Genome-Wide Homozygosity Patterns and Evidence for Selection in a Set of European and Near Eastern Horse Breeds.
Abstract: Intensive artificial and natural selection have shaped substantial variation among European horse breeds. Whereas most equine selection signature studies employ divergent genetic population structures in order to derive specific inter-breed targets of selection, we screened a total of 1476 horses originating from 12 breeds for the loss of genetic diversity by runs of homozygosity (ROH) utilizing a 670,000 single nucleotide polymorphism (SNP) genotyping array. Overlapping homozygous regions (ROH islands) indicating signatures of selection were identified by breed and similarities/dissimilarities between populations were evaluated. In the entire dataset, 180 ROH islands were identified, whilst 100 islands were breed specific, all other overlapped in 36 genomic regions with at least one ROH island of another breed. Furthermore, two ROH hot spots were determined at horse chromosome 3 (ECA3) and ECA11. Besides the confirmation of previously documented target genes involved in selection for coat color (, , ), body size (, , , ), racing ability (), behavioral traits (, ) and gait patterns (), several putative target genes related to embryonic morphogenesis (), energy metabolism (, -), hair follicle morphogenesis (, , ) and autophagy () were highlighted. Furthermore, genes were pinpointed which might be involved in environmental adaptation of specific habitats (, , , , ).
Publication Date: 2019-06-28 PubMed ID: 31261764PubMed Central: PMC6679042DOI: 10.3390/genes10070491Google Scholar: Lookup The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
- Journal Article
- Research Support
- Non-U.S. Gov't
Summary
This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.
The study is about investigating genetic variation among European horse breeds through findings obtained from 1476 horses across 12 breeds using runs of homozygosity to analyse the loss of genetic diversity in the horse breeds.
Methodology
- A total of 1476 horses belonging to 12 different European and Near Eastern breeds were studied. The breeds chosen for the study represent a wide spectrum of selection goals ranging from coat color to agility traits.
- The process called runs of homozygosity (ROH) was used. ROH is essentially the unbroken sequence of identical markers inherited from both parents, indicating possible regions of the horse’s genome where selection might have taken place.
- A genotyping array that features 670,000 single nucleotide polymorphisms (SNPs) or genetic markers was used to screen the horses. SNPs represent variations at a single position in a DNA sequence among individuals.
Findings
- In all, 180 overlapping homozygous regions (referred to as ROH islands) were identified, which could potentially indicate areas of selection.
- Out of these, 100 ROH islands were unique to certain breeds, while the rest were common to at least two different breeds.
- Two notable ROH hot spots were observed on horse chromosome 3 (ECA3) and 11 (ECA11).
Genes Influencing Traits
- The findings corroborated earlier studies on target genes influencing coat color, body size, racing ability, behavioral traits, and gait patterns.
- Genes potentially influencing embryonic morphogenesis (early developmental stage), energy metabolism (processing of food for energy), hair follicle morphogenesis (development of hair follicles), and autophagy (cell’s self-destruction mechanism) were highlighted in this study.
- Interestingly, the study also pointed out genes that might be connected with the ability of the horse breeds to adapt to specific environments or habitats.
Implications
- The genetic signature of selection observed in these horse breeds, determined by overlapping areas of homozygosity, provides valuable insights into how natural and artificial selection can shape the genetic diversity within animals species.
- This information could be vital for genetic conservation of these breeds and understanding genetic predisposition to certain traits and diseases. It can also contribute to the fundamental understanding of the action of selection on the equine genome.
Cite This Article
APA
Grilz-Seger G, Neuditschko M, Ricard A, Velie B, Lindgren G, Mesariu010d M, Cotman M, Horna M, Dobretsberger M, Brem G, Druml T.
(2019).
Genome-Wide Homozygosity Patterns and Evidence for Selection in a Set of European and Near Eastern Horse Breeds.
Genes (Basel), 10(7), 491.
https://doi.org/10.3390/genes10070491 Publication
Researcher Affiliations
- Institute of Animal Breeding and Genetics, University of Veterinary Sciences Vienna, Veterinu00e4rplatz 1, 1210 Vienna, Austria. gertrud.grilz@vetmeduni.ac.at.
- Agroscope, Swiss National Stud Farm, Les Longs Pru00e9s, CH-1580 Avenches, Switzerland. markus.neuditschko@agroscope.admin.ch.
- UMR 1313 Gu00e9nu00e9tique Animale et Biologie Intu00e9grative, Institut National de la Recherche Agronomique, Domaine de Vilvert, Bat 211, 78352 Jouy-en-Josas, France. anne.ricard@inra.fr.
- Department of Animal Breeding & Genetics, Swedish University of Agricultural Sciences, Ulls vu00e4g 26, 750 07 Uppsala, Sweden. brandon.velie@sydney.edu.au.
- School of Life and Environmental Sciences, University of Sydney, Eastern Ave, 2006 NSW Sydney, Australia. brandon.velie@sydney.edu.au.
- Department of Animal Breeding & Genetics, Swedish University of Agricultural Sciences, Ulls vu00e4g 26, 750 07 Uppsala, Sweden. gabriella.lindgren@slu.se.
- Livestock Genetics, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium. gabriella.lindgren@slu.se.
- Clinic for Reproduction and Large Animals, University of Ljubljana, Veterinary, Faculty, Cesta v Mestni log 47, 1000 Ljubljana, Slovenia. Matjaz.Mesaric@vf.uni-lj.si.
- Institute for Preclinical Sciences, University of Ljubljana, Veterinary Faculty, Gerbiu010deva 60, 1000 Ljubljana, Slovenia. marko.cotman@vf.uni-lj.si.
- Department of Animal Husbandry, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia. michaela.horna@post.sk.
- Institute of Animal Breeding and Genetics, University of Veterinary Sciences Vienna, Veterinu00e4rplatz 1, 1210 Vienna, Austria. maximilian.dobretsberger@vetmeduni.ac.at.
- Institute of Animal Breeding and Genetics, University of Veterinary Sciences Vienna, Veterinu00e4rplatz 1, 1210 Vienna, Austria. gottfried.brem@vetmeduni.ac.at.
- Institute of Animal Breeding and Genetics, University of Veterinary Sciences Vienna, Veterinu00e4rplatz 1, 1210 Vienna, Austria. thomas.druml@vetmeduni.ac.at.
MeSH Terms
- Agouti Signaling Protein / genetics
- Animals
- Basic-Leucine Zipper Transcription Factors / genetics
- Breeding
- Carrier Proteins / genetics
- Cell Adhesion Molecules / genetics
- Cytoskeletal Proteins / genetics
- Gene Ontology
- Genome
- HMGA2 Protein / genetics
- Homeodomain Proteins / genetics
- Homozygote
- Horses / genetics
- Insulin-Like Growth Factor Binding Proteins / genetics
- Keratins, Hair-Specific / genetics
- Membrane Proteins / genetics
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha / genetics
- Polymorphism, Single Nucleotide
- Repressor Proteins / genetics
- Transcription Factors / genetics
- Vesicular Transport Proteins / genetics
- ral GTP-Binding Proteins / genetics
Conflict of Interest Statement
Data Availability: The primary data of this study are owned by different research groups. Primary data of the breeds Lipizzan, Noriker, Haflinger, Akhal Teke, Shagya Arabian, Gidran, Bosnian Mountain Horse and Posavina are available from project consortium FFG project number 843464, Veterinary University Vienna, Xenogenetik, five European state stud farms and the Austrian and Slovenian Horse breeders Association, but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are however available from the authors upon reasonable request and with permission of project consortium, FFG project number 843464, Veterinary University Vienna, Xenogenetik and partners. Genotype data for the Exmoor Pony breed will be provided by contacting authors Lindgren/Velie or for a larger data set via the following reference: Velie, B.D.; Shrestha, M.; Franҫois, L.; Schurink, A.; Tesfayonas, Y.G.; Stinckens, A.; Blott, S.; Ducro, B.J.; Mikko, S.; Thomas, R.; Swinburne, J.E.; Sundqvist, M.; Eriksson, S.; Buys, N.; Lindgren, G. Using an inbred horse breed in a high density genome-wide scan for genetic risk factors of insect bite hypersensitivity (IBH). PLoS One. 2016, 11, e0152966.
References
This article includes 83 references
- Gu J, Orr N, Park SD, Katz LM, Sulimova G, MacHugh DE, Hill EW. A genome scan for positive selection in thoroughbred horses.. PLoS One 2009 Jun 2;4(6):e5767.
- Petersen JL, Mickelson JR, Cothran EG, Andersson LS, Axelsson J, Bailey E, Bannasch D, Binns MM, Borges AS, Brama P, da Cu00e2mara Machado A, Distl O, Felicetti M, Fox-Clipsham L, Graves KT, Guu00e9rin G, Haase B, Hasegawa T, Hemmann K, Hill EW, Leeb T, Lindgren G, Lohi H, Lopes MS, McGivney BA, Mikko S, Orr N, Penedo MC, Piercy RJ, Raekallio M, Rieder S, Ru00f8ed KH, Silvestrelli M, Swinburne J, Tozaki T, Vaudin M, M Wade C, McCue ME. Genetic diversity in the modern horse illustrated from genome-wide SNP data.. PLoS One 2013;8(1):e54997.
- Schaefer RJ, Schubert M, Bailey E, Bannasch DL, Barrey E, Bar-Gal GK, Brem G, Brooks SA, Distl O, Fries R, Finno CJ, Gerber V, Haase B, Jagannathan V, Kalbfleisch T, Leeb T, Lindgren G, Lopes MS, Mach N, da Cu00e2mara Machado A, MacLeod JN, McCoy A, Metzger J, Penedo C, Polani S, Rieder S, Tammen I, Tetens J, Thaller G, Verini-Supplizi A, Wade CM, Wallner B, Orlando L, Mickelson JR, McCue ME. Developing a 670k genotyping array to tag ~2M SNPs across 24 horse breeds.. BMC Genomics 2017 Jul 27;18(1):565.
- McCue ME, Bannasch DL, Petersen JL, Gurr J, Bailey E, Binns MM, Distl O, Guu00e9rin G, Hasegawa T, Hill EW, Leeb T, Lindgren G, Penedo MC, Ru00f8ed KH, Ryder OA, Swinburne JE, Tozaki T, Valberg SJ, Vaudin M, Lindblad-Toh K, Wade CM, Mickelson JR. A high density SNP array for the domestic horse and extant Perissodactyla: utility for association mapping, genetic diversity, and phylogeny studies.. PLoS Genet 2012 Jan;8(1):e1002451.
- Petersen JL, Mickelson JR, Rendahl AK, Valberg SJ, Andersson LS, Axelsson J, Bailey E, Bannasch D, Binns MM, Borges AS, Brama P, da Cu00e2mara Machado A, Capomaccio S, Cappelli K, Cothran EG, Distl O, Fox-Clipsham L, Graves KT, Guu00e9rin G, Haase B, Hasegawa T, Hemmann K, Hill EW, Leeb T, Lindgren G, Lohi H, Lopes MS, McGivney BA, Mikko S, Orr N, Penedo MC, Piercy RJ, Raekallio M, Rieder S, Ru00f8ed KH, Swinburne J, Tozaki T, Vaudin M, Wade CM, McCue ME. Genome-wide analysis reveals selection for important traits in domestic horse breeds.. PLoS Genet 2013;9(1):e1003211.
- Zhang C, Ni P, Ahmad HI, Gemingguli M, Baizilaitibei A, Gulibaheti D, Fang Y, Wang H, Asif AR, Xiao C, Chen J, Ma Y, Liu X, Du X, Zhao S. Detecting the Population Structure and Scanning for Signatures of Selection in Horses (Equus caballus) From Whole-Genome Sequencing Data.. Evol Bioinform Online 2018;14:1176934318775106.
- Gurgul A, Jasielczuk I, Semik-Gurgul E, Pawlina-Tyszko K, Stefaniuk-Szmukier M, Szmatou0142a T, Polak G, Tomczyk-Wrona I, Bugno-Poniewierska M. A genome-wide scan for diversifying selection signatures in selected horse breeds.. PLoS One 2019;14(1):e0210751.
- Schubert M, Ju00f3nsson H, Chang D, Der Sarkissian C, Ermini L, Ginolhac A, Albrechtsen A, Dupanloup I, Foucal A, Petersen B, Fumagalli M, Raghavan M, Seguin-Orlando A, Korneliussen TS, Velazquez AM, Stenderup J, Hoover CA, Rubin CJ, Alfarhan AH, Alquraishi SA, Al-Rasheid KA, MacHugh DE, Kalbfleisch T, MacLeod JN, Rubin EM, Sicheritz-Ponten T, Andersson L, Hofreiter M, Marques-Bonet T, Gilbert MT, Nielsen R, Excoffier L, Willerslev E, Shapiro B, Orlando L. Prehistoric genomes reveal the genetic foundation and cost of horse domestication.. Proc Natl Acad Sci U S A 2014 Dec 30;111(52):E5661-9.
- Librado P, Gamba C, Gaunitz C, Der Sarkissian C, Pruvost M, Albrechtsen A, Fages A, Khan N, Schubert M, Jagannathan V, Serres-Armero A, Kuderna LFK, Povolotskaya IS, Seguin-Orlando A, Lepetz S, Neuditschko M, Thu00e8ves C, Alquraishi S, Alfarhan AH, Al-Rasheid K, Rieder S, Samashev Z, Francfort HP, Benecke N, Hofreiter M, Ludwig A, Keyser C, Marques-Bonet T, Ludes B, Crubu00e9zy E, Leeb T, Willerslev E, Orlando L. Ancient genomic changes associated with domestication of the horse.. Science 2017 Apr 28;356(6336):442-445.
- Lewontin RC, Krakauer J. Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms.. Genetics 1973 May;74(1):175-95.
- Fariello MI, Boitard S, Naya H, SanCristobal M, Servin B. Detecting signatures of selection through haplotype differentiation among hierarchically structured populations.. Genetics 2013 Mar;193(3):929-41.
- Peripolli E, Stafuzza NB, Munari DP, Lima ALF, Irgang R, Machado MA, Panetto JCDC, Ventura RV, Baldi F, da Silva MVGB. Assessment of runs of homozygosity islands and estimates of genomic inbreeding in Gyr (Bos indicus) dairy cattle.. BMC Genomics 2018 Jan 9;19(1):34.
- Peripolli E, Metzger J, de Lemos MVA, Stafuzza NB, Kluska S, Olivieri BF, Feitosa FLB, Berton MP, Lopes FB, Munari DP, Lu00f4bo RB, Magnabosco CU, Di Croce F, Osterstock J, Denise S, Pereira ASC, Baldi F. Autozygosity islands and ROH patterns in Nellore lineages: evidence of selection for functionally important traits.. BMC Genomics 2018 Sep 17;19(1):680.
- Bertolini F, Cardoso TF, Marras G, Nicolazzi EL, Rothschild MF, Amills M. Genome-wide patterns of homozygosity provide clues about the population history and adaptation of goats.. Genet Sel Evol 2018 Nov 19;50(1):59.
- Mastrangelo S, Tolone M, Sardina MT, Sottile G, Sutera AM, Di Gerlando R, Portolano B. Genome-wide scan for runs of homozygosity identifies potential candidate genes associated with local adaptation in Valle del Belice sheep.. Genet Sel Evol 2017 Nov 14;49(1):84.
- Metzger J, Karwath M, Tonda R, Beltran S, u00c1gueda L, Gut M, Gut IG, Distl O. Runs of homozygosity reveal signatures of positive selection for reproduction traits in breed and non-breed horses.. BMC Genomics 2015 Oct 9;16:764.
- Grilz-Seger G, Druml T, Neuditschko M, Mesariu010d M, Cotman M, Brem G. Analysis of ROH patterns in the Noriker horse breed reveals signatures of selection for coat color and body size.. Anim Genet 2019 Aug;50(4):334-346.
- Grilz-Seger G, Druml T, Neuditschko M, Dobretsberger M, Horna M, Brem G. High-resolution population structure and runs of homozygosity reveal the genetic architecture of complex traits in the Lipizzan horse.. BMC Genomics 2019 Mar 5;20(1):174.
- Velie BD, Solu00e9 M, Fegraeus KJ, Rosengren MK, Ru00f8ed KH, Ihler CF, Strand E, Lindgren G. Genomic measures of inbreeding in the Norwegian-Swedish Coldblooded Trotter and their associations with known QTL for reproduction and health traits.. Genet Sel Evol 2019 May 27;51(1):22.
- Grilz-Seger G., Mesariu010d M., Cotman M., Neuditschko M., Druml T., Brem G. Runs of homozygosity and population history of three horse breeds with small population size. J. Equine Vet. Sci. 2018;71:27u201334. doi: 10.1016/j.jevs.2018.09.004.
- Nolte W, Thaller G, Kuehn C. Selection signatures in four German warmblood horse breeds: Tracing breeding history in the modern sport horse.. PLoS One 2019;14(4):e0215913.
- Stud-Book Selle Franu00e7ais. [(accessed on 17 June 2019)]; Available online: http://en.sellefrancais.fr/la-race-selle-francais-82-rubrique.html.
- Equipedia Ifce. [(accessed on 17 June 2019)]; Available online: https://equipedia.ifce.fr/elevage-et-entretien/race-et-robe/races-dequides-et-stud-book/trotteur-francais.html.
- Lipizzan International Federation. [(accessed on 17 June 2019)]; Available online: http://www.lipizzan-online.com/main.asp?kat1=64&kat2=543&kat3=&vid=1.
- Zentrale Arbeitsgemeinschaft u00d6sterreichischer Pferdezu00fcchter. [(accessed on 17 June 2019)]; Available online: https://www.pferdezucht-austria.at/main.asp?kat1=2119&kat2=2817&kat3=728.
- Zentrale Arbeitsgemeinschaft u00d6sterreichischer Pferdezu00fcchter. [(accessed on 17 June 2019)]; Available online: https://www.pferdezucht-austria.at/main.asp?kat1=2119&kat2=2816&kat3=661.
- Mesaric M. Posavina Zucht in Slowenien. In: Grilz-Seger G., Druml T., editors. Das Posavina Pferd. Vehling Verlag; Graz, Austria: 2018. pp. 57u201371.
- Mihok S. A Gidran lo Monografiaja. Debrecen, Hungary: 2006.
- ISG-Shagya-Araber. [(accessed on 17 June 2019)]; Available online: http://isg-shagya-araber.de/index.php?entstehungsgeschichte-der-isg-2.
- Mesaric M., Dolinsek A., Dovc P. Bosnian Mountain Horse. PLANIDO-A.&A. Dolinsek, and the International Association of Bosnian Mountain Horse Breeders; Ljubljana, Slovenia: 2015.
- Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S, Imsland F, Lear TL, Adelson DL, Bailey E, Bellone RR, Blu00f6cker H, Distl O, Edgar RC, Garber M, Leeb T, Mauceli E, MacLeod JN, Penedo MC, Raison JM, Sharpe T, Vogel J, Andersson L, Antczak DF, Biagi T, Binns MM, Chowdhary BP, Coleman SJ, Della Valle G, Fryc S, Guu00e9rin G, Hasegawa T, Hill EW, Jurka J, Kiialainen A, Lindgren G, Liu J, Magnani E, Mickelson JR, Murray J, Nergadze SG, Onofrio R, Pedroni S, Piras MF, Raudsepp T, Rocchi M, Ru00f8ed KH, Ryder OA, Searle S, Skow L, Swinburne JE, Syvu00e4nen AC, Tozaki T, Valberg SJ, Vaudin M, White JR, Zody MC, Lander ES, Lindblad-Toh K. Genome sequence, comparative analysis, and population genetics of the domestic horse.. Science 2009 Nov 6;326(5954):865-7.
- Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses.. Am J Hum Genet 2007 Sep;81(3):559-75.
- SAS Institute . SAS Version 9.1. SAS Institute; Cary, NC, USA: 2009.
- Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.. Nat Protoc 2009;4(1):44-57.
- Makvandi-Nejad S, Hoffman GE, Allen JJ, Chu E, Gu E, Chandler AM, Loredo AI, Bellone RR, Mezey JG, Brooks SA, Sutter NB. Four loci explain 83% of size variation in the horse.. PLoS One 2012;7(7):e39929.
- Pearson JC, Lemons D, McGinnis W. Modulating Hox gene functions during animal body patterning.. Nat Rev Genet 2005 Dec;6(12):893-904.
- Andersson LS, Larhammar M, Memic F, Wootz H, Schwochow D, Rubin CJ, Patra K, Arnason T, Wellbring L, Hju00e4lm G, Imsland F, Petersen JL, McCue ME, Mickelson JR, Cothran G, Ahituv N, Roepstorff L, Mikko S, Vallstedt A, Lindgren G, Andersson L, Kullander K. Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice.. Nature 2012 Aug 30;488(7413):642-6.
- Rieder S, Taourit S, Mariat D, Langlois B, Guu00e9rin G. Mutations in the agouti (ASIP), the extension (MC1R), and the brown (TYRP1) loci and their association to coat color phenotypes in horses (Equus caballus).. Mamm Genome 2001 Jun;12(6):450-5.
- Higa M, Zhang X, Tanaka K, Saijo M. Stabilization of Ultraviolet (UV)-stimulated Scaffold Protein A by Interaction with Ubiquitin-specific Peptidase 7 Is Essential for Transcription-coupled Nucleotide Excision Repair.. J Biol Chem 2016 Jun 24;291(26):13771-9.
- Donnelly MP, Paschou P, Grigorenko E, Gurwitz D, Barta C, Lu RB, Zhukova OV, Kim JJ, Siniscalco M, New M, Li H, Kajuna SL, Manolopoulos VG, Speed WC, Pakstis AJ, Kidd JR, Kidd KK. A global view of the OCA2-HERC2 region and pigmentation.. Hum Genet 2012 May;131(5):683-96.
- Signer-Hasler H, Flury C, Haase B, Burger D, Simianer H, Leeb T, Rieder S. A genome-wide association study reveals loci influencing height and other conformation traits in horses.. PLoS One 2012;7(5):e37282.
- Cunningham P. The Genetics of Thoroughbred Horses. Sci. Am. 1991;264:92u201399. doi: 10.1038/scientificamerican0591-92.
- Bower MA, McGivney BA, Campana MG, Gu J, Andersson LS, Barrett E, Davis CR, Mikko S, Stock F, Voronkova V, Bradley DG, Fahey AG, Lindgren G, MacHugh DE, Sulimova G, Hill EW. The genetic origin and history of speed in the Thoroughbred racehorse.. Nat Commun 2012 Jan 24;3:643.
- Binns MM, Boehler DA, Bailey E, Lear TL, Cardwell JM, Lambert DH. Inbreeding in the Thoroughbred horse.. Anim Genet 2012 Jun;43(3):340-2.
- Hill EW, Gu J, McGivney BA, MacHugh DE. Targets of selection in the Thoroughbred genome contain exercise-relevant gene SNPs associated with elite racecourse performance.. Anim Genet 2010 Dec;41 Suppl 2:56-63.
- Tomlinson DJ, Mu00fclling CH, Fakler TM. Invited review: formation of keratins in the bovine claw: roles of hormones, minerals, and vitamins in functional claw integrity.. J Dairy Sci 2004 Apr;87(4):797-809.
- Thomer A, Gottschalk M, Christmann A, Naccache F, Jung K, Hewicker-Trautwein M, Distl O, Metzger J. An epistatic effect of KRT25 on SP6 is involved in curly coat in horses.. Sci Rep 2018 Apr 23;8(1):6374.
- Morgenthaler C, Diribarne M, Capitan A, Legendre R, Saintilan R, Gilles M, Esquerru00e9 D, Juras R, Khanshour A, Schibler L, Cothran G. A missense variant in the coil1A domain of the keratin 25 gene is associated with the dominant curly hair coat trait (Crd) in horse.. Genet Sel Evol 2017 Nov 15;49(1):85.
- Ludwig A, Pruvost M, Reissmann M, Benecke N, Brockmann GA, Castau00f1os P, Cieslak M, Lippold S, Llorente L, Malaspinas AS, Slatkin M, Hofreiter M. Coat color variation at the beginning of horse domestication.. Science 2009 Apr 24;324(5926):485.
- Wutke S, Benecke N, Sandoval-Castellanos E, Du00f6hle HJ, Friederich S, Gonzalez J, Hallsson JH, Hofreiter M, Lu00f5ugas L, Magnell O, Morales-Muniz A, Orlando L, Pu00e1lsdu00f3ttir AH, Reissmann M, Ruttkay M, Trinks A, Ludwig A. Spotted phenotypes in horses lost attractiveness in the Middle Ages.. Sci Rep 2016 Dec 7;6:38548.
- Marklund L, Moller MJ, Sandberg K, Andersson L. A missense mutation in the gene for melanocyte-stimulating hormone receptor (MC1R) is associated with the chestnut coat color in horses.. Mamm Genome 1996 Dec;7(12):895-9.
- Zechner P., Su00f6lkner J., Bodo I., Druml T., Baumung R., Achmann R., Marti E., Habe F., Brem G. Analysis of diversity and population structure in the Lipizzan horse breed based on pedigree information. Livest. Prod. Sci. 2002;77:137u2013146. doi: 10.1016/S0301-6226(02)00079-9.
- Takagishi T, Hara T, Fukada T. Recent Advances in the Role of SLC39A/ZIP Zinc Transporters In Vivo.. Int J Mol Sci 2017 Dec 13;18(12).
- Kozyrev SV, Abelson AK, Wojcik J, Zaghlool A, Linga Reddy MV, Sanchez E, Gunnarsson I, Svenungsson E, Sturfelt G, Ju00f6nsen A, Truedsson L, Pons-Estel BA, Witte T, D'Alfonso S, Barizzone N, Danieli MG, Gutierrez C, Suarez A, Junker P, Laustrup H, Gonzu00e1lez-Escribano MF, Martin J, Abderrahim H, Alarcu00f3n-Riquelme ME. Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus.. Nat Genet 2008 Feb;40(2):211-6.
- Wullaert A, Bonnet MC, Pasparakis M. NF-u03baB in the regulation of epithelial homeostasis and inflammation.. Cell Res 2011 Jan;21(1):146-58.
- Bellone RR, Liu J, Petersen JL, Mack M, Singer-Berk M, Dru00f6gemu00fcller C, Malvick J, Wallner B, Brem G, Penedo MC, Lassaline M. A missense mutation in damage-specific DNA binding protein 2 is a genetic risk factor for limbal squamous cell carcinoma in horses.. Int J Cancer 2017 Jul 15;141(2):342-353.
- Rosengren Pielberg G, Golovko A, Sundstru00f6m E, Curik I, Lennartsson J, Seltenhammer MH, Druml T, Binns M, Fitzsimmons C, Lindgren G, Sandberg K, Baumung R, Vetterlein M, Stru00f6mberg S, Grabherr M, Wade C, Lindblad-Toh K, Pontu00e9n F, Heldin CH, Su00f6lkner J, Andersson L. A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse.. Nat Genet 2008 Aug;40(8):1004-9.
- Pielberg G, Mikko S, Sandberg K, Andersson L. Comparative linkage mapping of the Grey coat colour gene in horses.. Anim Genet 2005 Oct;36(5):390-5.
- Fernu00e1ndez A, Siliu00f3 L, Rodru00edguez C, Ovilo C. Characterization of OCA2 cDNA in different porcine breeds and analysis of its potential effect on skin pigmentation in a red Iberian strain.. Anim Genet 2006 Apr;37(2):166-70.
- Bellone R, Lear T, Adelson DL, Bailey E. Comparative mapping of oculocutaneous albinism type II (OCA2), transient receptor potential cation channel, subfamily M member 1 (TRPM1) and two equine microsatellites, ASB08 and 1CA43, among four equid species by fluorescence in situ hybridization.. Cytogenet Genome Res 2006;114(1):93A.
- Kowalski E.J.A., Bellone R. Investigation of HERC2 and OCA2 SNP for iris color variation in Puerto Rican Paso Fino horses. J. Equine Vet. Sci. 2011;31:319. doi: 10.1016/j.jevs.2011.03.154.
- Mack M, Kowalski E, Grahn R, Bras D, Penedo MCT, Bellone R. Two Variants in SLC24A5 Are Associated with "Tiger-Eye" Iris Pigmentation in Puerto Rican Paso Fino Horses.. G3 (Bethesda) 2017 Aug 7;7(8):2799-2806.
- Ju00e4derkvist Fegraeus K, Velie BD, Axelsson J, Ang R, Hamilton NA, Andersson L, Meadows JRS, Lindgren G. A potential regulatory region near the EDN3 gene may control both harness racing performance and coat color variation in horses.. Physiol Rep 2018 May;6(10):e13700.
- Brooks SA, Bailey E. Exon skipping in the KIT gene causes a Sabino spotting pattern in horses.. Mamm Genome 2005 Nov;16(11):893-902.
- Haase B, Rieder S, Tozaki T, Hasegawa T, Penedo MC, Jude R, Leeb T. Five novel KIT mutations in horses with white coat colour phenotypes.. Anim Genet 2011 Jun;42(3):337-9.
- Hauswirth R, Jude R, Haase B, Bellone RR, Archer S, Holl H, Brooks SA, Tozaki T, Penedo MC, Rieder S, Leeb T. Novel variants in the KIT and PAX3 genes in horses with white-spotted coat colour phenotypes.. Anim Genet 2013 Dec;44(6):763-5.
- Dominy JE, Puigserver P. Mitochondrial biogenesis through activation of nuclear signaling proteins.. Cold Spring Harb Perspect Biol 2013 Jul 1;5(7).
- Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle.. J Physiol 2003 Feb 1;546(Pt 3):851-8.
- Eivers SS, McGivney BA, Gu J, MacHugh DE, Katz LM, Hill EW. PGC-1u03b1 encoded by the PPARGC1A gene regulates oxidative energy metabolism in equine skeletal muscle during exercise.. Anim Genet 2012 Apr;43(2):153-62.
- Ricard A. Does heterozygosity at the DMRT3 gene make French trotters better racers?. Genet Sel Evol 2015 Feb 26;47(1):10.
- Liu F, Arias-Vu00e1squez A, Sleegers K, Aulchenko YS, Kayser M, Sanchez-Juan P, Feng BJ, Bertoli-Avella AM, van Swieten J, Axenovich TI, Heutink P, van Broeckhoven C, Oostra BA, van Duijn CM. A genomewide screen for late-onset Alzheimer disease in a genetically isolated Dutch population.. Am J Hum Genet 2007 Jul;81(1):17-31.
- Pan Y, Wang KS, Aragam N. NTM and NR3C2 polymorphisms influencing intelligence: family-based association studies.. Prog Neuropsychopharmacol Biol Psychiatry 2011 Jan 15;35(1):154-60.
- Avila F, Mickelson JR, Schaefer RJ, McCue ME. Genome-Wide Signatures of Selection Reveal Genes Associated With Performance in American Quarter Horse Subpopulations.. Front Genet 2018;9:249.
- Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, Zhuo M, Liu G, Tsien JZ. Genetic enhancement of learning and memory in mice.. Nature 1999 Sep 2;401(6748):63-9.
- Velie BD, Fegraeus KJ, Solu00e9 M, Rosengren MK, Ru00f8ed KH, Ihler CF, Strand E, Lindgren G. A genome-wide association study for harness racing success in the Norwegian-Swedish coldblooded trotter reveals genes for learning and energy metabolism.. BMC Genet 2018 Aug 29;19(1):80.
- Hendrickson SL. A genome wide study of genetic adaptation to high altitude in feral Andean Horses of the pu00e1ramo.. BMC Evol Biol 2013 Dec 17;13:273.
- Eskelinen EL, Saftig P. Autophagy: a lysosomal degradation pathway with a central role in health and disease.. Biochim Biophys Acta 2009 Apr;1793(4):664-73.
- Xu T, Nicolson S, Denton D, Kumar S. Distinct requirements of Autophagy-related genes in programmed cell death.. Cell Death Differ 2015 Nov;22(11):1792-802.
- Bodemann BO, Orvedahl A, Cheng T, Ram RR, Ou YH, Formstecher E, Maiti M, Hazelett CC, Wauson EM, Balakireva M, Camonis JH, Yeaman C, Levine B, White MA. RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly.. Cell 2011 Jan 21;144(2):253-67.
- Mrschtik M, Ryan KM. Lysosomal proteins in cell death and autophagy.. FEBS J 2015 May;282(10):1858-70.
- Stolz A, Ernst A, Dikic I. Cargo recognition and trafficking in selective autophagy.. Nat Cell Biol 2014 Jun;16(6):495-501.
- Meiri S., Dayan T., Simberloff D. The generality of the island rule re-examined. J. Biogeogr. 2006;33:1571u20131577. doi: 10.1111/j.1365-2699.2006.01523.x.
- Norton EM, Avila F, Schultz NE, Mickelson JR, Geor RJ, McCue ME. Evaluation of an HMGA2 variant for pleiotropic effects on height and metabolic traits in ponies.. J Vet Intern Med 2019 Mar;33(2):942-952.
Citations
This article has been cited 20 times.- Bhardwaj A, Tandon G, Pal Y, Sharma NK, Nayan V, Soni S, Iquebal MA, Jaiswal S, Legha RA, Talluri TR, Bhattacharya TK, Kumar D, Rai A, Tripathi BN. Genome-Wide Single-Nucleotide Polymorphism-Based Genomic Diversity and Runs of Homozygosity for Selection Signatures in Equine Breeds.. Genes (Basel) 2023 Aug 14;14(8).
- Vincelette A. The Characteristics, Distribution, Function, and Origin of Alternative Lateral Horse Gaits.. Animals (Basel) 2023 Aug 8;13(16).
- Lindsay-McGee V, Sanchez-Molano E, Banos G, Clark EL, Piercy RJ, Psifidi A. Genetic characterisation of the Connemara pony and the Warmblood horse using a within-breed clustering approach.. Genet Sel Evol 2023 Aug 17;55(1):60.
- Dementieva N, Nikitkina E, Shcherbakov Y, Nikolaeva O, Mitrofanova O, Ryabova A, Atroshchenko M, Makhmutova O, Zaitsev A. The Genetic Diversity of Stallions of Different Breeds in Russia.. Genes (Basel) 2023 Jul 24;14(7).
- Romanov MN, Abdelmanova AS, Fisinin VI, Gladyr EA, Volkova NA, Anshakov DV, Stanishevskaya OI, Vakhrameev AB, Dotsev AV, Griffin DK, Zinovieva NA. Whole Genome Screening Procures a Holistic Hold of the Russian Chicken Gene Pool Heritage and Demographic History.. Biology (Basel) 2023 Jul 10;12(7).
- Gmel AI, Brem G, Neuditschko M. New genomic insights into the conformation of Lipizzan horses.. Sci Rep 2023 Jun 2;13(1):8990.
- Gmel AI, Guichard M, Dainat B, Williams GR, Eynard S, Vignal A, Servin B, Neuditschko M. Identification of runs of homozygosity in Western honey bees (Apis mellifera) using whole-genome sequencing data.. Ecol Evol 2023 Jan;13(1):e9723.
- Han H, McGivney BA, Allen L, Bai D, Corduff LR, Davaakhuu G, Davaasambuu J, Dorjgotov D, Hall TJ, Hemmings AJ, Holtby AR, Jambal T, Jargalsaikhan B, Jargalsaikhan U, Kadri NK, MacHugh DE, Pausch H, Readhead C, Warburton D, Dugarjaviin M, Hill EW. Common protein-coding variants influence the racing phenotype in galloping racehorse breeds.. Commun Biol 2022 Dec 13;5(1):1320.
- Wang X, Ran X, Niu X, Huang S, Li S, Wang J. Whole-genome sequence analysis reveals selection signatures for important economic traits in Xiang pigs.. Sci Rep 2022 Jul 12;12(1):11823.
- Hou H, Wang X, Ding W, Xiao C, Cai X, Lv W, Tu Y, Zhao W, Yao J, Yang C. Whole-genome sequencing reveals the artificial selection and local environmental adaptability of pigeons (Columba livia).. Evol Appl 2022 Apr;15(4):603-617.
- Criscione A, Mastrangelo S, D'Alessandro E, Tumino S, Di Gerlando R, Zumbo A, Marletta D, Bordonaro S. Genome-wide survey on three local horse populations with a focus on runs of homozygosity pattern.. J Anim Breed Genet 2022 Sep;139(5):540-555.
- Druml T, Brem G, Velie B, Lindgren G, Horna M, Ricard A, Grilz-Seger G. Equine vitiligo-like depigmentation in grey horses is related to genes involved in immune response and tumor metastasis.. BMC Vet Res 2021 Oct 25;17(1):336.
- Santos WB, Schettini GP, Maiorano AM, Bussiman FO, Balieiro JCC, Ferraz GC, Pereira GL, Baldassini WA, Neto ORM, Oliveira HN, Curi RA. Genome-wide scans for signatures of selection in Mangalarga Marchador horses using high-throughput SNP genotyping.. BMC Genomics 2021 Oct 14;22(1):737.
- Abdelmanova AS, Dotsev AV, Romanov MN, Stanishevskaya OI, Gladyr EA, Rodionov AN, Vetokh AN, Volkova NA, Fedorova ES, Gusev IV, Griffin DK, Brem G, Zinovieva NA. Unveiling Comparative Genomic Trajectories of Selection and Key Candidate Genes in Egg-Type Russian White and Meat-Type White Cornish Chickens.. Biology (Basel) 2021 Sep 6;10(9).
- Sweet-Jones J, Lenis VP, Yurchenko AA, Yudin NS, Swain M, Larkin DM. Genotyping and Whole-Genome Resequencing of Welsh Sheep Breeds Reveal Candidate Genes and Variants for Adaptation to Local Environment and Socioeconomic Traits.. Front Genet 2021;12:612492.
- Macciotta NPP, Colli L, Cesarani A, Ajmone-Marsan P, Low WY, Tearle R, Williams JL. The distribution of runs of homozygosity in the genome of river and swamp buffaloes reveals a history of adaptation, migration and crossbred events.. Genet Sel Evol 2021 Feb 27;53(1):20.
- Kumar S, Deng CH, Hunt M, Kirk C, Wiedow C, Rowan D, Wu J, Brewer L. Homozygosity Mapping Reveals Population History and Trait Architecture in Self-Incompatible Pear (Pyrus spp.).. Front Plant Sci 2020;11:590846.
- Ablondi M, Dadousis C, Vasini M, Eriksson S, Mikko S, Sabbioni A. Genetic Diversity and Signatures of Selection in a Native Italian Horse Breed Based on SNP Data.. Animals (Basel) 2020 Jun 8;10(6).
- Vignali R, Marracci S. HMGA Genes and Proteins in Development and Evolution.. Int J Mol Sci 2020 Jan 19;21(2).
- Ablondi M, Viklund u00c5, Lindgren G, Eriksson S, Mikko S. Signatures of selection in the genome of Swedish warmblood horses selected for sport performance.. BMC Genomics 2019 Sep 18;20(1):717.