenko MM, Kudinov AA, Samoylov OI, Pozovnikova MV, Dysin AP, Krutikova AA, Musidray AA, Mitrofanova OV, Plemyashov KV, Griffin DK, Romanov MN. Genome-wide association study for frozen-thawed sperm motility in stallions across various horse breeds.. Anim Biosci 2022 Dec;35(12):1827-1838.
    doi: 10.5713/ab.21.0504pmc: PMC9659452pubmed: 35240017google scholar: lookup
  8. Drabbe A, Janssens S, Blott S, Ducro BJ, Fontanel M, Francois L, Schurink A, Stinckens A, Lindgren G, Van Mol B, Pille F, Buys N, Velie BD. Genome-Wide Association Analyses of Osteochondrosis in Belgian Warmbloods Reveal Candidate Genes Associated With Chondrocyte Development.. J Equine Vet Sci 2022 Apr;111:103870.
    doi: 10.1016/j.jevs.2022.103870pubmed: 35074400google scholar: lookup
  9. Laseca N, Demyda-Peyru00e1s S, Valera M, Ramu00f3n M, Escribano B, Perdomo-Gonzu00e1lez DI, Molina A. A genome-wide association study of mare fertility in the Pura Raza Espau00f1ol horse.. Animal 2022 Mar;16(3):100476.
    doi: 10.1016/j.animal.2022.100476pubmed: 35247706google scholar: lookup
  10. Affolter VK, Dalley B, Kass PH, Brown EA, Sonder C, Bannasch DL. Chronic progressive lymphoedema in Friesian horses: suggestive phenotype of affected horses and genome-wide association study.. Vet Dermatol 2020 Jun;31(3):234-e51.
    doi: 10.1111/vde.12831pubmed: 31908060google scholar: lookup
  11. Solu00e9 M, Ablondi M, Binzer-Panchal A, Velie BD, Hollfelder N, Buys N, Ducro BJ, Franu00e7ois L, Janssens S, Schurink A, Viklund u00c5, Eriksson S, Isaksson A, Kultima H, Mikko S, Lindgren G. Inter- and intra-breed genome-wide copy number diversity in a large cohort of European equine breeds.. BMC Genomics 2019 Oct 22;20(1):759.
    doi: 10.1186/s12864-019-6141-zpmc: PMC6805398pubmed: 31640551google scholar: lookup
  12. Grilz-Seger G, Druml T, Neuditschko M, Dobretsberger M, Horna M, Brem G. High-resolution population structure and runs of homozygosity reveal the genetic architecture of complex traits in the Lipizzan horse.. BMC Genomics 2019 Mar 5;20(1):174.
    doi: 10.1186/s12864-019-5564-xpmc: PMC6402180pubmed: 30836959google scholar: lookup
  13. Bizarria Dos Santos W, Pimenta Schettini G, Fonseca MG, Pereira GL, Loyola Chardulo LA, Rodrigues Machado Neto O, Baldassini WA, Nunes de Oliveira H, Abdallah Curi R. Fine-scale estimation of inbreeding rates, runs of homozygosity and genome-wide heterozygosity levels in the Mangalarga Marchador horse breed.. J Anim Breed Genet 2021 Mar;138(2):161-173.
    doi: 10.1111/jbg.12508pubmed: 32949478google scholar: lookup
  14. Santos WB, Schettini GP, Maiorano AM, Bussiman FO, Balieiro JCC, Ferraz GC, Pereira GL, Baldassini WA, Neto ORM, Oliveira HN, Curi RA. Genome-wide scans for signatures of selection in Mangalarga Marchador horses using high-throughput SNP genotyping.. BMC Genomics 2021 Oct 14;22(1):737.
    doi: 10.1186/s12864-021-08053-8pmc: PMC8515666pubmed: 34645387google scholar: lookup
  15. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets.. Gigascience 2015;4:7.
    doi: 10.1186/s13742-015-0047-8pmc: PMC4342193pubmed: 25722852google scholar: lookup
  16. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals.. Genome Res 2009 Sep;19(9):1655-64.
    doi: 10.1101/gr.094052.109pmc: PMC2752134pubmed: 19648217google scholar: lookup
  17. Francis RM. pophelper: an R package and web app to analyse and visualizeu00a0population structure.. Mol Ecol Resour 2017 Jan;17(1):27-32.
    doi: 10.1111/1755-0998.12509pubmed: 26850166google scholar: lookup
  18. Anderson CA, Pettersson FH, Clarke GM, Cardon LR, Morris AP, Zondervan KT. Data quality control in genetic case-control association studies.. Nat Protoc 2010 Sep;5(9):1564-73.
    doi: 10.1038/nprot.2010.116pmc: PMC3025522pubmed: 21085122google scholar: lookup
  19. Biscarini F., Cozzi P., Gaspa G., Marras G. detectRUNS: An R package to detect runs of homozygosity and heterozygosity in diploid genomes. R Package Version 0.9.6. 2019. [(accessed on 18 June 2023)]. Available online: https://cran.r-project.org/web/packages/detectRUNS/vignettes/detectRUNS.vignette.html.
  20. Hamann H, Distl O. Genetic variability in Hanoverian warmblood horses using pedigree analysis.. J Anim Sci 2008 Jul;86(7):1503-13.
    doi: 10.2527/jas.2007-0382pubmed: 18310493google scholar: lookup
  21. Mucha S, Windig JJ. Effects of incomplete pedigree on genetic management of the Dutch Landrace goat.. J Anim Breed Genet 2009 Jun;126(3):250-6.
  22. Abdelmanova AS, Dotsev AV, Romanov MN, Stanishevskaya OI, Gladyr EA, Rodionov AN, Vetokh AN, Volkova NA, Fedorova ES, Gusev IV, Griffin DK, Brem G, Zinovieva NA. Unveiling Comparative Genomic Trajectories of Selection and Key Candidate Genes in Egg-Type Russian White and Meat-Type White Cornish Chickens.. Biology (Basel) 2021 Sep 6;10(9).
    doi: 10.3390/biology10090876pmc: PMC8469556pubmed: 34571753google scholar: lookup
  23. Salek Ardestani S, Zandi MB, Vahedi SM, Janssens S. Population structure and genomic footprints of selection in five major Iranian horse breeds.. Anim Genet 2022 Oct;53(5):627-639.
    doi: 10.1111/age.13243pubmed: 35919961google scholar: lookup
  24. Cosgrove EJ, Sadeghi R, Schlamp F, Holl HM, Moradi-Shahrbabak M, Miraei-Ashtiani SR, Abdalla S, Shykind B, Troedsson M, Stefaniuk-Szmukier M, Prabhu A, Bucca S, Bugno-Poniewierska M, Wallner B, Malek J, Miller DC, Clark AG, Antczak DF, Brooks SA. Genome Diversity and the Origin of the Arabian Horse.. Sci Rep 2020 Jun 16;10(1):9702.
    doi: 10.1038/s41598-020-66232-1pmc: PMC7298027pubmed: 32546689google scholar: lookup
  25. Peripolli E, Munari DP, Silva MVGB, Lima ALF, Irgang R, Baldi F. Runs of homozygosity: current knowledge and applications in livestock.. Anim Genet 2017 Jun;48(3):255-271.
    doi: 10.1111/age.12526pubmed: 27910110google scholar: lookup
  26. Cendron F, Perini F, Mastrangelo S, Tolone M, Criscione A, Bordonaro S, Iaffaldano N, Castellini C, Marzoni M, Buccioni A, Soglia D, Schiavone A, Cerolini S, Lasagna E, Cassandro M. Genome-Wide SNP Analysis Reveals the Population Structure and the Conservation Status of 23 Italian Chicken Breeds.. Animals (Basel) 2020 Aug 18;10(8).
    doi: 10.3390/ani10081441pmc: PMC7460279pubmed: 32824706google scholar: lookup
  27. Esdaile E, Avila F, Bellone RR. Analysis of Genetic Diversity in the American Standardbred Horse Utilizing Short Tandem Repeats and Single Nucleotide Polymorphisms.. J Hered 2022 Jul 9;113(3):238-247.
    doi: 10.1093/jhered/esab070pmc: PMC9270868pubmed: 34893836google scholar: lookup
  28. Knorr F. A History of the Arabian Horse and Its Influence on Modern Breeds. J. Hered. 1912;3:174u2013180. doi: 10.1093/oxfordjournals.jhered.a105899.
  29. Nolte W, Thaller G, Kuehn C. Selection signatures in four German warmblood horse breeds: Tracing breeding history in the modern sport horse.. PLoS One 2019;14(4):e0215913.
  30. Ma S, Dubin AE, Zhang Y, Mousavi SAR, Wang Y, Coombs AM, Loud M, Andolfo I, Patapoutian A. A role of PIEZO1 in iron metabolism in mice and humans.. Cell 2021 Feb 18;184(4):969-982.e13.
    doi: 10.1016/j.cell.2021.01.024pmc: PMC7927959pubmed: 33571427google scholar: lookup
  31. Wang L, You X, Lotinun S, Zhang L, Wu N, Zou W. Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast crosstalk.. Nat Commun 2020 Jan 15;11(1):282.
    doi: 10.1038/s41467-019-14146-6pmc: PMC6962448pubmed: 31941964google scholar: lookup
  32. Zhang W, Li J, Guo Y, Zhang L, Xu L, Gao X, Zhu B, Gao H, Ni H, Chen Y. Multi-strategy genome-wide association studies identify the DCAF16-NCAPG region as a susceptibility locus for average daily gain in cattle.. Sci Rep 2016 Nov 28;6:38073.
    doi: 10.1038/srep38073pmc: PMC5125095pubmed: 27892541google scholar: lookup
  33. Szmatou0142a T, Gurgul A, Jasielczuk I, Oclon E, Ropka-Molik K, Stefaniuk-Szmukier M, Polak G, Tomczyk-Wrona I, Bugno-Poniewierska M. Assessment and Distribution of Runs of Homozygosity in Horse Breeds Representing Different Utility Types.. Animals (Basel) 2022 Nov 25;12(23).
    doi: 10.3390/ani12233293pmc: PMC9736150pubmed: 36496815google scholar: lookup
  34. Legrand R, Tiret L, Abitbol M. Two recessive mutations in FGF5 are associated with the long-hair phenotype in donkeys.. Genet Sel Evol 2014 Sep 25;46(1):65.
    doi: 10.1186/s12711-014-0065-5pmc: PMC4175617pubmed: 25927731google scholar: lookup
  35. Haythorn A, Young M, Stanton J, Zhang J, Mueller POE, Halper J. Differential gene expression in skin RNA of horses affected with degenerative suspensory ligament desmitis.. J Orthop Surg Res 2020 Oct 7;15(1):460.
    doi: 10.1186/s13018-020-01994-ypmc: PMC7541307pubmed: 33028365google scholar: lookup
  36. Bao Q, Ma X, Jia C, Wu X, Wu Y, Meng G, Bao P, Chu M, Guo X, Liang C, Yan P. Resequencing and Signatures of Selective Scans Point to Candidate Genetic Variants for Hair Length Traits in Long-Haired and Normal-Haired Tianzhu White Yak.. Front Genet 2022;13:798076.
    doi: 10.3389/fgene.2022.798076pmc: PMC8962741pubmed: 35360871google scholar: lookup
  37. Waldmann I, Spillner C, Kehlenbach RH. The nucleoporin-like protein NLP1 (hCG1) promotes CRM1-dependent nuclear protein export.. J Cell Sci 2012 Jan 1;125(Pt 1):144-54.
    doi: 10.1242/jcs.090316pubmed: 22250199google scholar: lookup
  38. Cho YK, Son Y, Saha A, Kim D, Choi C, Kim M, Park JH, Im H, Han J, Kim K, Jung YS, Yun J, Bae EJ, Seong JK, Lee MO, Lee S, Granneman JG, Lee YH. STK3/STK4 signalling in adipocytes regulates mitophagy and energy expenditure.. Nat Metab 2021 Mar;3(3):428-441.
    doi: 10.1038/s42255-021-00362-2pubmed: 33758424google scholar: lookup
  39. Ostrowski K, Rohde T, Asp S, Schjerling P, Pedersen BK. Chemokines are elevated in plasma after strenuous exercise in humans.. Eur J Appl Physiol 2001 Mar;84(3):244-5.
    doi: 10.1007/s004210170012pubmed: 11320643google scholar: lookup
  40. Capomaccio S, Cappelli K, Spinsanti G, Mencarelli M, Muscettola M, Felicetti M, Verini Supplizi A, Bonifazi M. Athletic humans and horses: comparative analysis of interleukin-6 (IL-6) and IL-6 receptor (IL-6R) expression in peripheral blood mononuclear cells in trained and untrained subjects at rest.. BMC Physiol 2011 Jan 21;11:3.
    doi: 10.1186/1472-6793-11-3pmc: PMC3036646pubmed: 21255427google scholar: lookup
  41. Chakraborty S, Kahali B. Exome-wide analysis reveals role of LRP1 and additional novel loci in cognition.. HGG Adv 2023 Jul 13;4(3):100208.
    doi: 10.1016/j.xhgg.2023.100208pmc: PMC10248556pubmed: 37305557google scholar: lookup
  42. Meech R, Gonzalez KN, Barro M, Gromova A, Zhuang L, Hulin JA, Makarenkova HP. Barx2 is expressed in satellite cells and is required for normal muscle growth and regeneration.. Stem Cells 2012 Feb;30(2):253-65.
    doi: 10.1002/stem.777pmc: PMC4547831pubmed: 22076929google scholar: lookup
  43. Tanioku T, Nishibata M, Tokinaga Y, Konno K, Watanabe M, Hemmi H, Fukuda-Ohta Y, Kaisho T, Furue H, Kawamata T. Tmem45b is essential for inflammation- and tissue injury-induced mechanical pain hypersensitivity.. Proc Natl Acad Sci U S A 2022 Nov 8;119(45):e2121989119.
    doi: 10.1073/pnas.2121989119pmc: PMC9659417pubmed: 36322717google scholar: lookup
  44. Chen C, Zhu B, Tang X, Chen B, Liu M, Gao N, Li S, Gu J. Genome-Wide Assessment of Runs of Homozygosity by Whole-Genome Sequencing in Diverse Horse Breeds Worldwide.. Genes (Basel) 2023 Jun 1;14(6).
    doi: 10.3390/genes14061211pmc: PMC10298080pubmed: 37372391google scholar: lookup
  45. McGivney BA, Hernandez B, Katz LM, MacHugh DE, McGovern SP, Parnell AC, Wiencko HL, Hill EW. A genomic prediction model for racecourse starts in the Thoroughbred horse.. Anim Genet 2019 Aug;50(4):347-357.
    doi: 10.1111/age.12798pubmed: 31257665google scholar: lookup
  46. Grilz-Seger G, Neuditschko M, Ricard A, Velie B, Lindgren G, Mesariu010d M, Cotman M, Horna M, Dobretsberger M, Brem G, Druml T. Genome-Wide Homozygosity Patterns and Evidence for Selection in a Set of European and Near Eastern Horse Breeds.. Genes (Basel) 2019 Jun 28;10(7).
    doi: 10.3390/genes10070491pmc: PMC6679042pubmed: 31261764google scholar: lookup
  47. Babaev O, Cruces-Solis H, Piletti Chatain C, Hammer M, Wenger S, Ali H, Karalis N, de Hoz L, Schlu00fcter OM, Yanagawa Y, Ehrenreich H, Taschenberger H, Brose N, Krueger-Burg D. IgSF9b regulates anxiety behaviors through effects on centromedial amygdala inhibitory synapses.. Nat Commun 2018 Dec 20;9(1):5400.
    doi: 10.1038/s41467-018-07762-1pmc: PMC6302093pubmed: 30573727google scholar: lookup
  48. Witkowski M, Duliban M, Rak A, Profaska-Szymik M, Gurgul A, Arent ZJ, Galuszka A, Kotula-Balak M. Next-Generation Sequencing analysis discloses genes implicated in equine endometrosis that may lead to tumorigenesis.. Theriogenology 2022 Sep 1;189:158-166.
  49. Alpoim-Moreira J, Fernandes C, Rebordu00e3o MR, Amaral A, Pinto-Bravo P, Bliebernicht M, Skarzynski DJ, Ferreira-Dias G. Collagens and DNA methyltransferases in mare endometrosis.. Reprod Domest Anim 2019 Sep;54 Suppl 3:46-52.
    doi: 10.1111/rda.13515pubmed: 31512314google scholar: lookup
  50. Deutschman E, Ward JR, Kumar A, Ray G, Welch N, Lemieux ME, Dasarathy S, Longworth MS. Condensin II protein dysfunction impacts mitochondrial respiration and mitochondrial oxidative stress responses.. J Cell Sci 2019 Nov 20;132(22).
    doi: 10.1242/jcs.233783pmc: PMC6899004pubmed: 31653782google scholar: lookup
  51. Momen M, Brounts SH, Binversie EE, Sample SJ, Rosa GJM, Davis BW, Muir P. Selection signature analyses and genome-wide association reveal genomic hotspot regions that reflect differences between breeds of horse with contrasting risk of degenerative suspensory ligament desmitis.. G3 (Bethesda) 2022 Sep 30;12(10).
    doi: 10.1093/g3journal/jkac179pmc: PMC9526059pubmed: 35866615google scholar: lookup
  52. Li H, Xu S, Gao X, Ren H. Structure of the bovine ACAD8 gene and the association of its polymorphism with the production traits.. J Genet Genomics 2007 Apr;34(4):315-20.
    doi: 10.1016/S1673-8527(07)60033-2pubmed: 17498629google scholar: lookup
  53. Fan Y, Shen S, Yang J, Yao D, Li M, Mao C, Wang Y, Hao X, Ma D, Li J, Shi J, Guo M, Li S, Yuan Y, Liu F, Yang Z, Zhang S, Hu Z, Fan L, Liu H, Zhang C, Wang Y, Wang Q, Zheng H, He Y, Song B, Xu Y, Shi C. GIPC1 CGG Repeat Expansion Is Associated with Movement Disorders.. Ann Neurol 2022 May;91(5):704-715.
    doi: 10.1002/ana.26325pubmed: 35152460google scholar: lookup
  54. Wang Q, Li D, Cao G, Shi Q, Zhu J, Zhang M, Cheng H, Wen Q, Xu H, Zhu L, Zhang H, Perry RJ, Spadaro O, Yang Y, He S, Chen Y, Wang B, Li G, Liu Z, Yang C, Wu X, Zhou L, Zhou Q, Ju Z, Lu H, Xin Y, Yang X, Wang C, Liu Y, Shulman GI, Dixit VD, Lu L, Yang H, Flavell RA, Yin Z. IL-27 signalling promotes adipocyte thermogenesis and energy expenditure.. Nature 2021 Dec;600(7888):314-318.
    doi: 10.1038/s41586-021-04127-5pubmed: 34819664google scholar: lookup
  55. Calvez J, de u00c1vila C, Timofeeva E. Sex-specific effects of relaxin-3 on food intake and body weight gain.. Br J Pharmacol 2017 May;174(10):1049-1060.
    doi: 10.1111/bph.13530pmc: PMC5406289pubmed: 27245781google scholar: lookup
  56. Bundgaard L, u00c5hrman E, Malmstru00f6m J, Auf dem Keller U, Walters M, Jacobsen S. Effective protein extraction combined with data independent acquisition analysis reveals a comprehensive and quantifiable insight into the proteomes of articular cartilage and subchondral bone.. Osteoarthritis Cartilage 2022 Jan;30(1):137-146.
    doi: 10.1016/j.joca.2021.09.006pubmed: 34547431google scholar: lookup
  57. Xu L, Humphries F, Delagic N, Wang B, Holland A, Edgar KS, Hombrebueno JR, Stolz DB, Oleszycka E, Rodgers AM, Glezeva N, McDonald K, Watson CJ, Ledwidge MT, Ingram RJ, Grieve DJ, Moynagh PN. ECSIT is a critical limiting factor for cardiac function.. JCI Insight 2021 Jun 22;6(12).
    doi: 10.1172/jci.insight.142801pmc: PMC8262467pubmed: 34032637google scholar: lookup
  58. Teng Z, Zhu Y, Lin D, Hao Q, Yue Q, Yu X, Sun S, Jiang L, Lu S. Deciphering the chromatin spatial organization landscapes during BMMSC differentiation.. J Genet Genomics 2023 Apr;50(4):264-275.
    doi: 10.1016/j.jgg.2023.01.009pubmed: 36720443google scholar: lookup
  59. Bisom TC, White LA, Lanchy JM, Lodmell JS. RIOK3 and Its Alternatively Spliced Isoform Have Disparate Roles in the Innate Immune Response to Rift Valley Fever Virus (MP12) Infection.. Viruses 2022 Sep 17;14(9).
    doi: 10.3390/v14092064pmc: PMC9502082pubmed: 36146870google scholar: lookup
  60. Grilz-Seger G, Druml T, Neuditschko M, Mesariu010d M, Cotman M, Brem G. Analysis of ROH patterns in the Noriker horse breed reveals signatures of selection for coat color and body size.. Anim Genet 2019 Aug;50(4):334-346.
    doi: 10.1111/age.12797pmc: PMC6617995pubmed: 31199540google scholar: lookup
  61. Huang HL, Li C, Ma W, Yin S, Zhao H, Deng S, Shu X, Wu D, Li J, Huang R, Cheng N, Huang J, Li Z. Sorting nexin 11 knockout mice exhibit enhanced thermosensing behaviour.. Genes Brain Behav 2020 Jul;19(6):e12625.
    doi: 10.1111/gbb.12625pubmed: 31730264google scholar: lookup
  62. Ren S, Bian Y, Hou Y, Wang Z, Zuo Z, Liu Z, Teng Y, Fu J, Wang H, Xu Y, Zhang Q, Chen Y, Pi J. The roles of NFE2L1 in adipocytes: Structural and mechanistic insight from cell and mouse models.. Redox Biol 2021 Aug;44:102015.
    doi: 10.1016/j.redox.2021.102015pmc: PMC8170497pubmed: 34058615google scholar: lookup
  63. Kuroda Y, Iwata-Otsubo A, Dias KR, Temple SEL, Nagao K, De Hayr L, Zhu Y, Isobe SY, Nishibuchi G, Fiordaliso SK, Fujita Y, Rippert AL, Baker SW, Leung ML, Koboldt DC, Harman A, Keena BA, Kazama I, Subramanian GM, Manickam K, Schmalz B, Latsko M, Zackai EH, Edwards M, Evans CA, Dulik MC, Buckley MF, Yamashita T, O'Brien WT, Harvey RJ, Obuse C, Roscioli T, Izumi K. Dominant-negative variants in CBX1 cause a neurodevelopmental disorder.. Genet Med 2023 Jul;25(7):100861.
    doi: 10.1016/j.gim.2023.100861pubmed: 37087635google scholar: lookup
  64. Hunyady u00c1, Hajna Z, Gubu00e1nyi T, Scheich B, Kemu00e9ny u00c1, Gaszner B, Borbu00e9ly u00c9, Helyes Z. Hemokinin-1 is an important mediator of pain in mouse models of neuropathic and inflammatory mechanisms.. Brain Res Bull 2019 Apr;147:165-173.
  65. Sun K, Jing X, Guo J, Yao X, Guo F. Mitophagy in degenerative joint diseases.. Autophagy 2021 Sep;17(9):2082-2092.
  66. Han H, McGivney BA, Allen L, Bai D, Corduff LR, Davaakhuu G, Davaasambuu J, Dorjgotov D, Hall TJ, Hemmings AJ, Holtby AR, Jambal T, Jargalsaikhan B, Jargalsaikhan U, Kadri NK, MacHugh DE, Pausch H, Readhead C, Warburton D, Dugarjaviin M, Hill EW. Common protein-coding variants influence the racing phenotype in galloping racehorse breeds.. Commun Biol 2022 Dec 13;5(1):1320.
    doi: 10.1038/s42003-022-04206-xpmc: PMC9748125pubmed: 36513809google scholar: lookup
  67. Wu C, Tan S, Liu L, Cheng S, Li P, Li W, Liu H, Zhang F, Wang S, Ning Y, Wen Y, Zhang F. Transcriptome-wide association study identifies susceptibility genes for rheumatoid arthritis.. Arthritis Res Ther 2021 Jan 22;23(1):38.
    doi: 10.1186/s13075-021-02419-9pmc: PMC7821659pubmed: 33482886google scholar: lookup
  68. Catomeris AJ, Ballios BG, Sangermano R, Wagner NE, Comander JI, Pierce EA, Place EM, Bujakowska KM, Huckfeldt RM. Novel RCBTB1 variants causing later-onset non-syndromic retinal dystrophy with macular chorioretinal atrophy.. Ophthalmic Genet 2022 Jun;43(3):332-339.
  69. Aomine Y, Sakurai K, Macpherson T, Ozawa T, Miyamoto Y, Yoneda Y, Oka M, Hikida T. Importin u03b13 (KPNA3) Deficiency Augments Effortful Reward-Seeking Behavior in Mice.. Front Neurosci 2022;16:905991.
    doi: 10.3389/fnins.2022.905991pmc: PMC9279672pubmed: 35844217google scholar: lookup
  70. Brunner SM, Schru00f6dl F, Preishuber-Pflu00fcgl J, Runge C, Koller A, Lenzhofer M, Reitsamer HA, Trost A. Distribution of the cysteinyl leukotriene system components in the human, rat and mouse eye.. Exp Eye Res 2023 Jul;232:109517.
    doi: 10.1016/j.exer.2023.109517pubmed: 37211287google scholar: lookup
  71. Kane M, Mele V, Liberatore RA, Bieniasz PD. Inhibition of spumavirus gene expression by PHF11.. PLoS Pathog 2020 Jul;16(7):e1008644.
  72. Rostampour N, Appelt CM, Abid A, Boughner JC. Expression of new genes in vertebrate tooth development and p63 signaling.. Dev Dyn 2019 Aug;248(8):744-755.
    doi: 10.1002/dvdy.26pubmed: 30875130google scholar: lookup
  73. Cisneros-Larios B, Elias CF. Sex differences in the coexpression of prokineticin receptor 2 and gonadal steroids receptors in mice.. Front Neuroanat 2022;16:1057727.
    doi: 10.3389/fnana.2022.1057727pmc: PMC9853983pubmed: 36686573google scholar: lookup
  74. Martinez-Mayer J, Perez-Millan MI. Phenotypic and genotypic landscape of PROKR2 in neuroendocrine disorders.. Front Endocrinol (Lausanne) 2023;14:1132787.
    doi: 10.3389/fendo.2023.1132787pmc: PMC9945519pubmed: 36843573google scholar: lookup

Citations

This article has been cited 0 times.