Transmission studies of Hendra virus (equine morbillivirus) in fruit bats, horses and cats.
Abstract: To determine the infectivity and transmissibility of Hendra virus (HeV). Methods: A disease transmission study using fruit bats, horses and cats. Methods: Eight grey-headed fruit bats (Pteropus poliocephalus) were inoculated and housed in contact with three uninfected bats and two uninfected horses. In a second experiment, four horses were inoculated by subcutaneous injection and intranasal inoculation and housed in contact with three uninfected horses and six uninfected cats. In a third experiment, 12 cats were inoculated and housed in contact with three uninfected horses. Two surviving horses were inoculated at the conclusion of the third experiment: the first orally and the second by nasal swabbing. All animals were necropsied and examined by gross and microscopic pathological methods, immunoperoxidase to detect viral antigen in formalin-fixed tissues, virus isolation was attempted on tissues and SNT and ELISA methods were used to detect HeV-specific antibody. Results: Clinical disease was not observed in the fruit bats, although six of eight inoculated bats developed antibody against HeV, and two of six developed vascular lesions which contained viral antigen. The in-contact bats and horses did not seroconvert. Three of four horses that were inoculated developed acute disease, but in-contact horses and cats were not infected. In the third experiment, one of three in-contact horses contracted disease. At the time of necropsy, high titres of HeV were detected in the kidneys of six acutely infected horses, in the urine of four horses and the mouth of two, but not in the nasal cavities or tracheas. Conclusions: Grey-headed fruit bats seroconvert and develop subclinical disease when inoculated with HeV. Horses can be infected by oronasal routes and can excrete HeV in urine and saliva. It is possible to transmit HeV from cats to horses. Transmission from P poliocephalus to horses could not be proven and neither could transmission from horses to horses or horses to cats. Under the experimental conditions of the study the virus is not highly contagious.
Publication Date: 1999-02-11 PubMed ID: 9972433DOI: 10.1111/j.1751-0813.1998.tb12335.xGoogle Scholar: Lookup The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
- Journal Article
- Research Support
- Non-U.S. Gov't
Summary
This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.
The research article investigates the transmission and infectivity of Hendra virus using horses, fruit bats, and cats as test subjects. The study reveals that while fruit bats and horses can contract and excrete the virus, it’s not easily transmitted among these species or to cats.
Study Procedure
- The research was partitioned into three experimental sections; each set up with the aim of determining the possibility of Hendra Virus (HeV) transmission between different species (fruit bats, horses, and cats). Close attention was given to whether the issues under investigation seroconvert (produce specific antibodies in response to the virus).
- The first experiment involved inoculating grey-headed fruit bats and placing them in close proximity with uninfected bats and horses.
- The second experiment involved horses, some of which were inoculated and placed with uninfected horses and cats.
- The third experiment focused on cats that had been inoculated and placed with uninfected horses.
- For all studies, detailed postmortem examinations were conducted on the animals to spot viral presence, viral-induced damages, and the levels of HeV-specific antibodies.
Results
- The study found that fruit bats, although not visibly sick, developed antibodies against the virus when inoculated. This suggests that they seroconverted and possibly developed an asymptomatic version of the disease.
- The virus didn’t spread to either the uninfected bats or horses that were in contact with the inoculated bats.
- In the second part of the experiment involving horses, it was evident that most of the inoculated animals developed the disease. However, the ailment was not transmitted to the other horses and cats they were housed with.
- The third experiment showed that Hendra virus could be passed on to horses through cats.
- Crucially, the evidence showed virus existence in the kidneys of infected horses and to a lesser degree in the urine and mouth of some horses. There was no evidence of the virus in the nasal cavities or tracheas.
Conclusions
- The study itemized that grey-headed fruit bats and horses could contract the Hendra virus and seroconvert, but it was not easily transmitted to other individuals of their species or to other species (like the horses and cats in the experiments).
- From the experiments, horses became infected and could excrete the virus through urine and saliva. However, the disease didn’t prove highly contagious under the experimental conditions the research deployed.
- The research did not prove conclusively that fruit bats could transmit the virus to horses, or that there could be transmission from horses to cats or other horses.
Cite This Article
APA
Williamson MM, Hooper PT, Selleck PW, Gleeson LJ, Daniels PW, Westbury HA, Murray PK.
(1999).
Transmission studies of Hendra virus (equine morbillivirus) in fruit bats, horses and cats.
Aust Vet J, 76(12), 813-818.
https://doi.org/10.1111/j.1751-0813.1998.tb12335.x Publication
Researcher Affiliations
- CSIRO, Australian Animal Health Laboratory, Geelong, Victoria.
MeSH Terms
- Administration, Intranasal
- Administration, Oral
- Animals
- Antibodies, Viral / blood
- Antigens, Viral / analysis
- Cat Diseases / immunology
- Cat Diseases / transmission
- Cats
- Chiroptera
- Chlorocebus aethiops
- Disease Reservoirs / veterinary
- Enzyme-Linked Immunosorbent Assay / veterinary
- Female
- Horse Diseases / immunology
- Horse Diseases / transmission
- Horses
- Injections, Subcutaneous / veterinary
- Kidney / virology
- Male
- Morbillivirus / immunology
- Morbillivirus / pathogenicity
- Morbillivirus Infections / immunology
- Morbillivirus Infections / transmission
- Morbillivirus Infections / veterinary
- Neutralization Tests / veterinary
- Vero Cells
Citations
This article has been cited 92 times.- Hayward JA, Tachedjian M, Johnson A, Irving AT, Gordon TB, Cui J, Nicolas A, Smith I, Boyd V, Marsh GA, Baker ML, Wang LF, Tachedjian G. Unique Evolution of Antiviral Tetherin in Bats.. J Virol 2022 Oct 26;96(20):e0115222.
- Zemanovu00e1 S, Korytu00e1r u013d, Tomu010dovu00e1 J, Prokeu0161 M, Dru00e1u017eovsku00e1 M, Myczko u0141, Tryjanowski P, Nusovu00e1 G, Matysiak A, Ondrejkovu00e1 A. Opportunities and Limitations of Molecular Methods for Studying Bat-Associated Pathogens.. Microorganisms 2022 Sep 19;10(9).
- Deng Y, Zhou K, Wu M, Zhang J, Yang L, Chen W, Li G. Viral cross-class transmission results in disease of a phytopathogenic fungus.. ISME J 2022 Dec;16(12):2763-2774.
- Tian J, Sun J, Li D, Wang N, Wang L, Zhang C, Meng X, Ji X, Suchard MA, Zhang X, Lai A, Su S, Veit M. Emerging viruses: Cross-species transmission of coronaviruses, filoviruses, henipaviruses, and rotaviruses from bats.. Cell Rep 2022 Jun 14;39(11):110969.
- Lawrence P, Escudero-Pu00e9rez B. Henipavirus Immune Evasion and Pathogenesis Mechanisms: Lessons Learnt from Natural Infection and Animal Models.. Viruses 2022 Apr 29;14(5).
- Gamble A, Yeo YY, Butler AA, Tang H, Snedden CE, Mason CT, Buchholz DW, Bingham J, Aguilar HC, Lloyd-Smith JO. Drivers and Distribution of Henipavirus-Induced Syncytia: What Do We Know?. Viruses 2021 Sep 2;13(9).
- Williams EP, Spruill-Harrell BM, Taylor MK, Lee J, Nywening AV, Yang Z, Nichols JH, Camp JV, Owen RD, Jonsson CB. Common Themes in Zoonotic Spillover and Disease Emergence: Lessons Learned from Bat- and Rodent-Borne RNA Viruses.. Viruses 2021 Jul 31;13(8).
- Yuen KY, Fraser NS, Henning J, Halpin K, Gibson JS, Betzien L, Stewart AJ. Hendra virus: Epidemiology dynamics in relation to climate change, diagnostic tests and control measures.. One Health 2021 Jun;12:100207.
- Epstein JH, Anthony SJ, Islam A, Kilpatrick AM, Ali Khan S, Balkey MD, Ross N, Smith I, Zambrana-Torrelio C, Tao Y, Islam A, Quan PL, Olival KJ, Khan MSU, Gurley ES, Hossein MJ, Field HE, Fielder MD, Briese T, Rahman M, Broder CC, Crameri G, Wang LF, Luby SP, Lipkin WI, Daszak P. Nipah virus dynamics in bats and implications for spillover to humans.. Proc Natl Acad Sci U S A 2020 Nov 17;117(46):29190-29201.
- Amaya M, Broder CC. Vaccines to Emerging Viruses: Nipah and Hendra.. Annu Rev Virol 2020 Sep 29;7(1):447-473.
- Horigan V, Gale P, Kosmider RD, Minnis C, Snary EL, Breed AC, Simons RRL. Application of a quantitative entry assessment model to compare the relative risk of incursion of zoonotic bat-borne viruses into European Union Member States.. Microb Risk Anal 2017 Dec;7:8-28.
- Woon AP, Boyd V, Todd S, Smith I, Klein R, Woodhouse IB, Riddell S, Crameri G, Bingham J, Wang LF, Purcell AW, Middleton D, Baker ML. Acute experimental infection of bats and ferrets with Hendra virus: Insights into the early host response of the reservoir host and susceptible model species.. PLoS Pathog 2020 Mar;16(3):e1008412.
- Di Rubbo A, McNabb L, Klein R, White JR, Colling A, Dimitrov DS, Broder CC, Middleton D, Lunt RA. Optimization and diagnostic evaluation of monoclonal antibody-based blocking ELISA formats for detection of neutralizing antibodies to Hendra virus in mammalian sera.. J Virol Methods 2019 Dec;274:113731.
- Dawes BE, Freiberg AN. Henipavirus infection of the central nervous system.. Pathog Dis 2019 Mar 1;77(2).
- Brook CE, Ranaivoson HC, Broder CC, Cunningham AA, Hu00e9raud JM, Peel AJ, Gibson L, Wood JLN, Metcalf CJ, Dobson AP. Disentangling serology to elucidate henipa- and filovirus transmission in Madagascar fruit bats.. J Anim Ecol 2019 Jul;88(7):1001-1016.
- Jones MEB, Amman BR, Sealy TK, Uebelhoer LS, Schuh AJ, Flietstra T, Bird BH, Coleman-McCray JD, Zaki SR, Nichol ST, Towner JS. Clinical, Histopathologic, and Immunohistochemical Characterization of Experimental Marburg Virus Infection in A Natural Reservoir Host, the Egyptian Rousette Bat (Rousettus aegyptiacus).. Viruses 2019 Mar 2;11(3).
- Malmlov A, Bantle C, Aboellail T, Wagner K, Campbell CL, Eckley M, Chotiwan N, Gullberg RC, Perera R, Tjalkens R, Schountz T. Experimental Zika virus infection of Jamaican fruit bats (Artibeus jamaicensis) and possible entry of virus into brain via activated microglial cells.. PLoS Negl Trop Dis 2019 Feb;13(2):e0007071.
- Mandl JN, Schneider C, Schneider DS, Baker ML. Going to Bat(s) for Studies of Disease Tolerance.. Front Immunol 2018;9:2112.
- Sharma V, Kaushik S, Kumar R, Yadav JP, Kaushik S. Emerging trends of Nipah virus: A review.. Rev Med Virol 2019 Jan;29(1):e2010.
- Hayward JA, Tachedjian M, Cui J, Cheng AZ, Johnson A, Baker ML, Harris RS, Wang LF, Tachedjian G. Differential Evolution of Antiretroviral Restriction Factors in Pteropid Bats as Revealed by APOBEC3 Gene Complexity.. Mol Biol Evol 2018 Jul 1;35(7):1626-1637.
- Laing ED, Amaya M, Navaratnarajah CK, Feng YR, Cattaneo R, Wang LF, Broder CC. Rescue and characterization of recombinant cedar virus, a non-pathogenic Henipavirus species.. Virol J 2018 Mar 27;15(1):56.
- Martin G, Yanez-Arenas C, Plowright RK, Chen C, Roberts B, Skerratt LF. Hendra Virus Spillover is a Bimodal System Driven by Climatic Factors.. Ecohealth 2018 Sep;15(3):526-542.
- Weatherman S, Feldmann H, de Wit E. Transmission of henipaviruses.. Curr Opin Virol 2018 Feb;28:7-11.
- Schountz T, Baker ML, Butler J, Munster V. Immunological Control of Viral Infections in Bats and the Emergence of Viruses Highly Pathogenic to Humans.. Front Immunol 2017;8:1098.
- Goyen KA, Wright JD, Cunneen A, Henning J. Playing with fire - What is influencing horse owners' decisions to not vaccinate their horses against deadly Hendra virus infection?. PLoS One 2017;12(6):e0180062.
- Banerjee A, Rapin N, Bollinger T, Misra V. Lack of inflammatory gene expression in bats: a unique role for a transcription repressor.. Sci Rep 2017 May 22;7(1):2232.
- Ng JHJ, Tachedjian M, Wang LF, Baker ML. Insights into the ancestral organisation of the mammalian MHC class II region from the genome of the pteropid bat, Pteropus alecto.. BMC Genomics 2017 May 18;18(1):388.
- Plowright RK, Peel AJ, Streicker DG, Gilbert AT, McCallum H, Wood J, Baker ML, Restif O. Transmission or Within-Host Dynamics Driving Pulses of Zoonotic Viruses in Reservoir-Host Populations.. PLoS Negl Trop Dis 2016 Aug;10(8):e0004796.
- Broder CC, Weir DL, Reid PA. Hendra virus and Nipah virus animal vaccines.. Vaccine 2016 Jun 24;34(30):3525-34.
- Plattet P, Alves L, Herren M, Aguilar HC. Measles Virus Fusion Protein: Structure, Function and Inhibition.. Viruses 2016 Apr 21;8(4):112.
- Ng JH, Tachedjian M, Deakin J, Wynne JW, Cui J, Haring V, Broz I, Chen H, Belov K, Wang LF, Baker ML. Evolution and comparative analysis of the bat MHC-I region.. Sci Rep 2016 Feb 15;6:21256.
- Liang YZ, Wu LJ, Zhang Q, Zhou P, Wang MN, Yang XL, Ge XY, Wang LF, Shi ZL. Cloning, expression, and antiviral activity of interferon u03b2 from the Chinese microbat, Myotis davidii.. Virol Sin 2015 Dec;30(6):425-32.
- Lee AK, Kulcsar KA, Elliott O, Khiabanian H, Nagle ER, Jones ME, Amman BR, Sanchez-Lockhart M, Towner JS, Palacios G, Rabadan R. De novo transcriptome reconstruction and annotation of the Egyptian rousette bat.. BMC Genomics 2015 Dec 7;16:1033.
- Mok L, Wynne JW, Ford K, Shiell B, Bacic A, Michalski WP. Proteomic analysis of Pteropus alecto kidney cells in response to the viral mimic, Poly I:C.. Proteome Sci 2015;13:25.
- Edson D, Field H, McMichael L, Vidgen M, Goldspink L, Broos A, Melville D, Kristoffersen J, de Jong C, McLaughlin A, Davis R, Kung N, Jordan D, Kirkland P, Smith C. Routes of Hendra Virus Excretion in Naturally-Infected Flying-Foxes: Implications for Viral Transmission and Spillover Risk.. PLoS One 2015;10(10):e0140670.
- Field HE, Smith CS, de Jong CE, Melville D, Broos A, Kung N, Thompson J, Dechmann DK. Landscape Utilisation, Animal Behaviour and Hendra Virus Risk.. Ecohealth 2016 Mar;13(1):26-38.
- Ong KC, Wong KT. Henipavirus Encephalitis: Recent Developments and Advances.. Brain Pathol 2015 Sep;25(5):605-13.
- Goldspink LK, Edson DW, Vidgen ME, Bingham J, Field HE, Smith CS. Natural Hendra Virus Infection in Flying-Foxes - Tissue Tropism and Risk Factors.. PLoS One 2015;10(6):e0128835.
- Jiang S, Lu L, Liu Q, Xu W, Du L. Receptor-binding domains of spike proteins of emerging or re-emerging viruses as targets for development of antiviral vaccines.. Emerg Microbes Infect 2012 Aug;1(8):e13.
- Martin G, Plowright R, Chen C, Kault D, Selleck P, Skerratt LF. Hendra virus survival does not explain spillover patterns and implicates relatively direct transmission routes from flying foxes to horses.. J Gen Virol 2015 Jun;96(Pt 6):1229-1237.
- Dhondt KP, Horvat B. Henipavirus infections: lessons from animal models.. Pathogens 2013 Apr 9;2(2):264-87.
- He X, Korytu00e1u0159 T, Zhu Y, Pikula J, Bandouchova H, Zukal J, Ku00f6llner B. Establishment of Myotis myotis cell lines--model for investigation of host-pathogen interaction in a natural host for emerging viruses.. PLoS One 2014;9(10):e109795.
- Middleton D. Hendra virus.. Vet Clin North Am Equine Pract 2014 Dec;30(3):579-89.
- Weese JS. Infection control and biosecurity in equine disease control.. Equine Vet J 2014 Nov;46(6):654-60.
- Olival KJ, Hayman DT. Filoviruses in bats: current knowledge and future directions.. Viruses 2014 Apr 17;6(4):1759-88.
- Middleton D, Pallister J, Klein R, Feng YR, Haining J, Arkinstall R, Frazer L, Huang JA, Edwards N, Wareing M, Elhay M, Hashmi Z, Bingham J, Yamada M, Johnson D, White J, Foord A, Heine HG, Marsh GA, Broder CC, Wang LF. Hendra virus vaccine, a one health approach to protecting horse, human, and environmental health.. Emerg Infect Dis 2014 Mar;20(3):372-9.
- Kung N, McLaughlin A, Taylor M, Moloney B, Wright T, Field H. Hendra virus and horse owners--risk perception and management.. PLoS One 2013;8(11):e80897.
- Kuzmin IV, Bozick B, Guagliardo SA, Kunkel R, Shak JR, Tong S, Rupprecht CE. Bats, emerging infectious diseases, and the rabies paradigm revisited.. Emerg Health Threats J 2011 Jun 20;4:7159.
- Baker KS, Suu-Ire R, Barr J, Hayman DT, Broder CC, Horton DL, Durrant C, Murcia PR, Cunningham AA, Wood JL. Viral antibody dynamics in a chiropteran host.. J Anim Ecol 2014 Mar;83(2):415-28.
- Wynne JW, Di Rubbo A, Shiell BJ, Beddome G, Cowled C, Peck GR, Huang J, Grimley SL, Baker ML, Michalski WP. Purification and characterisation of immunoglobulins from the Australian black flying fox (Pteropus alecto) using anti-fab affinity chromatography reveals the low abundance of IgA.. PLoS One 2013;8(1):e52930.
- Baker ML, Schountz T, Wang LF. Antiviral immune responses of bats: a review.. Zoonoses Public Health 2013 Feb;60(1):104-16.
- Wu L, Zhou P, Ge X, Wang LF, Baker ML, Shi Z. Deep RNA sequencing reveals complex transcriptional landscape of a bat adenovirus.. J Virol 2013 Jan;87(1):503-11.
- Hayman DT, Bowen RA, Cryan PM, McCracken GF, O'Shea TJ, Peel AJ, Gilbert A, Webb CT, Wood JL. Ecology of zoonotic infectious diseases in bats: current knowledge and future directions.. Zoonoses Public Health 2013 Feb;60(1):2-21.
- Papenfuss AT, Baker ML, Feng ZP, Tachedjian M, Crameri G, Cowled C, Ng J, Janardhana V, Field HE, Wang LF. The immune gene repertoire of an important viral reservoir, the Australian black flying fox.. BMC Genomics 2012 Jun 20;13:261.
- Broder CC. Henipavirus outbreaks to antivirals: the current status of potential therapeutics.. Curr Opin Virol 2012 Apr;2(2):176-87.
- Broder CC, Geisbert TW, Xu K, Nikolov DB, Wang LF, Middleton D, Pallister J, Bossart KN. Immunization strategies against henipaviruses.. Curr Top Microbiol Immunol 2012;359:197-223.
- Geisbert TW, Feldmann H, Broder CC. Animal challenge models of henipavirus infection and pathogenesis.. Curr Top Microbiol Immunol 2012;359:153-77.
- Xu K, Broder CC, Nikolov DB. Ephrin-B2 and ephrin-B3 as functional henipavirus receptors.. Semin Cell Dev Biol 2012 Feb;23(1):116-23.
- Marsh GA, Haining J, Hancock TJ, Robinson R, Foord AJ, Barr JA, Riddell S, Heine HG, White JR, Crameri G, Field HE, Wang LF, Middleton D. Experimental infection of horses with Hendra virus/Australia/horse/2008/Redlands.. Emerg Infect Dis 2011 Dec;17(12):2232-8.
- Cowled C, Baker ML, Zhou P, Tachedjian M, Wang LF. Molecular characterisation of RIG-I-like helicases in the black flying fox, Pteropus alecto.. Dev Comp Immunol 2012 Apr;36(4):657-64.
- McFarlane R, Becker N, Field H. Investigation of the climatic and environmental context of Hendra virus spillover events 1994-2010.. PLoS One 2011;6(12):e28374.
- Janardhana V, Tachedjian M, Crameri G, Cowled C, Wang LF, Baker ML. Cloning, expression and antiviral activity of IFNu03b3 from the Australian fruit bat, Pteropus alecto.. Dev Comp Immunol 2012 Mar;36(3):610-8.
- Halpin K, Hyatt AD, Fogarty R, Middleton D, Bingham J, Epstein JH, Rahman SA, Hughes T, Smith C, Field HE, Daszak P. Pteropid bats are confirmed as the reservoir hosts of henipaviruses: a comprehensive experimental study of virus transmission.. Am J Trop Med Hyg 2011 Nov;85(5):946-51.
- Smith I, Broos A, de Jong C, Zeddeman A, Smith C, Smith G, Moore F, Barr J, Crameri G, Marsh G, Tachedjian M, Yu M, Kung YH, Wang LF, Field H. Identifying Hendra virus diversity in pteropid bats.. PLoS One 2011;6(9):e25275.
- Hayman DT, Wang LF, Barr J, Baker KS, Suu-Ire R, Broder CC, Cunningham AA, Wood JL. Antibodies to henipavirus or henipa-like viruses in domestic pigs in Ghana, West Africa.. PLoS One 2011;6(9):e25256.
- Wong KT, Ong KC. Pathology of acute henipavirus infection in humans and animals.. Patholog Res Int 2011;2011:567248.
- Virtue ER, Marsh GA, Baker ML, Wang LF. Interferon production and signaling pathways are antagonized during henipavirus infection of fruit bat cell lines.. PLoS One 2011;6(7):e22488.
- Sohayati AR, Hassan L, Sharifah SH, Lazarus K, Zaini CM, Epstein JH, Shamsyul Naim N, Field HE, Arshad SS, Abdul Aziz J, Daszak P. Evidence for Nipah virus recrudescence and serological patterns of captive Pteropus vampyrus.. Epidemiol Infect 2011 Oct;139(10):1570-9.
- Vigant F, Lee B. Hendra and nipah infection: pathology, models and potential therapies.. Infect Disord Drug Targets 2011 Jun;11(3):315-36.
- Tulsiani SM, Graham GC, Moore PR, Jansen CC, Van Den Hurk AF, Moore FA, Simmons RJ, Craig SB. Emerging tropical diseases in Australia. Part 5. Hendra virus.. Ann Trop Med Parasitol 2011 Jan;105(1):1-11.
- Zhou P, Cowled C, Todd S, Crameri G, Virtue ER, Marsh GA, Klein R, Shi Z, Wang LF, Baker ML. Type III IFNs in pteropid bats: differential expression patterns provide evidence for distinct roles in antiviral immunity.. J Immunol 2011 Mar 1;186(5):3138-47.
- Cowled C, Baker M, Tachedjian M, Zhou P, Bulach D, Wang LF. Molecular characterisation of Toll-like receptors in the black flying fox Pteropus alecto.. Dev Comp Immunol 2011 Jan;35(1):7-18.
- Wong KT. Emerging epidemic viral encephalitides with a special focus on henipaviruses.. Acta Neuropathol 2010 Sep;120(3):317-25.
- Li M, Embury-Hyatt C, Weingartl HM. Experimental inoculation study indicates swine as a potential host for Hendra virus.. Vet Res 2010 May-Jun;41(3):33.
- Baker ML, Tachedjian M, Wang LF. Immunoglobulin heavy chain diversity in Pteropid bats: evidence for a diverse and highly specific antigen binding repertoire.. Immunogenetics 2010 Mar;62(3):173-84.
- Crameri G, Todd S, Grimley S, McEachern JA, Marsh GA, Smith C, Tachedjian M, De Jong C, Virtue ER, Yu M, Bulach D, Liu JP, Michalski WP, Middleton D, Field HE, Wang LF. Establishment, immortalisation and characterisation of pteropid bat cell lines.. PLoS One 2009 Dec 11;4(12):e8266.
- Pourrut X, Souris M, Towner JS, Rollin PE, Nichol ST, Gonzalez JP, Leroy E. Large serological survey showing cocirculation of Ebola and Marburg viruses in Gabonese bat populations, and a high seroprevalence of both viruses in Rousettus aegyptiacus.. BMC Infect Dis 2009 Sep 28;9:159.
- Erbar S, Diederich S, Maisner A. Selective receptor expression restricts Nipah virus infection of endothelial cells.. Virol J 2008 Nov 26;5:142.
- Wellehan JF Jr, Green LG, Duke DG, Bootorabi S, Heard DJ, Klein PA, Jacobson ER. Detection of specific antibody responses to vaccination in variable flying foxes (Pteropus hypomelanus).. Comp Immunol Microbiol Infect Dis 2009 Sep;32(5):379-94.
- Plowright RK, Field HE, Smith C, Divljan A, Palmer C, Tabor G, Daszak P, Foley JE. Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus).. Proc Biol Sci 2008 Apr 7;275(1636):861-9.
- Fogarty R, Halpin K, Hyatt AD, Daszak P, Mungall BA. Henipavirus susceptibility to environmental variables.. Virus Res 2008 Mar;132(1-2):140-4.
- Childs JE. Pre-spillover prevention of emerging zoonotic diseases: what are the targets and what are the tools?. Curr Top Microbiol Immunol 2007;315:389-443.
- Field HE, Mackenzie JS, Daszak P. Henipaviruses: emerging paramyxoviruses associated with fruit bats.. Curr Top Microbiol Immunol 2007;315:133-59.
- Lee B. Envelope-receptor interactions in Nipah virus pathobiology.. Ann N Y Acad Sci 2007 Apr;1102(1):51-65.
- Eaton BT, Broder CC, Middleton D, Wang LF. Hendra and Nipah viruses: different and dangerous.. Nat Rev Microbiol 2006 Jan;4(1):23-35.
- Bellini WJ, Harcourt BH, Bowden N, Rota PA. Nipah virus: an emergent paramyxovirus causing severe encephalitis in humans.. J Neurovirol 2005 Oct;11(5):481-7.
- Bonaparte MI, Dimitrov AS, Bossart KN, Crameri G, Mungall BA, Bishop KA, Choudhry V, Dimitrov DS, Wang LF, Eaton BT, Broder CC. Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus.. Proc Natl Acad Sci U S A 2005 Jul 26;102(30):10652-7.
- Burnouf T, Griffiths E, Padilla A, Seddik S, Stephano MA, Gutiu00e9rrez JM. Assessment of the viral safety of antivenoms fractionated from equine plasma.. Biologicals 2004 Sep;32(3):115-28.
- Olson JG, Rupprecht C, Rollin PE, An US, Niezgoda M, Clemins T, Walston J, Ksiazek TG. Antibodies to Nipah-like virus in bats (Pteropus lylei), Cambodia.. Emerg Infect Dis 2002 Sep;8(9):987-8.
- Mackenzie JS, Chua KB, Daniels PW, Eaton BT, Field HE, Hall RA, Halpin K, Johansen CA, Kirkland PD, Lam SK, McMinn P, Nisbet DJ, Paru R, Pyke AT, Ritchie SA, Siba P, Smith DW, Smith GA, van den Hurk AF, Wang LF, Williams DT. Emerging viral diseases of Southeast Asia and the Western Pacific.. Emerg Infect Dis 2001;7(3 Suppl):497-504.
- Yob JM, Field H, Rashdi AM, Morrissy C, van der Heide B, Rota P, bin Adzhar A, White J, Daniels P, Jamaluddin A, Ksiazek T. Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia.. Emerg Infect Dis 2001 May-Jun;7(3):439-41.
- Caplan CE. New virus emerges in Malaysia.. CMAJ 1999 Jun 1;160(11):1607.