Arthritis research & therapy2013; 15(4); R98; doi: 10.1186/ar4278

Transcriptomic signatures in cartilage ageing.

Abstract: Age is an important factor in the development of osteoarthritis. Microarray studies provide insight into cartilage aging but do not reveal the full transcriptomic phenotype of chondrocytes such as small noncoding RNAs, pseudogenes, and microRNAs. RNA-Seq is a powerful technique for the interrogation of large numbers of transcripts including nonprotein coding RNAs. The aim of the study was to characterise molecular mechanisms associated with age-related changes in gene signatures. Methods: RNA for gene expression analysis using RNA-Seq and real-time PCR analysis was isolated from macroscopically normal cartilage of the metacarpophalangeal joints of eight horses; four young donors (4 years old) and four old donors (>15 years old). RNA sequence libraries were prepared following ribosomal RNA depletion and sequencing was undertaken using the Illumina HiSeq 2000 platform. Differentially expressed genes were defined using Benjamini-Hochberg false discovery rate correction with a generalised linear model likelihood ratio test (P < 0.05, expression ratios ± 1.4 log₂ fold-change). Ingenuity pathway analysis enabled networks, functional analyses and canonical pathways from differentially expressed genes to be determined. Results: In total, the expression of 396 transcribed elements including mRNAs, small noncoding RNAs, pseudogenes, and a single microRNA was significantly different in old compared with young cartilage (± 1.4 log2 fold-change, P < 0.05). Of these, 93 were at higher levels in the older cartilage and 303 were at lower levels in the older cartilage. There was an over-representation of genes with reduced expression relating to extracellular matrix, degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage derived from older donors compared with young donors. In addition, there was a reduction in Wnt signalling in ageing cartilage. Conclusions: There was an age-related dysregulation of matrix, anabolic and catabolic cartilage factors. This study has increased our knowledge of transcriptional networks in cartilage ageing by providing a global view of the transcriptome.
Publication Date: 2013-08-23 PubMed ID: 23971731PubMed Central: PMC3978620DOI: 10.1186/ar4278Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article
  • Research Support
  • Non-U.S. Gov't

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

This research focuses on the molecular mechanisms associated with age-related changes in cartilage by studying the gene expression of chondrocytes, and it suggests age-related dysregulation of matrix, anabolic and catabolic cartilage factors.

Research Methodology

  • The researchers conducted a study using RNA-Seq to analyse the gene expression in chondrocytes taken from the cartilage of eight horses, split evenly between young (4 years old) and old (>15 years old) subjects.
  • Ribosomal RNA was depleted, and their RNA sequences were prepared in libraries and sequenced using the Illumina HiSeq 2000 platform, a high-throughput sequencing system.
  • To establish which gene expressions were significantly different between old and young cartilage, the researchers used the Benjamini-Hochberg procedure. This method corrects for false discovery rate in multiple testing, using a generalised linear model likelihood ratio test.

Results

  • From this research, the scientists discovered differential expression in 396 transcribed elements in old and young cartilage, including mRNAs, small noncoding RNAs, pseudogenes, and a single microRNA.
  • 93 transcribed elements were found at higher levels, and 303 were found at lower levels in the older cartilage.
  • They found an over-representation of genes with reduced expression, relating to extracellular matrix, degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage derived from older donors compared with young donors.
  • Wnt signalling, a group of signal transduction pathways made of proteins that pass signals into a cell through cell surface receptors, was also reduced in ageing cartilage.

Conclusion

  • The study concluded that there is an age-related dysregulation or imbalance of matrix, anabolic and catabolic cartilage factors which may contribute to the development of osteoarthritis.
  • This research enhances the understanding of transcriptional networks in cartilage ageing by providing a global view of the transcriptome. This could pave the way for further studies on the development of new therapies for osteoarthritis.

Cite This Article

APA
Peffers M, Liu X, Clegg P. (2013). Transcriptomic signatures in cartilage ageing. Arthritis Res Ther, 15(4), R98. https://doi.org/10.1186/ar4278

Publication

ISSN: 1478-6362
NlmUniqueID: 101154438
Country: England
Language: English
Volume: 15
Issue: 4
Pages: R98

Researcher Affiliations

Peffers, Mandy
    Liu, Xuan
      Clegg, Peter

        MeSH Terms

        • Aging / genetics
        • Animals
        • Cartilage / pathology
        • Gene Expression Profiling / methods
        • High-Throughput Nucleotide Sequencing / methods
        • Horses
        • Osteoarthritis / genetics
        • Osteoarthritis / pathology
        • Polymerase Chain Reaction
        • Real-Time Polymerase Chain Reaction
        • Sequence Analysis, RNA / methods
        • Transcriptome

        Grant Funding

        • MR/K006312/1 / Medical Research Council
        • WT088557MA / Wellcome Trust

        References

        This article includes 88 references
        1. Beard JR, Biggs S, Bloom BD, Fried LP, Hogan L, Kalache A, Olshansky SJ. Global Population Ageing: Peril or Promise. Geneva: Forum WE (World Economic Forum); 2011.
        2. Cooper C, Snow S, McAlindon TE, Kellingray S, Stuart B, Coggon D, Dieppe PA. Risk factors for the incidence and progression of radiographic knee osteoarthritis.. Arthritis Rheum 2000 May;43(5):995-1000.
        3. Samilson RL, Prieto V. Dislocation arthropathy of the shoulder.. J Bone Joint Surg Am 1983 Apr;65(4):456-60.
          pubmed: 6833319
        4. Ma WJ, Guo X, Liu JT, Liu RY, Hu JW, Sun AG, Yu YX, Lammi MJ. Proteomic changes in articular cartilage of human endemic osteoarthritis in China.. Proteomics 2011 Jul;11(14):2881-90.
          doi: 10.1002/pmic.201000636pubmed: 21681992google scholar: lookup
        5. Felson DT. Risk factors for osteoarthritis: understanding joint vulnerability.. Clin Orthop Relat Res 2004 Oct;(427 Suppl):S16-21.
        6. Martin JA, Ellerbroek SM, Buckwalter JA. Age-related decline in chondrocyte response to insulin-like growth factor-I: the role of growth factor binding proteins.. J Orthop Res 1997 Jul;15(4):491-8.
          doi: 10.1002/jor.1100150403pubmed: 9379257google scholar: lookup
        7. Loeser RF, Olex AL, McNulty MA, Carlson CS, Callahan MF, Ferguson CM, Chou J, Leng X, Fetrow JS. Microarray analysis reveals age-related differences in gene expression during the development of osteoarthritis in mice.. Arthritis Rheum 2012 Mar;64(3):705-17.
          doi: 10.1002/art.33388pmc: PMC3269534pubmed: 21972019google scholar: lookup
        8. Aigner T, Kim HA, Roach HI. Apoptosis in osteoarthritis.. Rheum Dis Clin North Am 2004 Aug;30(3):639-53, xi.
          doi: 10.1016/j.rdc.2004.04.002pubmed: 15261346google scholar: lookup
        9. Adams CS, Horton WE Jr. Chondrocyte apoptosis increases with age in the articular cartilage of adult animals.. Anat Rec 1998 Apr;250(4):418-25.
        10. Martin JA, Buckwalter JA. Telomere erosion and senescence in human articular cartilage chondrocytes.. J Gerontol A Biol Sci Med Sci 2001 Apr;56(4):B172-9.
          doi: 10.1093/gerona/56.4.B172pubmed: 11283188google scholar: lookup
        11. Mueller MB, Tuan RS. Anabolic/Catabolic balance in pathogenesis of osteoarthritis: identifying molecular targets.. PM R 2011 Jun;3(6 Suppl 1):S3-11.
          pubmed: 21703577doi: 10.1016/j.pmrj.2011.05.009google scholar: lookup
        12. Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors.. Cell 2005 Feb 25;120(4):513-22.
          doi: 10.1016/j.cell.2005.02.003pubmed: 15734683google scholar: lookup
        13. Loeser RF. Age-related changes in the musculoskeletal system and the development of osteoarthritis.. Clin Geriatr Med 2010 Aug;26(3):371-86.
          doi: 10.1016/j.cger.2010.03.002pmc: PMC2920876pubmed: 20699160google scholar: lookup
        14. Jallali N, Ridha H, Thrasivoulou C, Underwood C, Butler PE, Cowen T. Vulnerability to ROS-induced cell death in ageing articular cartilage: the role of antioxidant enzyme activity.. Osteoarthritis Cartilage 2005 Jul;13(7):614-22.
          doi: 10.1016/j.joca.2005.02.011pubmed: 15979014google scholar: lookup
        15. Loeser RF, Carlson CS, Del Carlo M, Cole A. Detection of nitrotyrosine in aging and osteoarthritic cartilage: Correlation of oxidative damage with the presence of interleukin-1beta and with chondrocyte resistance to insulin-like growth factor 1.. Arthritis Rheum 2002 Sep;46(9):2349-57.
          doi: 10.1002/art.10496pubmed: 12355482google scholar: lookup
        16. Chen AF, Davies CM, De Lin M, Fermor B. Oxidative DNA damage in osteoarthritic porcine articular cartilage.. J Cell Physiol 2008 Dec;217(3):828-33.
          doi: 10.1002/jcp.21562pmc: PMC2575799pubmed: 18720406google scholar: lookup
        17. Kurz B, Jost B, Schu00fcnke M. Dietary vitamins and selenium diminish the development of mechanically induced osteoarthritis and increase the expression of antioxidative enzymes in the knee joint of STR/1N mice.. Osteoarthritis Cartilage 2002 Feb;10(2):119-26.
          doi: 10.1053/joca.2001.0489pubmed: 11869071google scholar: lookup
        18. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics.. Nat Rev Genet 2009 Jan;10(1):57-63.
          doi: 10.1038/nrg2484pmc: PMC2949280pubmed: 19015660google scholar: lookup
        19. Matkovich SJ, Zhang Y, Van Booven DJ, Dorn GW 2nd. Deep mRNA sequencing for in vivo functional analysis of cardiac transcriptional regulators: application to Galphaq.. Circ Res 2010 May 14;106(9):1459-67.
        20. de Magalhu00e3es JP, Finch CE, Janssens G. Next-generation sequencing in aging research: emerging applications, problems, pitfalls and possible solutions.. Ageing Res Rev 2010 Jul;9(3):315-23.
          doi: 10.1016/j.arr.2009.10.006pmc: PMC2878865pubmed: 19900591google scholar: lookup
        21. Kawcak CE, Frisbie DD, Werpy NM, Park RD, McIlwraith CW. Effects of exercise vs experimental osteoarthritis on imaging outcomes.. Osteoarthritis Cartilage 2008 Dec;16(12):1519-25.
          doi: 10.1016/j.joca.2008.04.015pubmed: 18504148google scholar: lookup
        22. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.. Anal Biochem 1987 Apr;162(1):156-9.
          pubmed: 2440339doi: 10.1006/abio.1987.9999google scholar: lookup
        23. FASTQC. http://www.bioinformatics.babraham.ac.uk/projects/fastqc
        24. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.. Bioinformatics 2010 Jan 1;26(1):139-40.
        25. Fu YR, Yi ZJ, Guan SZ, Zhang SY, Li M. Proteomic analysis of sputum in patients with active pulmonary tuberculosis.. Clin Microbiol Infect 2012 Dec;18(12):1241-7.
        26. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Methodology. 1995;15:289u2013300.
        27. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.. Nat Protoc 2009;4(1):44-57.
          pubmed: 19131956doi: 10.1038/nprot.2008.211google scholar: lookup
        28. Barr ED. PhD thesis. University of Liverpool; 2010. The association of bone and cartilage in matrix proteolysis of articular cartilage, and its role in palmar/plantar osteochondral dosease in the racing thoroughbred.
        29. Taylor SE, Vaughan-Thomas A, Clements DN, Pinchbeck G, Macrory LC, Smith RK, Clegg PD. Gene expression markers of tendon fibroblasts in normal and diseased tissue compared to monolayer and three dimensional culture systems.. BMC Musculoskelet Disord 2009 Feb 26;10:27.
          doi: 10.1186/1471-2474-10-27pmc: PMC2651848pubmed: 19245707google scholar: lookup
        30. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes.. Genome Biol 2002 Jun 18;3(7):RESEARCH0034.
        31. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data.. Genome Biol 2007;8(2):R19.
          doi: 10.1186/gb-2007-8-2-r19pmc: PMC1852402pubmed: 17291332google scholar: lookup
        32. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.. Methods 2001 Dec;25(4):402-8.
          doi: 10.1006/meth.2001.1262pubmed: 11846609google scholar: lookup
        33. Equus caballus Database. ftp://ftp.ensembl.org/pub/current_fasta/equus_caballus/pep/
        34. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq.. Nat Methods 2008 Jul;5(7):621-8.
          doi: 10.1038/nmeth.1226pubmed: 18516045google scholar: lookup
        35. O'Loughlin A, Lynn DJ, McGee M, Doyle S, McCabe M, Earley B. Transcriptomic analysis of the stress response to weaning at housing in bovine leukocytes using RNA-seq technology.. BMC Genomics 2012 Jun 18;13:250.
          doi: 10.1186/1471-2164-13-250pmc: PMC3583219pubmed: 22708644google scholar: lookup
        36. Innes JF, Clegg P. Comparative rheumatology: what can be learnt from naturally occurring musculoskeletal disorders in domestic animals?. Rheumatology (Oxford) 2010 Jun;49(6):1030-9.
          doi: 10.1093/rheumatology/kep465pubmed: 20176567google scholar: lookup
        37. McIlwraith CW, Frisbie DD, Kawcak CE. The horse as a model of naturally occurring osteoarthritis.. Bone Joint Res 2012 Nov;1(11):297-309.
        38. Goodrich LR, Nixon AJ. Medical treatment of osteoarthritis in the horse - a review.. Vet J 2006 Jan;171(1):51-69.
          doi: 10.1016/j.tvjl.2004.07.008pubmed: 16427582google scholar: lookup
        39. Neundorf RH, Lowerison MB, Cruz AM, Thomason JJ, McEwen BJ, Hurtig MB. Determination of the prevalence and severity of metacarpophalangeal joint osteoarthritis in Thoroughbred racehorses via quantitative macroscopic evaluation.. Am J Vet Res 2010 Nov;71(11):1284-93.
          doi: 10.2460/ajvr.71.11.1284pubmed: 21034319google scholar: lookup
        40. Dirschl DR, Marsh JL, Buckwalter JA, Gelberman R, Olson SA, Brown TD, Llinias A. Articular fractures.. J Am Acad Orthop Surg 2004 Nov-Dec;12(6):416-23.
        41. Brommer H, Laasanen MS, Brama PA, van Weeren PR, Helminen HJ, Jurvelin JS. Functional consequences of cartilage degeneration in the equine metacarpophalangeal joint: quantitative assessment of cartilage stiffness.. Equine Vet J 2005 Sep;37(5):462-7.
          pubmed: 16163950doi: 10.2746/042516405774480012google scholar: lookup
        42. Mauderly JL, Hahn FF. The effects of age on lung function and structure of adult animals.. Adv Vet Sci Comp Med 1982;26:35-77.
          pubmed: 6758542
        43. Paradis MR. Demographics of health and disease in the geriatric horse.. Vet Clin North Am Equine Pract 2002 Dec;18(3):391-401.
          doi: 10.1016/S0749-0739(02)00021-4pubmed: 12516924google scholar: lookup
        44. Equine Resources. http://equineresources.com/pfizer-animal-health/259-pfizer-horse-human-age-chart
        45. Peffers MJ. PhD thesis. University of Liverpool; 2013. Protein and transcriptomic signatures of cartilage ageing and disease.
        46. Loeser RF. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix.. Osteoarthritis Cartilage 2009 Aug;17(8):971-9.
          doi: 10.1016/j.joca.2009.03.002pmc: PMC2713363pubmed: 19303469google scholar: lookup
        47. Iqbal J, Dudhia J, Bird JL, Bayliss MT. Age-related effects of TGF-beta on proteoglycan synthesis in equine articular cartilage.. Biochem Biophys Res Commun 2000 Aug 2;274(2):467-71.
          doi: 10.1006/bbrc.2000.3167pubmed: 10913361google scholar: lookup
        48. Forsyth CB, Cole A, Murphy G, Bienias JL, Im HJ, Loeser RF Jr. Increased matrix metalloproteinase-13 production with aging by human articular chondrocytes in response to catabolic stimuli.. J Gerontol A Biol Sci Med Sci 2005 Sep;60(9):1118-24.
          doi: 10.1093/gerona/60.9.1118pmc: PMC1482465pubmed: 16183949google scholar: lookup
        49. Long D, Blake S, Song XY, Lark M, Loeser RF. Human articular chondrocytes produce IL-7 and respond to IL-7 with increased production of matrix metalloproteinase-13.. Arthritis Res Ther 2008;10(1):R23.
          doi: 10.1186/ar2376pmc: PMC2374453pubmed: 18289383google scholar: lookup
        50. Chubinskaya S, Kumar B, Merrihew C, Heretis K, Rueger DC, Kuettner KE. Age-related changes in cartilage endogenous osteogenic protein-1 (OP-1).. Biochim Biophys Acta 2002 Nov 20;1588(2):126-34.
          doi: 10.1016/S0925-4439(02)00158-8pubmed: 12385776google scholar: lookup
        51. Blaney Davidson EN, Scharstuhl A, Vitters EL, van der Kraan PM, van den Berg WB. Reduced transforming growth factor-beta signaling in cartilage of old mice: role in impaired repair capacity.. Arthritis Res Ther 2005;7(6):R1338-47.
          doi: 10.1186/ar1833pmc: PMC1297583pubmed: 16277687google scholar: lookup
        52. Baldi P, Long AD. A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes.. Bioinformatics 2001 Jun;17(6):509-19.
        53. Trumble TN, Trotter GW, Oxford JR, McIlwraith CW, Cammarata S, Goodnight JL, Billinghurst RC, Frisbie DD. Synovial fluid gelatinase concentrations and matrix metalloproteinase and cytokine expression in naturally occurring joint disease in horses.. Am J Vet Res 2001 Sep;62(9):1467-77.
          doi: 10.2460/ajvr.2001.62.1467pubmed: 11560279google scholar: lookup
        54. Mienaltowski MJ, Huang L, Stromberg AJ, MacLeod JN. Differential gene expression associated with postnatal equine articular cartilage maturation.. BMC Musculoskelet Disord 2008 Nov 5;9:149.
          doi: 10.1186/1471-2474-9-149pmc: PMC2585085pubmed: 18986532google scholar: lookup
        55. Mitani H, Takahashi I, Onodera K, Bae JW, Sato T, Takahashi N, Sasano Y, Igarashi K, Mitani H. Comparison of age-dependent expression of aggrecan and ADAMTSs in mandibular condylar cartilage, tibial growth plate, and articular cartilage in rats.. Histochem Cell Biol 2006 Sep;126(3):371-80.
          doi: 10.1007/s00418-006-0171-8pubmed: 16583222google scholar: lookup
        56. Curtis H, Marusyk A, Zaberezhnyy V, Casas M, Adane B, Merz A, Serkova N, DeGregori J. Aging-associated alterations in IL-7 receptor signaling and inflammation promote declining B-lymphopoiesis and increased leukemogenesis. J Immunol. 2012;15:109.
        57. Billinghurst RC, Dahlberg L, Ionescu M, Reiner A, Bourne R, Rorabeck C, Mitchell P, Hambor J, Diekmann O, Tschesche H, Chen J, Van Wart H, Poole AR. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage.. J Clin Invest 1997 Apr 1;99(7):1534-45.
          doi: 10.1172/JCI119316pmc: PMC507973pubmed: 9119997google scholar: lookup
        58. Greenbaum D, Colangelo C, Williams K, Gerstein M. Comparing protein abundance and mRNA expression levels on a genomic scale.. Genome Biol 2003;4(9):117.
          doi: 10.1186/gb-2003-4-9-117pmc: PMC193646pubmed: 12952525google scholar: lookup
        59. Goekoop RJ, Kloppenburg M, Kroon HM, Fru00f6lich M, Huizinga TW, Westendorp RG, Gussekloo J. Low innate production of interleukin-1beta and interleukin-6 is associated with the absence of osteoarthritis in old age.. Osteoarthritis Cartilage 2010 Jul;18(7):942-7.
          doi: 10.1016/j.joca.2010.03.016pubmed: 20417290google scholar: lookup
        60. Yates KE, Shortkroff S, Reish RG. Wnt influence on chondrocyte differentiation and cartilage function.. DNA Cell Biol 2005 Jul;24(7):446-57.
          doi: 10.1089/dna.2005.24.446pubmed: 16008513google scholar: lookup
        61. Zhu M, Chen M, Zuscik M, Wu Q, Wang YJ, Rosier RN, O'Keefe RJ, Chen D. Inhibition of beta-catenin signaling in articular chondrocytes results in articular cartilage destruction.. Arthritis Rheum 2008 Jul;58(7):2053-64.
          doi: 10.1002/art.23614pmc: PMC2667964pubmed: 18576323google scholar: lookup
        62. Yuasa T, Otani T, Koike T, Iwamoto M, Enomoto-Iwamoto M. Wnt/beta-catenin signaling stimulates matrix catabolic genes and activity in articular chondrocytes: its possible role in joint degeneration.. Lab Invest 2008 Mar;88(3):264-74.
          doi: 10.1038/labinvest.3700747pubmed: 18227807google scholar: lookup
        63. Ma B, van Blitterswijk CA, Karperien M. A Wnt/u03b2-catenin negative feedback loop inhibits interleukin-1-induced matrix metalloproteinase expression in human articular chondrocytes.. Arthritis Rheum 2012 Aug;64(8):2589-600.
          doi: 10.1002/art.34425pubmed: 22328140google scholar: lookup
        64. Dong YF, Soung do Y, Schwarz EM, O'Keefe RJ, Drissi H. Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor.. J Cell Physiol 2006 Jul;208(1):77-86.
          doi: 10.1002/jcp.20656pubmed: 16575901google scholar: lookup
        65. Buckland J. Osteoarthritis: Control of human cartilage hypertrophic differentiation.. Nat Rev Rheumatol 2012 May 29;8(7):368.
          pubmed: 22641139doi: 10.1038/nrrheum.2012.82google scholar: lookup
        66. Lammi PE, Lammi MJ, Hyttinen MM, Panula H, Kiviranta I, Helminen HJ. Site-specific immunostaining for type X collagen in noncalcified articular cartilage of canine stifle knee joint.. Bone 2002 Dec;31(6):690-6.
          doi: 10.1016/S8756-3282(02)00904-3pubmed: 12531563google scholar: lookup
        67. Lamas JR, Rodru00edguez-Rodru00edguez L, Vigo AG, Alvarez-Lafuente R, Lu00f3pez-Romero P, Marco F, Camafeita E, Dopazo A, Callejas S, Villafuertes E, Hoyas JA, Tornero-Esteban MP, Urcelay E, Fernu00e1ndez-Gutiu00e9rrez B. Large-scale gene expression in bone marrow mesenchymal stem cells: a putative role for COL10A1 in osteoarthritis.. Ann Rheum Dis 2010 Oct;69(10):1880-5.
          doi: 10.1136/ard.2009.122564pubmed: 20498197google scholar: lookup
        68. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermu00fcller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Dumais E, Patel S, Helt G, Ganesh M, Ghosh S, Piccolboni A, Sementchenko V, Tammana H, Gingeras TR. RNA maps reveal new RNA classes and a possible function for pervasive transcription.. Science 2007 Jun 8;316(5830):1484-8.
          doi: 10.1126/science.1138341pubmed: 17510325google scholar: lookup
        69. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?. Cell 2011 Aug 5;146(3):353-8.
          doi: 10.1016/j.cell.2011.07.014pmc: PMC3235919pubmed: 21802130google scholar: lookup
        70. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology.. Nature 2010 Jun 24;465(7301):1033-8.
          doi: 10.1038/nature09144pmc: PMC3206313pubmed: 20577206google scholar: lookup
        71. Muro EM, Mah N, Andrade-Navarro MA. Functional evidence of post-transcriptional regulation by pseudogenes.. Biochimie 2011 Nov;93(11):1916-21.
          doi: 10.1016/j.biochi.2011.07.024pubmed: 21816204google scholar: lookup
        72. Zheng D, Frankish A, Baertsch R, Kapranov P, Reymond A, Choo SW, Lu Y, Denoeud F, Antonarakis SE, Snyder M, Ruan Y, Wei CL, Gingeras TR, Guigu00f3 R, Harrow J, Gerstein MB. Pseudogenes in the ENCODE regions: consensus annotation, analysis of transcription, and evolution.. Genome Res 2007 Jun;17(6):839-51.
          doi: 10.1101/gr.5586307pmc: PMC1891343pubmed: 17568002google scholar: lookup
        73. Choi D, Yoon S, Lee E, Hwang S, Yoon B, Lee J. The expression of pseudogene cyclin D2 mRNA in the human ovary may be a novel marker for decreased ovarian function associated with the aging process.. J Assist Reprod Genet 2001 Feb;18(2):110-3.
          doi: 10.1023/A:1026538826392pmc: PMC3455561pubmed: 11285977google scholar: lookup
        74. Pei B, Sisu C, Frankish A, Howald C, Habegger L, Mu XJ, Harte R, Balasubramanian S, Tanzer A, Diekhans M, Reymond A, Hubbard TJ, Harrow J, Gerstein MB. The GENCODE pseudogene resource.. Genome Biol 2012 Sep 26;13(9):R51.
          pmc: PMC3491395pubmed: 22951037doi: 10.1186/gb-2012-13-9-r51google scholar: lookup
        75. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrell D, Zadissa A, Searle S, Barnes I, Bignell A, Boychenko V, Hunt T, Kay M, Mukherjee G, Rajan J, Despacio-Reyes G, Saunders G, Steward C, Harte R, Lin M, Howald C, Tanzer A, Derrien T, Chrast J, Walters N, Balasubramanian S, Pei B, Tress M, Rodriguez JM, Ezkurdia I, van Baren J, Brent M, Haussler D, Kellis M, Valencia A, Reymond A, Gerstein M, Guigu00f3 R, Hubbard TJ. GENCODE: the reference human genome annotation for The ENCODE Project.. Genome Res 2012 Sep;22(9):1760-74.
          doi: 10.1101/gr.135350.111pmc: PMC3431492pubmed: 22955987google scholar: lookup
        76. Berninger P, Gaidatzis D, van Nimwegen E, Zavolan M. Computational analysis of small RNA cloning data.. Methods 2008 Jan;44(1):13-21.
          doi: 10.1016/j.ymeth.2007.10.002pubmed: 18158128google scholar: lookup
        77. Ambros V. The functions of animal microRNAs.. Nature 2004 Sep 16;431(7006):350-5.
          doi: 10.1038/nature02871pubmed: 15372042google scholar: lookup
        78. Sonkoly E, Pivarcsi A. Advances in microRNAs: implications for immunity and inflammatory diseases.. J Cell Mol Med 2009 Jan;13(1):24-38.
        79. Ziyan W, Shuhua Y, Xiufang W, Xiaoyun L. MicroRNA-21 is involved in osteosarcoma cell invasion and migration.. Med Oncol 2011 Dec;28(4):1469-74.
          doi: 10.1007/s12032-010-9563-7pubmed: 20480266google scholar: lookup
        80. Pan W, Zhu S, Yuan M, Cui H, Wang L, Luo X, Li J, Zhou H, Tang Y, Shen N. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1.. J Immunol 2010 Jun 15;184(12):6773-81.
          doi: 10.4049/jimmunol.0904060pubmed: 20483747google scholar: lookup
        81. Kongcharoensombat W, Nakasa T, Ishikawa M, Nakamae A, Deie M, Adachi N, Mohamed A, Ochi M. The effect of microRNA-21 on proliferation and matrix synthesis of chondrocytes embedded in atelocollagen gel.. Knee Surg Sports Traumatol Arthrosc 2010 Dec;18(12):1679-84.
          doi: 10.1007/s00167-010-1111-7pubmed: 20349039google scholar: lookup
        82. Fraga MF, Esteller M. Epigenetics and aging: the targets and the marks.. Trends Genet 2007 Aug;23(8):413-8.
          doi: 10.1016/j.tig.2007.05.008pubmed: 17559965google scholar: lookup
        83. Mattijssen S, Welting TJ, Pruijn GJ. RNase MRP and disease.. Wiley Interdiscip Rev RNA 2010 Jul-Aug;1(1):102-16.
          pubmed: 21956908doi: 10.1002/wrna.9google scholar: lookup
        84. Ridanpu00e4u00e4 M, van Eenennaam H, Pelin K, Chadwick R, Johnson C, Yuan B, vanVenrooij W, Pruijn G, Salmela R, Rockas S, Mu00e4kitie O, Kaitila I, de la Chapelle A. Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia.. Cell 2001 Jan 26;104(2):195-203.
          doi: 10.1016/S0092-8674(01)00205-7pubmed: 11207361google scholar: lookup
        85. Caron MM, Steinbusch M, Reicherter K, Mattijssen S, Surtel DA, van Rhijn LW, Pruijn GJ, Lausch E, Zabel B, Welting TJ. RNase MRP is a novel regulator of endochondral ossification. Osteoarthritis Cartilage. 2013;15(Suppl)
        86. Montanaro L, Treru00e9 D, Derenzini M. Nucleolus, ribosomes, and cancer.. Am J Pathol 2008 Aug;173(2):301-10.
          doi: 10.2353/ajpath.2008.070752pmc: PMC2475768pubmed: 18583314google scholar: lookup
        87. Narla A, Ebert BL. Ribosomopathies: human disorders of ribosome dysfunction.. Blood 2010 Apr 22;115(16):3196-205.
        88. Zhang L, Yang M, Marks P, White LM, Hurtig M, Mi QS, Divine G, Gibson G. Serum non-coding RNAs as biomarkers for osteoarthritis progression after ACL injury.. Osteoarthritis Cartilage 2012 Dec;20(12):1631-7.
          doi: 10.1016/j.joca.2012.08.016pmc: PMC3478481pubmed: 22944527google scholar: lookup

        Citations

        This article has been cited 40 times.
        1. Anderson JR, Jacobsen S, Walters M, Bundgaard L, Diendorfer A, Hackl M, Clarke EJ, James V, Peffers MJ. Small non-coding RNA landscape of extracellular vesicles from a post-traumatic model of equine osteoarthritis.. Front Vet Sci 2022;9:901269.
          doi: 10.3389/fvets.2022.901269pubmed: 36003409google scholar: lookup
        2. Xiao F, Wang C, Peng J, Zhou X, Ma D, Wang Y, Li Y, Chen X, Wang C. Changes in Small Noncoding RNA Expression during Chondrocyte Senescence.. Cartilage 2022 Jul-Sep;13(3):19476035221118165.
          doi: 10.1177/19476035221118165pubmed: 35993268google scholar: lookup
        3. Chabronova A, van den Akker GGH, Meekels-Steinbusch MMF, Friedrich F, Cremers A, Surtel DAM, Peffers MJ, van Rhijn LW, Lausch E, Zabel B, Caron MMJ, Welting TJM. Uncovering pathways regulating chondrogenic differentiation of CHH fibroblasts.. Noncoding RNA Res 2021 Dec;6(4):211-224.
          doi: 10.1016/j.ncrna.2021.12.003pubmed: 34988338google scholar: lookup
        4. Castanheira CIGD, Anderson JR, Fang Y, Milner PI, Goljanek-Whysall K, House L, Clegg PD, Peffers MJ. Mouse microRNA signatures in joint ageing and post-traumatic osteoarthritis.. Osteoarthr Cartil Open 2021 Dec;3(4):100186.
          doi: 10.1016/j.ocarto.2021.100186pubmed: 34977596google scholar: lookup
        5. Wang K, Esbensen QY, Karlsen TA, Eftang CN, Owesen C, Aroen A, Jakobsen RB. Low-Input RNA-Sequencing in Patients with Cartilage Lesions, Osteoarthritis, and Healthy Cartilage.. Cartilage 2021 Dec;13(1_suppl):550S-562S.
          doi: 10.1177/19476035211057245pubmed: 34775802google scholar: lookup
        6. van den Akker GGH, Caron MMJ, Peffers MJ, Welting TJM. Ribosome dysfunction in osteoarthritis.. Curr Opin Rheumatol 2022 Jan 1;34(1):61-67.
          doi: 10.1097/BOR.0000000000000858pubmed: 34750309google scholar: lookup
        7. Thompson SD, Pichika R, Lieber RL, Lavasani M. Systemic transplantation of adult multipotent stem cells prevents articular cartilage degeneration in a mouse model of accelerated ageing.. Immun Ageing 2021 Jun 7;18(1):27.
          doi: 10.1186/s12979-021-00239-8pubmed: 34098983google scholar: lookup
        8. Thompson SD, Pichika R, Lieber RL, Budinger GRS, Lavasani M. Systemic Transplantation of Adult Multipotent Stem Cells Functionally Rejuvenates Aged Articular Cartilage.. Aging Dis 2021 Jun;12(3):726-731.
          doi: 10.14336/AD.2020.1118pubmed: 34094638google scholar: lookup
        9. Toyoda E, Maehara M, Watanabe M, Sato M. Candidates for Intra-Articular Administration Therapeutics and Therapies of Osteoarthritis.. Int J Mol Sci 2021 Mar 30;22(7).
          doi: 10.3390/ijms22073594pubmed: 33808364google scholar: lookup
        10. Arias C, Saavedra N, Leal K, Vu00e1squez B, Abdalla DSP, Salazar LA. Histological Evaluation and Gene Expression Profiling of Autophagy-Related Genes for Cartilage of Young and Senescent Rats.. Int J Mol Sci 2020 Nov 15;21(22).
          doi: 10.3390/ijms21228607pubmed: 33203108google scholar: lookup
        11. Zamboulis DE, Thorpe CT, Ashraf Kharaz Y, Birch HL, Screen HR, Clegg PD. Postnatal mechanical loading drives adaptation of tissues primarily through modulation of the non-collagenous matrix.. Elife 2020 Oct 16;9.
          doi: 10.7554/eLife.58075pubmed: 33063662google scholar: lookup
        12. Balaskas P, Green JA, Haqqi TM, Dyer P, Kharaz YA, Fang Y, Liu X, Welting TJM, Peffers MJ. Small Non-Coding RNAome of Ageing Chondrocytes.. Int J Mol Sci 2020 Aug 7;21(16).
          doi: 10.3390/ijms21165675pubmed: 32784773google scholar: lookup
        13. Szwedowski D, Szczepanek J, Paczesny u0141, Pu0119kau0142a P, Zabrzyu0144ski J, Kruczyu0144ski J. Genetics in Cartilage Lesions: Basic Science and Therapy Approaches.. Int J Mol Sci 2020 Jul 30;21(15).
          doi: 10.3390/ijms21155430pubmed: 32751537google scholar: lookup
        14. Feng X, Pan J, Li J, Zeng C, Qi W, Shao Y, Liu X, Liu L, Xiao G, Zhang H, Bai X, Cai D. Metformin attenuates cartilage degeneration in an experimental osteoarthritis model by regulating AMPK/mTOR.. Aging (Albany NY) 2020 Jan 16;12(2):1087-1103.
          doi: 10.18632/aging.102635pubmed: 31945013google scholar: lookup
        15. Rai MF, Tycksen ED, Cai L, Yu J, Wright RW, Brophy RH. Distinct degenerative phenotype of articular cartilage from knees with meniscus tear compared to knees with osteoarthritis.. Osteoarthritis Cartilage 2019 Jun;27(6):945-955.
          doi: 10.1016/j.joca.2019.02.792pubmed: 30797944google scholar: lookup
        16. Kean TJ, Ge Z, Li Y, Chen R, Dennis JE. Transcriptome-Wide Analysis of Human Chondrocyte Expansion on Synoviocyte Matrix.. Cells 2019 Jan 24;8(2).
          doi: 10.3390/cells8020085pubmed: 30678371google scholar: lookup
        17. McCulloch RS, Mente PL, O'Nan AT, Ashwell MS. Articular cartilage gene expression patterns in the tissue surrounding the impact site following applications of shear and axial loads.. BMC Musculoskelet Disord 2018 Dec 22;19(1):449.
          doi: 10.1186/s12891-018-2374-2pubmed: 30579353google scholar: lookup
        18. Castro Martins M, Peffers MJ, Lee K, Rubio-Martinez LM. Effects of stanozolol on normal and IL-1u03b2-stimulated equine chondrocytes in vitro.. BMC Vet Res 2018 Mar 20;14(1):103.
          doi: 10.1186/s12917-018-1426-zpubmed: 29554899google scholar: lookup
        19. Rubio-Martu00ednez LM, Rioja E, Castro Martins M, Wipawee S, Clegg P, Peffers MJ. Local anaesthetics or their combination with morphine and/or magnesium sulphate are toxic for equine chondrocytes and synoviocytes in vitro.. BMC Vet Res 2017 Nov 7;13(1):318.
          doi: 10.1186/s12917-017-1244-8pubmed: 29115971google scholar: lookup
        20. Sieker JT, Proffen BL, Waller KA, Chin KE, Karamchedu NP, Akelman MR, Perrone GS, Kiapour AM, Konrad J, Murray MM, Fleming BC. Transcriptional profiling of articular cartilage in a porcine model of early post-traumatic osteoarthritis.. J Orthop Res 2018 Jan;36(1):318-329.
          doi: 10.1002/jor.23644pubmed: 28671352google scholar: lookup
        21. Steinbusch MM, Fang Y, Milner PI, Clegg PD, Young DA, Welting TJ, Peffers MJ. Serum snoRNAs as biomarkers for joint ageing and post traumatic osteoarthritis.. Sci Rep 2017 Mar 2;7:43558.
          doi: 10.1038/srep43558pubmed: 28252005google scholar: lookup
        22. Kuemmerle JM, Theiss F, Okoniewski MJ, Weber FA, Hemmi S, Mirsaidi A, Richards PJ, Cinelli P. Identification of Novel Equine (Equus caballus) Tendon Markers Using RNA Sequencing.. Genes (Basel) 2016 Nov 10;7(11).
          doi: 10.3390/genes7110097pubmed: 27834918google scholar: lookup
        23. Peffers MJ, Goljanek-Whysall K, Collins J, Fang Y, Rushton M, Loughlin J, Proctor C, Clegg PD. Decoding the Regulatory Landscape of Ageing in Musculoskeletal Engineered Tissues Using Genome-Wide DNA Methylation and RNASeq.. PLoS One 2016;11(8):e0160517.
          doi: 10.1371/journal.pone.0160517pubmed: 27533049google scholar: lookup
        24. Rai MF, Sandell LJ, Zhang B, Wright RW, Brophy RH. RNA Microarray Analysis of Macroscopically Normal Articular Cartilage from Knees Undergoing Partial Medial Meniscectomy: Potential Prediction of the Risk for Developing Osteoarthritis.. PLoS One 2016;11(5):e0155373.
          doi: 10.1371/journal.pone.0155373pubmed: 27171008google scholar: lookup
        25. Green BB, Houseman EA, Johnson KC, Guerin DJ, Armstrong DA, Christensen BC, Marsit CJ. Hydroxymethylation is uniquely distributed within term placenta, and is associated with gene expression.. FASEB J 2016 Aug;30(8):2874-84.
          doi: 10.1096/fj.201600310Rpubmed: 27118675google scholar: lookup
        26. Solano-Aguilar G, Molokin A, Botelho C, Fiorino AM, Vinyard B, Li R, Chen C, Urban J Jr, Dawson H, Andreyeva I, Haverkamp M, Hibberd PL. Transcriptomic Profile of Whole Blood Cells from Elderly Subjects Fed Probiotic Bacteria Lactobacillus rhamnosus GG ATCC 53103 (LGG) in a Phase I Open Label Study.. PLoS One 2016;11(2):e0147426.
          doi: 10.1371/journal.pone.0147426pubmed: 26859761google scholar: lookup
        27. Yu XM, Meng HY, Yuan XL, Wang Y, Guo QY, Peng J, Wang AY, Lu SB. MicroRNAs' Involvement in Osteoarthritis and the Prospects for Treatments.. Evid Based Complement Alternat Med 2015;2015:236179.
          doi: 10.1155/2015/236179pubmed: 26587043google scholar: lookup
        28. Greene MA, Loeser RF. Aging-related inflammation in osteoarthritis.. Osteoarthritis Cartilage 2015 Nov;23(11):1966-71.
          doi: 10.1016/j.joca.2015.01.008pubmed: 26521742google scholar: lookup
        29. Peffers MJ, Liu X, Clegg PD. Transcriptomic profiling of cartilage ageing.. Genom Data 2014 Dec;2:27-8.
          doi: 10.1016/j.gdata.2014.03.001pubmed: 26484061google scholar: lookup
        30. Stefaniuk M, Ropka-Molik K. RNA sequencing as a powerful tool in searching for genes influencing health and performance traits of horses.. J Appl Genet 2016 May;57(2):199-206.
          doi: 10.1007/s13353-015-0320-7pubmed: 26446669google scholar: lookup
        31. McQueen CM, Dindot SV, Foster MJ, Cohen ND. Genetic Susceptibility to Rhodococcus equi.. J Vet Intern Med 2015 Nov-Dec;29(6):1648-59.
          doi: 10.1111/jvim.13616pubmed: 26340305google scholar: lookup
        32. Taylor SE, Li YH, Wong WH, Bhutani N. Genome-wide mapping of DNA hydroxymethylation in osteoarthritic chondrocytes.. Arthritis Rheumatol 2015 May;67(8):2129-40.
          doi: 10.1002/art.39179pubmed: 25940674google scholar: lookup
        33. Peffers MJ, Fang Y, Cheung K, Wei TK, Clegg PD, Birch HL. Transcriptome analysis of ageing in uninjured human Achilles tendon.. Arthritis Res Ther 2015 Feb 18;17(1):33.
          doi: 10.1186/s13075-015-0544-2pubmed: 25888722google scholar: lookup
        34. Irizar H, Muu00f1oz-Culla M, Su00e1enz-Cuesta M, Osorio-Querejeta I, Sepu00falveda L, Castillo-Triviu00f1o T, Prada A, Lopez de Munain A, Olascoaga J, Otaegui D. Identification of ncRNAs as potential therapeutic targets in multiple sclerosis through differential ncRNA - mRNA network analysis.. BMC Genomics 2015 Mar 28;16(1):250.
          doi: 10.1186/s12864-015-1396-5pubmed: 25880556google scholar: lookup
        35. Peffers MJ, McDermott B, Clegg PD, Riggs CM. Comprehensive protein profiling of synovial fluid in osteoarthritis following protein equalization.. Osteoarthritis Cartilage 2015 Jul;23(7):1204-13.
          doi: 10.1016/j.joca.2015.03.019pubmed: 25819577google scholar: lookup
        36. Chou CH, Lee MT, Song IW, Lu LS, Shen HC, Lee CH, Wu JY, Chen YT, Kraus VB, Wu CC. Insights into osteoarthritis progression revealed by analyses of both knee tibiofemoral compartments.. Osteoarthritis Cartilage 2015 Apr;23(4):571-80.
          doi: 10.1016/j.joca.2014.12.020pubmed: 25575966google scholar: lookup
        37. McCulloch RS, Ashwell MS, Maltecca C, O'Nan AT, Mente PL. Progression of Gene Expression Changes following a Mechanical Injury to Articular Cartilage as a Model of Early Stage Osteoarthritis.. Arthritis 2014;2014:371426.
          doi: 10.1155/2014/371426pubmed: 25478225google scholar: lookup
        38. Mirzamohammadi F, Papaioannou G, Kobayashi T. MicroRNAs in cartilage development, homeostasis, and disease.. Curr Osteoporos Rep 2014 Dec;12(4):410-9.
          doi: 10.1007/s11914-014-0229-9pubmed: 25091054google scholar: lookup
        39. Peffers MJ, Thorpe CT, Collins JA, Eong R, Wei TK, Screen HR, Clegg PD. Proteomic analysis reveals age-related changes in tendon matrix composition, with age- and injury-specific matrix fragmentation.. J Biol Chem 2014 Sep 12;289(37):25867-78.
          doi: 10.1074/jbc.M114.566554pubmed: 25077967google scholar: lookup
        40. Peffers MJ, Beynon RJ, Clegg PD. Absolute quantification of selected proteins in the human osteoarthritic secretome.. Int J Mol Sci 2013 Oct 15;14(10):20658-81.
          doi: 10.3390/ijms141020658pubmed: 24132152google scholar: lookup