Frontiers in endocrinology2023; 14; 1149610; doi: 10.3389/fendo.2023.1149610

The PTP1B inhibitor MSI-1436 ameliorates liver insulin sensitivity by modulating autophagy, ER stress and systemic inflammation in Equine metabolic syndrome affected horses.

Abstract: Equine metabolic syndrome (EMS) is a multifactorial pathology gathering insulin resistance, low-grade inflammation and past or chronic laminitis. Among the several molecular mechanisms underlying EMS pathogenesis, increased negative insulin signalling regulation mediated by protein tyrosine phosphatase 1 B (PTP1B) has emerged as a critical axis in the development of liver insulin resistance and general metabolic distress associated to increased ER stress, inflammation and disrupted autophagy. Thus, the use of PTP1B selective inhibitors such as MSI-1436 might be considered as a golden therapeutic tool for the proper management of EMS and associated conditions. Therefore, the present investigation aimed at verifying the clinical efficacy of MSI-1436 systemic administration on liver metabolic balance, insulin sensitivity and inflammatory status in EMS affected horses. Moreover, the impact of MSI-1436 treatment on liver autophagy machinery and associated ER stress in liver tissue has been analysed. Liver explants isolated from healthy and EMS horses have been treated with MSI-1436 prior to gene and protein expression analysis of main markers mediating ER stress, mitophagy and autophagy. Furthermore, EMS horses have been intravenously treated with a single dose of MSI-1436, and evaluated for their metabolic and inflammatory status. Clinical application of MSI-1436 to EMS horses restored proper adiponectin levels and attenuated the typical hyperinsulinemia and hyperglycemia. Moreover, administration of MSI-1436 further reduced the circulating levels of key pro-inflammatory mediators including IL-1β, TNF-α and TGF-β and triggered the Tregs cells activation. At the molecular level, PTP1B inhibition resulted in a noticeable mitigation of liver ER stress, improvement of mitochondrial dynamics and consequently, a regulation of autophagic response. Similarly, short-term ex vivo treatment of EMS liver explants with trodusquemine (MSI-1436) substantially enhanced autophagy by upregulating the levels of HSC70 and Beclin-1 at both mRNA and protein level. Moreover, the PTP1B inhibitor potentiated mitophagy and associated expression of MFN2 and PINK1. Interestingly, inhibition of PTP1B resulted in potent attenuation of ER stress key mediators' expression namely, CHOP, ATF6, HSPA5 and XBP1. Presented findings shed for the first time promising new insights in the development of an MSI-1436-based therapy for proper equine metabolic syndrome intervention and may additionally find potential translational application to human metabolic syndrome treatment.
Publication Date: 2023-03-20 PubMed ID: 37020593PubMed Central: PMC10067883DOI: 10.3389/fendo.2023.1149610Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article
  • Research Support
  • Non-U.S. Gov't

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

This study investigates the impact of PTP1B inhibitor MSI-1436 on equine metabolic syndrome (EMS), which is characterized by insulin resistance, inflammation, and laminitis in horses. The researchers found that the systemic administration of MSI-1436 improves insulin sensitivity, reduces inflammation, and modulates liver autophagy and ER stress in horses with EMS.

Objective and Significance of the Research

  • This study aims to discern the therapeutic impact of a protein tyrosine phosphatase 1B (PTP1B) inhibitor, known as MSI-1436, on Equine Metabolic Syndrome (EMS) – a disorder in horses that combines insulin resistance, minor inflammation, and a history of laminitis.
  • One of the key contributors to EMS is a boosted regulation of negative insulin signalling via PTP1B which often leads to insulin resistance in the liver and wider metabolic issues closely tied to increased inflammation and broken down autophagy.
  • The findings of this research could potentially provide valuable insights into the development of MSI-1436-based therapies for EMS, and its potential applicability to human metabolic syndrome treatments.

Methodology

  • Healthy and EMS-affected horse liver explants were treated with MSI-1436 and analyzed for gene and protein expression related to ER stress, mitophagy, and autophagy.
  • Horses with EMS were treated with a single intravenous dose of MSI-1436 and assessed for metabolic and inflammatory status.

Findings

  • The use of MSI-1436 in horses with EMS restored healthy levels of adiponectin and mitigated hyperinsulinemia and hyperglycemia.
  • MSI-1436 also reduced key pro-inflammatory mediators (IL-1β, TNF-α, and TGF-β) and activated Tregs cells.
  • At a molecular level, MSI-1436 moderated liver ER stress, improved mitochondrial functions, and regulated the autophagic response.
  • PTP1B inhibition notably mitigated the expression of key ER stress mediators such as CHOP, ATF6, HSPA5, and XBP1.

Conclusion and Implications

  • The learnings provide a foundation for the development of an MSI-1436-based therapeutic approach to treating EMS, potentially offering benefits for the management of human metabolic syndrome as well.
  • The experiment demonstrated the potential of MSI-1436 not only in improving insulin sensitivity and reducing inflammation, but also in modulating vital biological processes such as autophagy and ER stress, many of these being shared across equine and human metabolic syndromes.

Cite This Article

APA
Bourebaba L, Serwotka-Suszczak A, Pielok A, Sikora M, Mularczyk M, Marycz K. (2023). The PTP1B inhibitor MSI-1436 ameliorates liver insulin sensitivity by modulating autophagy, ER stress and systemic inflammation in Equine metabolic syndrome affected horses. Front Endocrinol (Lausanne), 14, 1149610. https://doi.org/10.3389/fendo.2023.1149610

Publication

ISSN: 1664-2392
NlmUniqueID: 101555782
Country: Switzerland
Language: English
Volume: 14
Pages: 1149610
PII: 1149610

Researcher Affiliations

Bourebaba, Lynda
  • Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocu0142aw University of Environmental and Life Sciences, Wrocu0142aw, Poland.
  • International Institute of Translational Medicine, Wisznia Mau0142a, Poland.
Serwotka-Suszczak, Anna
  • Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocu0142aw University of Environmental and Life Sciences, Wrocu0142aw, Poland.
Pielok, Ariadna
  • Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocu0142aw University of Environmental and Life Sciences, Wrocu0142aw, Poland.
Sikora, Mateusz
  • Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocu0142aw University of Environmental and Life Sciences, Wrocu0142aw, Poland.
Mularczyk, Malwina
  • Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocu0142aw University of Environmental and Life Sciences, Wrocu0142aw, Poland.
  • International Institute of Translational Medicine, Wisznia Mau0142a, Poland.
Marycz, Krzysztof
  • Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocu0142aw University of Environmental and Life Sciences, Wrocu0142aw, Poland.
  • Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.

MeSH Terms

  • Animals
  • Humans
  • Autophagy
  • Enzyme Inhibitors
  • Horses
  • Inflammation
  • Insulin Resistance
  • Liver / metabolism
  • Metabolic Syndrome / metabolism
  • Endoplasmic Reticulum Stress

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

This article includes 100 references
  1. Kennedy BP, Ramachandran C. Protein tyrosine phosphatase-1B in diabetes.. Biochem Pharmacol 2000 Oct 1;60(7):877-83.
    doi: 10.1016/S0006-2952(00)00305-1pubmed: 10974195google scholar: lookup
  2. Cheng A, Dubu00e9 N, Gu F, Tremblay ML. Coordinated action of protein tyrosine phosphatases in insulin signal transduction.. Eur J Biochem 2002 Feb;269(4):1050-9.
  3. Dadke S, Kusari A, Kusari J. Phosphorylation and activation of protein tyrosine phosphatase (PTP) 1B by insulin receptor.. Mol Cell Biochem 2001 May;221(1-2):147-54.
    doi: 10.1023/A:1010909031310pubmed: 11506178google scholar: lookup
  4. Goldstein BJ, Bittner-Kowalczyk A, White MF, Harbeck M. Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B. Possible facilitation by the formation of a ternary complex with the Grb2 adaptor protein.. J Biol Chem 2000 Feb 11;275(6):4283-9.
    doi: 10.1074/jbc.275.6.4283pubmed: 10660596google scholar: lookup
  5. Romsicki Y, Reece M, Gauthier JY, Asante-Appiah E, Kennedy BP. Protein tyrosine phosphatase-1B dephosphorylation of the insulin receptor occurs in a perinuclear endosome compartment in human embryonic kidney 293 cells.. J Biol Chem 2004 Mar 26;279(13):12868-75.
    doi: 10.1074/JBC.M309600200pubmed: 14722096google scholar: lookup
  6. Salmeen A, Andersen JN, Myers MP, Tonks NK, Barford D. Molecular basis for the dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B.. Mol Cell 2000 Dec;6(6):1401-12.
    doi: 10.1016/S1097-2765(00)00137-4pubmed: 11163213google scholar: lookup
  7. Ukkola O, Santaniemi M. Protein tyrosine phosphatase 1B: a new target for the treatment of obesity and associated co-morbidities.. J Intern Med 2002 Jun;251(6):467-75.
  8. Zhang ZY. Protein tyrosine phosphatases: prospects for therapeutics.. Curr Opin Chem Biol 2001 Aug;5(4):416-23.
    doi: 10.1016/S1367-5931(00)00223-4pubmed: 11470605google scholar: lookup
  9. Lantz KA, Hart SG, Planey SL, Roitman MF, Ruiz-White IA, Wolfe HR, McLane MP. Inhibition of PTP1B by trodusquemine (MSI-1436) causes fat-specific weight loss in diet-induced obese mice.. Obesity (Silver Spring) 2010 Aug;18(8):1516-23.
    doi: 10.1038/oby.2009.444pubmed: 20075852google scholar: lookup
  10. Johnson PJ. The equine metabolic syndrome peripheral Cushing's syndrome.. Vet Clin North Am Equine Pract 2002 Aug;18(2):271-93.
    doi: 10.1016/S0749-0739(02)00006-8pubmed: 15635908google scholar: lookup
  11. Frank N. Equine metabolic syndrome.. Vet Clin North Am Equine Pract 2011 Apr;27(1):73-92.
    doi: 10.1016/j.cveq.2010.12.004pubmed: 21392655google scholar: lookup
  12. Schwabe RF, Tabas I, Pajvani UB. Mechanisms of Fibrosis Development in Nonalcoholic Steatohepatitis.. Gastroenterology 2020 May;158(7):1913-1928.
  13. Dewidar B, Kahl S, Pafili K, Roden M. Metabolic liver disease in diabetes - From mechanisms to clinical trials.. Metabolism 2020 Oct;111S:154299.
  14. Geervliet E, Bansal R. Matrix Metalloproteinases as Potential Biomarkers and Therapeutic Targets in Liver Diseases.. Cells 2020 May 13;9(5).
    doi: 10.3390/cells9051212pmc: PMC7290342pubmed: 32414178google scholar: lookup
  15. Menikdiwela KR, Ramalingam L, Rasha F, Wang S, Dufour JM, Kalupahana NS, Sunahara KKS, Martins JO, Moustaid-Moussa N. Autophagy in metabolic syndrome: breaking the wheel by targeting the renin-angiotensin system.. Cell Death Dis 2020 Feb 3;11(2):87.
    doi: 10.1038/s41419-020-2275-9pmc: PMC6997396pubmed: 32015340google scholar: lookup
  16. Xu J, Kitada M, Ogura Y, Koya D. Relationship Between Autophagy and Metabolic Syndrome Characteristics in the Pathogenesis of Atherosclerosis.. Front Cell Dev Biol 2021;9:641852.
    doi: 10.3389/fcell.2021.641852pmc: PMC8083902pubmed: 33937238google scholar: lookup
  17. Kornicka K, u015amieszek A, Wu0119grzyn AS, Ru00f6cken M, Marycz K. Immunomodulatory Properties of Adipose-Derived Stem Cells Treated with 5-Azacytydine and Resveratrol on Peripheral Blood Mononuclear Cells and Macrophages in Metabolic Syndrome Animals.. J Clin Med 2018 Oct 24;7(11).
    doi: 10.3390/jcm7110383pmc: PMC6262510pubmed: 30356025google scholar: lookup
  18. Shevyrev D, Tereshchenko V. Treg Heterogeneity, Function, and Homeostasis.. Front Immunol 2019;10:3100.
    doi: 10.3389/fimmu.2019.03100pmc: PMC6971100pubmed: 31993063google scholar: lookup
  19. Liu L, Hu J, Wang Y, Lei H, Xu D. The role and research progress of the balance and interaction between regulatory T cells and other immune cells in obesity with insulin resistance.. Adipocyte 2021 Dec;10(1):66-79.
  20. Frank N, Geor RJ, Bailey SR, Durham AE, Johnson PJ. Equine metabolic syndrome.. J Vet Intern Med 2010 May-Jun;24(3):467-75.
  21. Yang L, Li P, Fu S, Calay ES, Hotamisligil GS. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance.. Cell Metab 2010 Jun 9;11(6):467-78.
    doi: 10.1016/j.cmet.2010.04.005pmc: PMC2881480pubmed: 20519119google scholar: lookup
  22. Cai J, Pires KM, Ferhat M, Chaurasia B, Buffolo MA, Smalling R, Sargsyan A, Atkinson DL, Summers SA, Graham TE, Boudina S. Autophagy Ablation in Adipocytes Induces Insulin Resistance and Reveals Roles for Lipid Peroxide and Nrf2 Signaling in Adipose-Liver Crosstalk.. Cell Rep 2018 Nov 13;25(7):1708-1717.e5.
  23. Ost A, Svensson K, Ruishalme I, Bru00e4nnmark C, Franck N, Krook H, Sandstru00f6m P, Kjolhede P, Stru00e5lfors P. Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes.. Mol Med 2010 Jul-Aug;16(7-8):235-46.
    doi: 10.2119/molmed.2010.00023pmc: PMC2896460pubmed: 20386866google scholar: lookup
  24. Henneke DR, Potter GD, Kreider JL, Yeates BF. Relationship between condition score, physical measurements and body fat percentage in mares.. Equine Vet J 1983 Oct;15(4):371-2.
  25. Rendle D. Liver biopsy in horses. In Pract (2010) 32:300u20135. doi:u00a010.1136/inpract.32.7.300
    doi: 10.1136/inpract.32.7.300google scholar: lookup
  26. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.. Anal Biochem 1987 Apr;162(1):156-9.
    doi: 10.1006/abio.1987.9999pubmed: 2440339google scholar: lookup
  27. Suszynska M, Poniewierska-Baran A, Gunjal P, Ratajczak J, Marycz K, Kakar SS, Kucia M, Ratajczak MZ. Expression of the erythropoietin receptor by germline-derived cells - further support for a potential developmental link between the germline and hematopoiesis.. J Ovarian Res 2014;7:66.
    doi: 10.1186/1757-2215-7-66pmc: PMC4074848pubmed: 24982693google scholar: lookup
  28. Morgan R, Keen J, McGowan C. Equine metabolic syndrome.. Vet Rec 2015 Aug 15;177(7):173-9.
    doi: 10.1136/vr.103226pmc: PMC4552932pubmed: 26273009google scholar: lookup
  29. Marycz K, Szu0142apka-Kosarzewska J, Geburek F, Kornicka-Garbowska K. Systemic Administration of Rejuvenated Adipose-Derived Mesenchymal Stem Cells Improves Liver Metabolism in Equine Metabolic Syndrome (EMS)- New Approach in Veterinary Regenerative Medicine.. Stem Cell Rev Rep 2019 Dec;15(6):842-850.
    doi: 10.1007/s12015-019-09913-3pmc: PMC6925066pubmed: 31620992google scholar: lookup
  30. Perry RJ, Samuel VT, Petersen KF, Shulman GI. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes.. Nature 2014 Jun 5;510(7503):84-91.
    doi: 10.1038/nature13478pmc: PMC4489847pubmed: 24899308google scholar: lookup
  31. Ahmed B, Sultana R, Greene MW. Adipose tissue and insulin resistance in obese.. Biomed Pharmacother 2021 May;137:111315.
    doi: 10.1016/j.biopha.2021.111315pubmed: 33561645google scholar: lookup
  32. Kornicka K, u015amieszek A, Szu0142apka-Kosarzewska J, Irwin Houston JM, Roecken M, Marycz K. Characterization of Apoptosis, Autophagy and Oxidative Stress in Pancreatic Islets Cells and Intestinal Epithelial Cells Isolated from Equine Metabolic Syndrome (EMS) Horses.. Int J Mol Sci 2018 Oct 8;19(10).
    doi: 10.3390/ijms19103068pmc: PMC6212973pubmed: 30297648google scholar: lookup
  33. Marycz K, Kornicka K, Szlapka-Kosarzewska J, Weiss C. Excessive Endoplasmic Reticulum Stress Correlates with Impaired Mitochondrial Dynamics, Mitophagy and Apoptosis, in Liver and Adipose Tissue, but Not in Muscles in EMS Horses.. Int J Mol Sci 2018 Jan 6;19(1).
    doi: 10.3390/ijms19010165pmc: PMC5796114pubmed: 29316632google scholar: lookup
  34. Bourebaba L, Kornicka-Garbowska K, Al Naem M, Ru00f6cken M, u0141yczko J, Marycz K. MSI-1436 improves EMS adipose derived progenitor stem cells in the course of adipogenic differentiation through modulation of ER stress, apoptosis, and oxidative stress.. Stem Cell Res Ther 2021 Feb 3;12(1):97.
    doi: 10.1186/s13287-020-02102-xpmc: PMC7860037pubmed: 33536069google scholar: lookup
  35. Bourebaba L, u0141yczko J, Alicka M, Bourebaba N, Szumny A, Fal AM, Marycz K. Inhibition of Protein-tyrosine Phosphatase PTP1B and LMPTP Promotes Palmitate/Oleate-challenged HepG2 Cell Survival by Reducing Lipoapoptosis, Improving Mitochondrial Dynamics and Mitigating Oxidative and Endoplasmic Reticulum Stress.. J Clin Med 2020 May 1;9(5).
    doi: 10.3390/jcm9051294pmc: PMC7288314pubmed: 32369900google scholar: lookup
  36. Khoury ZH, Salameh F. Trodusquemine: Potential utility in wound regeneration. Regen Eng Transl Med (2022) 8:166u201370. doi:u00a010.1007/s40883-021-00211-4
  37. Smith AM, Maguire-Nguyen KK, Rando TA, Zasloff MA, Strange KB, Yin VP. The protein tyrosine phosphatase 1B inhibitor MSI-1436 stimulates regeneration of heart and multiple other tissues.. NPJ Regen Med 2017;2:4.
    doi: 10.1038/s41536-017-0008-1pmc: PMC5677970pubmed: 29302341google scholar: lookup
  38. Blanchet M, Borselli D, Rodallec A, Peiretti F, Vidal N, Bolla JM, Digiorgio C, Morrison KR, Wuest WM, Brunel JM. Claramines: A New Class Of Broad-Spectrum Antimicrobial Agents With Bimodal Activity.. ChemMedChem 2018 May 23;13(10):1018-1027.
    doi: 10.1002/cmdc.201800073pubmed: 29465814google scholar: lookup
  39. Kazakova O, Giniyatullina G, Babkov D, Wimmer Z. From Marine Metabolites to the Drugs of the Future: Squalamine, Trodusquemine, Their Steroid and Triterpene Analogues.. Int J Mol Sci 2022 Jan 19;23(3).
    doi: 10.3390/ijms23031075pmc: PMC8834734pubmed: 35162998google scholar: lookup
  40. Guo W, Zhong W, Hao L, Dong H, Sun X, Yue R, Li T, Zhou Z. Fatty Acids Inhibit LAMP2-Mediated Autophagy Flux via Activating ER Stress Pathway in Alcohol-Related Liver Disease.. Cell Mol Gastroenterol Hepatol 2021;12(5):1599-1615.
    doi: 10.1016/j.jcmgh.2021.07.002pmc: PMC8536789pubmed: 34284164google scholar: lookup
  41. Hosaka Y, Araya J, Fujita Y, Kuwano K. Role of chaperone-mediated autophagy in the pathophysiology including pulmonary disorders.. Inflamm Regen 2021 Oct 1;41(1):29.
    doi: 10.1186/s41232-021-00180-9pmc: PMC8485456pubmed: 34593046google scholar: lookup
  42. Baeken MW, Weckmann K, Diefenthu00e4ler P, Schulte J, Yusifli K, Moosmann B, Behl C, Hajieva P. Novel Insights into the Cellular Localization and Regulation of the Autophagosomal Proteins LC3A, LC3B and LC3C.. Cells 2020 Oct 18;9(10).
    doi: 10.3390/cells9102315pmc: PMC7603224pubmed: 33081014google scholar: lookup
  43. Ren J, Sowers JR, Zhang Y. Metabolic Stress, Autophagy, and Cardiovascular Aging: from Pathophysiology to Therapeutics.. Trends Endocrinol Metab 2018 Oct;29(10):699-711.
    doi: 10.1016/j.tem.2018.08.001pmc: PMC6151141pubmed: 30145108google scholar: lookup
  44. Lim YM, Lim H, Hur KY, Quan W, Lee HY, Cheon H, Ryu D, Koo SH, Kim HL, Kim J, Komatsu M, Lee MS. Systemic autophagy insufficiency compromises adaptation to metabolic stress and facilitates progression from obesity to diabetes.. Nat Commun 2014 Sep 26;5:4934.
    doi: 10.1038/ncomms5934pubmed: 25255859google scholar: lookup
  45. Wirawan E, Vanden Berghe T, Lippens S, Agostinis P, Vandenabeele P. Autophagy: for better or for worse.. Cell Res 2012 Jan;22(1):43-61.
    doi: 10.1038/cr.2011.152pmc: PMC3351915pubmed: 21912435google scholar: lookup
  46. Escribano-Lu00f3pez I, de Marau00f1on AM, Iannantuoni F, Lu00f3pez-Domu00e8nech S, Abad-Jimu00e9nez Z, Du00edaz P, Solu00e1 E, Apostolova N, Rocha M, Vu00edctor VM. The Mitochondrial Antioxidant SS-31 Modulates Oxidative Stress, Endoplasmic Reticulum Stress, and Autophagy in Type 2 Diabetes.. J Clin Med 2019 Aug 28;8(9).
    doi: 10.3390/jcm8091322pmc: PMC6780723pubmed: 31466264google scholar: lookup
  47. Zhu Y, Yu J, Gong J, Shen J, Ye D, Cheng D, Xie Z, Zeng J, Xu K, Shen J, Zhou H, Weng Y, Pan J, Zhan R. PTP1B inhibitor alleviates deleterious microglial activation and neuronal injury after ischemic stroke by modulating the ER stress-autophagy axis via PERK signaling in microglia.. Aging (Albany NY) 2021 Jan 20;13(3):3405-3427.
    doi: 10.18632/aging.202272pmc: PMC7906217pubmed: 33495405google scholar: lookup
  48. Abdelsalam SS, Pasha M, El-Gamal H, Hasan M, Elrayess MA, Zeidan A, Korashy HM, Agouni A. Protein tyrosine phosphatase 1B inhibition improves endoplasmic reticulum stressu2011impaired endothelial cell angiogenic response: A critical role for cell survival.. Mol Med Rep 2021 Sep;24(3).
    doi: 10.3892/mmr.2021.12304pubmed: 34296297google scholar: lookup
  49. Wang S, Chen X, Nair S, Sun D, Wang X, Ren J. Deletion of protein tyrosine phosphatase 1B obliterates endoplasmic reticulum stress-induced myocardial dysfunction through regulation of autophagy.. Biochim Biophys Acta Mol Basis Dis 2017 Dec;1863(12):3060-3074.
    doi: 10.1016/j.bbadis.2017.09.015pubmed: 28941626google scholar: lookup
  50. Su Z, Nie Y, Huang X, Zhu Y, Feng B, Tang L, Zheng G. Mitophagy in Hepatic Insulin Resistance: Therapeutic Potential and Concerns.. Front Pharmacol 2019;10:1193.
    doi: 10.3389/fphar.2019.01193pmc: PMC6795753pubmed: 31649547google scholar: lookup
  51. Shannon CE, Ragavan M, Palavicini JP, Fourcaudot M, Bakewell TM, Valdez IA, Ayala I, Jin ES, Madesh M, Han X, Merritt ME, Norton L. Insulin resistance is mechanistically linked to hepatic mitochondrial remodeling in non-alcoholic fatty liver disease.. Mol Metab 2021 Mar;45:101154.
  52. Li J, Lai M, Zhang X, Li Z, Yang D, Zhao M, Wang D, Sun Z, Ehsan S, Li W, Gao H, Zhao D, Yang L. PINK1-parkin-mediated neuronal mitophagy deficiency in prion disease.. Cell Death Dis 2022 Feb 18;13(2):162.
    doi: 10.1038/s41419-022-04613-2pmc: PMC8858315pubmed: 35184140google scholar: lookup
  53. Yin X, Xue R, Wu J, Wu M, Xie B, Meng Q. PINK1 ameliorates acute-on-chronic liver failure by inhibiting apoptosis through mTORC2/AKT signaling.. Cell Death Discov 2022 Apr 23;8(1):222.
    doi: 10.1038/s41420-022-01021-5pmc: PMC9035184pubmed: 35461334google scholar: lookup
  54. Marinkoviu0107 M, u0160prung M, Novak I. Dimerization of mitophagy receptor BNIP3L/NIX is essential for recruitment of autophagic machinery.. Autophagy 2021 May;17(5):1232-1243.
  55. Li Y, Zheng W, Lu Y, Zheng Y, Pan L, Wu X, Yuan Y, Shen Z, Ma S, Zhang X, Wu J, Chen Z, Zhang X. BNIP3L/NIX-mediated mitophagy: molecular mechanisms and implications for human disease.. Cell Death Dis 2021 Dec 20;13(1):14.
    doi: 10.1038/s41419-021-04469-ypmc: PMC8688453pubmed: 34930907google scholar: lookup
  56. Marinkoviu0107 M, Novak I. A brief overview of BNIP3L/NIX receptor-mediated mitophagy.. FEBS Open Bio 2021 Dec;11(12):3230-3236.
    doi: 10.1002/2211-5463.13307pmc: PMC8634856pubmed: 34597467google scholar: lookup
  57. Sebastiu00e1n D, Hernu00e1ndez-Alvarez MI, Segalu00e9s J, Sorianello E, Muu00f1oz JP, Sala D, Waget A, Liesa M, Paz JC, Gopalacharyulu P, Oreu0161iu010d M, Pich S, Burcelin R, Palacu00edn M, Zorzano A. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis.. Proc Natl Acad Sci U S A 2012 Apr 3;109(14):5523-8.
    doi: 10.1073/pnas.1108220109pmc: PMC3325712pubmed: 22427360google scholar: lookup
  58. Brown M, Dainty S, Strudwick N, Mihai AD, Watson JN, Dendooven R, Paton AW, Paton JC, Schru00f6der M. Endoplasmic reticulum stress causes insulin resistance by inhibiting delivery of newly synthesized insulin receptors to the cell surface.. Mol Biol Cell 2020 Nov 1;31(23):2597-2629.
    doi: 10.1091/mbc.E18-01-0013pmc: PMC7851869pubmed: 32877278google scholar: lookup
  59. Salvadu00f3 L, Palomer X, Barroso E, Vu00e1zquez-Carrera M. Targeting endoplasmic reticulum stress in insulin resistance.. Trends Endocrinol Metab 2015 Aug;26(8):438-48.
    doi: 10.1016/j.tem.2015.05.007pubmed: 26078196google scholar: lookup
  60. Liu X, Green RM. Endoplasmic reticulum stress and liver diseases.. Liver Res 2019 Mar;3(1):55-64.
  61. Kim RS, Hasegawa D, Goossens N, Tsuchida T, Athwal V, Sun X, Robinson CL, Bhattacharya D, Chou HI, Zhang DY, Fuchs BC, Lee Y, Hoshida Y, Friedman SL. The XBP1 Arm of the Unfolded Protein Response Induces Fibrogenic Activity in Hepatic Stellate Cells Through Autophagy.. Sci Rep 2016 Dec 20;6:39342.
    doi: 10.1038/srep39342pmc: PMC5172197pubmed: 27996033google scholar: lookup
  62. Gessner DK, Schlegel G, Ringseis R, Schwarz FJ, Eder K. Up-regulation of endoplasmic reticulum stress induced genes of the unfolded protein response in the liver of periparturient dairy cows.. BMC Vet Res 2014 Feb 20;10:46.
    doi: 10.1186/1746-6148-10-46pmc: PMC3936700pubmed: 24555446google scholar: lookup
  63. Thompson D, Morrice N, Grant L, Le Sommer S, Lees EK, Mody N, Wilson HM, Delibegovic M. Pharmacological inhibition of protein tyrosine phosphatase 1B protects against atherosclerotic plaque formation in the LDLR(-/-) mouse model of atherosclerosis.. Clin Sci (Lond) 2017 Oct 1;131(20):2489-2501.
    doi: 10.1042/CS20171066pmc: PMC6365594pubmed: 28899902google scholar: lookup
  64. Agouni A, Mody N, Owen C, Czopek A, Zimmer D, Bentires-Alj M, Bence KK, Delibegoviu0107 M. Liver-specific deletion of protein tyrosine phosphatase (PTP) 1B improves obesity- and pharmacologically induced endoplasmic reticulum stress.. Biochem J 2011 Sep 1;438(2):369-78.
    doi: 10.1042/BJ20110373pmc: PMC3744093pubmed: 21605081google scholar: lookup
  65. Jheng JR, Lau KS, Lan YW, Horng JT. A novel role of ER stress signal transducer ATF6 in regulating enterovirus A71 viral protein stability.. J Biomed Sci 2018 Jan 31;25(1):9.
    doi: 10.1186/s12929-018-0412-xpmc: PMC5793394pubmed: 29386036google scholar: lookup
  66. DeZwaan-McCabe D, Sheldon RD, Gorecki MC, Guo DF, Gansemer ER, Kaufman RJ, Rahmouni K, Gillum MP, Taylor EB, Teesch LM, Rutkowski DT. ER Stress Inhibits Liver Fatty Acid Oxidation while Unmitigated Stress Leads to Anorexia-Induced Lipolysis and Both Liver and Kidney Steatosis.. Cell Rep 2017 May 30;19(9):1794-1806.
  67. Amen OM, Sarker SD, Ghildyal R, Arya A. Endoplasmic Reticulum Stress Activates Unfolded Protein Response Signaling and Mediates Inflammation, Obesity, and Cardiac Dysfunction: Therapeutic and Molecular Approach.. Front Pharmacol 2019;10:977.
    doi: 10.3389/fphar.2019.00977pmc: PMC6747043pubmed: 31551782google scholar: lookup
  68. Yamamoto K, Takahara K, Oyadomari S, Okada T, Sato T, Harada A, Mori K. Induction of liver steatosis and lipid droplet formation in ATF6alpha-knockout mice burdened with pharmacological endoplasmic reticulum stress.. Mol Biol Cell 2010 Sep 1;21(17):2975-86.
    doi: 10.1091/mbc.e09-02-0133pmc: PMC2929991pubmed: 20631254google scholar: lookup
  69. Ye R, Jung DY, Jun JY, Li J, Luo S, Ko HJ, Kim JK, Lee AS. Grp78 heterozygosity promotes adaptive unfolded protein response and attenuates diet-induced obesity and insulin resistance.. Diabetes 2010 Jan;59(1):6-16.
    doi: 10.2337/db09-0755pmc: PMC2797945pubmed: 19808896google scholar: lookup
  70. Lee J, Ozcan U. Unfolded protein response signaling and metabolic diseases.. J Biol Chem 2014 Jan 17;289(3):1203-11.
    doi: 10.1074/jbc.R113.534743pmc: PMC3894306pubmed: 24324257google scholar: lookup
  71. Ozcan L, Ghorpade DS, Zheng Z, de Souza JC, Chen K, Bessler M, Bagloo M, Schrope B, Pestell R, Tabas I. Hepatocyte DACH1 Is Increased in Obesity via Nuclear Exclusion of HDAC4 and Promotes Hepatic Insulin Resistance.. Cell Rep 2016 Jun 7;15(10):2214-2225.
  72. Engin F, Yermalovich A, Nguyen T, Hummasti S, Fu W, Eizirik DL, Mathis D, Hotamisligil GS. Restoration of the unfolded protein response in pancreatic u03b2 cells protects mice against type 1 diabetes.. Sci Transl Med 2013 Nov 13;5(211):211ra156.
  73. Huang S, Xing Y, Liu Y. Emerging roles for the ER stress sensor IRE1u03b1 in metabolic regulation and disease.. J Biol Chem 2019 Dec 6;294(49):18726-18741.
    doi: 10.1074/jbc.REV119.007036pmc: PMC6901316pubmed: 31666338google scholar: lookup
  74. Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, Gu00f6rgu00fcn C, Glimcher LH, Hotamisligil GS. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes.. Science 2004 Oct 15;306(5695):457-61.
    doi: 10.1126/science.1103160pubmed: 15486293google scholar: lookup
  75. Lee HY, Lee GH, Yoon Y, Hoang TH, Chae HJ. IBF-R Regulates IRE1u03b1 Post-Translational Modifications and ER Stress in High-Fat Diet-Induced Obese Mice.. Nutrients 2022 Jan 4;14(1).
    doi: 10.3390/nu14010217pmc: PMC8746979pubmed: 35011092google scholar: lookup
  76. Yang L, Calay ES, Fan J, Arduini A, Kunz RC, Gygi SP, Yalcin A, Fu S, Hotamisligil GS. METABOLISM. S-Nitrosylation links obesity-associated inflammation to endoplasmic reticulum dysfunction.. Science 2015 Jul 31;349(6247):500-6.
    doi: 10.1126/science.aaa0079pmc: PMC4573582pubmed: 26228140google scholar: lookup
  77. Bourebaba L, Komakula SSB, Weiss C, Adrar N, Marycz K. The PTP1B selective inhibitor MSI-1436 mitigates Tunicamycin-induced ER stress in human hepatocarcinoma cell line through XBP1 splicing modulation.. PLoS One 2023;18(1):e0278566.
  78. Fu S, Watkins SM, Hotamisligil GS. The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling.. Cell Metab 2012 May 2;15(5):623-34.
    doi: 10.1016/j.cmet.2012.03.007pubmed: 22560215google scholar: lookup
  79. Bailly-Maitre B, Belgardt BF, Jordan SD, Coornaert B, von Freyend MJ, Kleinridders A, Mauer J, Cuddy M, Kress CL, Willmes D, Essig M, Hampel B, Protzer U, Reed JC, Bru00fcning JC. Hepatic Bax inhibitor-1 inhibits IRE1alpha and protects from obesity-associated insulin resistance and glucose intolerance.. J Biol Chem 2010 Feb 26;285(9):6198-207.
    doi: 10.1074/jbc.M109.056648pmc: PMC2825415pubmed: 19996103google scholar: lookup
  80. Hu H, Tian M, Ding C, Yu S. The C/EBP Homologous Protein (CHOP) Transcription Factor Functions in Endoplasmic Reticulum Stress-Induced Apoptosis and Microbial Infection.. Front Immunol 2018;9:3083.
    doi: 10.3389/fimmu.2018.03083pmc: PMC6328441pubmed: 30662442google scholar: lookup
  81. Maris M, Waelkens E, Cnop M, D'Hertog W, Cunha DA, Korf H, Koike T, Overbergh L, Mathieu C. Oleate-induced beta cell dysfunction and apoptosis: a proteomic approach to glucolipotoxicity by an unsaturated fatty acid.. J Proteome Res 2011 Aug 5;10(8):3372-85.
    doi: 10.1021/pr101290npubmed: 21707097google scholar: lookup
  82. Maris M, Ferreira GB, D'Hertog W, Cnop M, Waelkens E, Overbergh L, Mathieu C. High glucose induces dysfunction in insulin secretory cells by different pathways: a proteomic approach.. J Proteome Res 2010 Dec 3;9(12):6274-87.
    doi: 10.1021/pr100557wpubmed: 20942503google scholar: lookup
  83. Ariyama Y, Shimizu H, Satoh T, Tsuchiya T, Okada S, Oyadomari S, Mori M, Mori M. Chop-deficient mice showed increased adiposity but no glucose intolerance.. Obesity (Silver Spring) 2007 Jul;15(7):1647-56.
    doi: 10.1038/oby.2007.197pubmed: 17636082google scholar: lookup
  84. Grant R, Nguyen KY, Ravussin A, Albarado D, Youm YH, Dixit VD. Inactivation of C/ebp homologous protein-driven immune-metabolic interactions exacerbate obesity and adipose tissue leukocytosis.. J Biol Chem 2014 May 16;289(20):14045-55.
    doi: 10.1074/jbc.M113.545921pmc: PMC4022874pubmed: 24662293google scholar: lookup
  85. Chikka MR, McCabe DD, Tyra HM, Rutkowski DT. C/EBP homologous protein (CHOP) contributes to suppression of metabolic genes during endoplasmic reticulum stress in the liver.. J Biol Chem 2013 Feb 8;288(6):4405-15.
    doi: 10.1074/jbc.M112.432344pmc: PMC3567690pubmed: 23281479google scholar: lookup
  86. Drori A, Gammal A, Azar S, Hinden L, Hadar R, Wesley D, Nemirovski A, Szanda G, Salton M, Tirosh B, Tam J. CB(1)R regulates soluble leptin receptor levels via CHOP, contributing to hepatic leptin resistance.. Elife 2020 Nov 19;9.
    doi: 10.7554/eLife.60771pmc: PMC7728447pubmed: 33210603google scholar: lookup
  87. Maris M, Overbergh L, Gysemans C, Waget A, Cardozo AK, Verdrengh E, Cunha JP, Gotoh T, Cnop M, Eizirik DL, Burcelin R, Mathieu C. Deletion of C/EBP homologous protein (Chop) in C57Bl/6 mice dissociates obesity from insulin resistance.. Diabetologia 2012 Apr;55(4):1167-78.
    doi: 10.1007/s00125-011-2427-7pubmed: 22237685google scholar: lookup
  88. Meshkani R, Adeli K. Hepatic insulin resistance, metabolic syndrome and cardiovascular disease.. Clin Biochem 2009 Sep;42(13-14):1331-46.
  89. Song GJ, Jung M, Kim JH, Park H, Rahman MH, Zhang S, Zhang ZY, Park DH, Kook H, Lee IK, Suk K. A novel role for protein tyrosine phosphatase 1B as a positive regulator of neuroinflammation.. J Neuroinflammation 2016 Apr 19;13(1):86.
    doi: 10.1186/s12974-016-0545-3pmc: PMC4837589pubmed: 27095436google scholar: lookup
  90. Tsunekawa T, Banno R, Mizoguchi A, Sugiyama M, Tominaga T, Onoue T, Hagiwara D, Ito Y, Iwama S, Goto M, Suga H, Sugimura Y, Arima H. Deficiency of PTP1B Attenuates Hypothalamic Inflammation via Activation of the JAK2-STAT3 Pathway in Microglia.. EBioMedicine 2017 Feb;16:172-183.
    doi: 10.1016/j.ebiom.2017.01.007pmc: PMC5474442pubmed: 28094236google scholar: lookup
  91. Garcu00eda-Ruiz I, Blanes Ruiz N, Rada P, Pardo V, Ruiz L, Blas-Garcu00eda A, Valdecantos MP, Grau Sanz M, Solu00eds Herruzo JA, Valverde u00c1M. Protein tyrosine phosphatase 1b deficiency protects against hepatic fibrosis by modulating nadph oxidases.. Redox Biol 2019 Sep;26:101263.
    doi: 10.1016/j.redox.2019.101263pmc: PMC6624458pubmed: 31299613google scholar: lookup
  92. Hsu MF, Koike S, Mello A, Nagy LE, Haj FG. Hepatic protein-tyrosine phosphatase 1B disruption and pharmacological inhibition attenuate ethanol-induced oxidative stress and ameliorate alcoholic liver disease in mice.. Redox Biol 2020 Sep;36:101658.
    doi: 10.1016/j.redox.2020.101658pmc: PMC7408361pubmed: 32769011google scholar: lookup
  93. Wiede F, Lu KH, Du X, Zeissig MN, Xu R, Goh PK, Xirouchaki CE, Hogarth SJ, Greatorex S, Sek K, Daly RJ, Beavis PA, Darcy PK, Tonks NK, Tiganis T. PTP1B Is an Intracellular Checkpoint that Limits T-cell and CAR T-cell Antitumor Immunity.. Cancer Discov 2022 Mar 1;12(3):752-773.
  94. Muratsu J, Kamide K, Fujimoto T, Takeya Y, Sugimoto K, Taniyama Y, Morishima A, Sakaguchi K, Matsuzawa Y, Rakugi H. The Combination of High Levels of Adiponectin and Insulin Resistance Are Affected by Aging in Non-Obese Old Peoples.. Front Endocrinol (Lausanne) 2021;12:805244.
    doi: 10.3389/fendo.2021.805244pmc: PMC8777034pubmed: 35069451google scholar: lookup
  95. Ziemke F, Mantzoros CS. Adiponectin in insulin resistance: lessons from translational research.. Am J Clin Nutr 2010 Jan;91(1):258S-261S.
    doi: 10.3945/ajcn.2009.28449Cpmc: PMC2793112pubmed: 19906806google scholar: lookup
  96. Swarbrick MM, Havel PJ, Levin AA, Bremer AA, Stanhope KL, Butler M, Booten SL, Graham JL, McKay RA, Murray SF, Watts LM, Monia BP, Bhanot S. Inhibition of protein tyrosine phosphatase-1B with antisense oligonucleotides improves insulin sensitivity and increases adiponectin concentrations in monkeys.. Endocrinology 2009 Apr;150(4):1670-9.
    doi: 10.1210/en.2008-0885pmc: PMC2659262pubmed: 19164474google scholar: lookup
  97. Winter CL, Lange JS, Davis MG, Gerwe GS, Downs TR, Peters KG, Kasibhatla B. A nonspecific phosphotyrosine phosphatase inhibitor, bis(maltolato)oxovanadium(IV), improves glucose tolerance and prevents diabetes in Zucker diabetic fatty rats.. Exp Biol Med (Maywood) 2005 Mar;230(3):207-16.
    doi: 10.1177/153537020523000307pubmed: 15734724google scholar: lookup
  98. Ma YM, Tao RY, Liu Q, Li J, Tian JY, Zhang XL, Xiao ZY, Ye F. PTP1B inhibitor improves both insulin resistance and lipid abnormalities in vivo and in vitro.. Mol Cell Biochem 2011 Nov;357(1-2):65-72.
    doi: 10.1007/s11010-011-0876-4pubmed: 21603884google scholar: lookup
  99. Liu ZQ, Liu T, Chen C, Li MY, Wang ZY, Chen RS, Wei GX, Wang XY, Luo DQ. Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice.. Toxicol Appl Pharmacol 2015 May 15;285(1):61-70.
    doi: 10.1016/j.taap.2015.03.011pubmed: 25796170google scholar: lookup
  100. Digenio A, Pham NC, Watts LM, Morgan ES, Jung SW, Baker BF, Geary RS, Bhanot S. Antisense Inhibition of Protein Tyrosine Phosphatase 1B With IONIS-PTP-1B(Rx) Improves Insulin Sensitivity and Reduces Weight in Overweight Patients With Type 2 Diabetes.. Diabetes Care 2018 Apr;41(4):807-814.
    doi: 10.2337/dc17-2132pubmed: 29439147google scholar: lookup

Citations

This article has been cited 0 times.