Comparison of bone marrow aspiration at the sternum and the tuber coxae in middle-aged horses.

Abstract: The objective of this study was to compare bone marrow (BM) aspirates from the sternum and the tuber coxae of middle-aged horses. Bone marrow was obtained from the sternum and both tubera coxae of 12 healthy, 13-year-old geldings. Two different puncture techniques were used for the tuber coxae. The 2 syringes used for sternal sampling were evaluated separately. The mononuclear cell (MNC) fraction of the BM was isolated and the mesenchymal stem cells (MSCs) were culture-expanded. At the sternum, BM aspiration was always possible. Bone marrow aspiration at the tuber coxae required straight and deep needle penetration combined with high negative pressure. With this technique a median sample amount of 11.0 mL with large individual variation was obtained. A median of 3.06 × 10(6) MNC/mL BM (1st syringe) and 2.46 × 10(6) MNC/mL BM (2nd syringe) was isolated from sternal samples. In contrast, the tuber coxae yielded a median of 0.27 × 10(6) MNC/mL BM. The first passage yielded a median of 2.19 × 10(6) MSC (1st syringe) and 1.13 × 10(6) MSC (2nd syringe) from sternal samples, compared to a significantly lower median number of MSC from tuber coxae BM (0.06 × 10(6) MSC). The number of MNC and MSC obtainable from the BM aspirates taken from the tuber coxae is significantly lower than that obtained from the sternal BM aspirates. Autologous BM for the equine athlete is particularly clinically relevant at an advanced age. Based on our findings, the tuber coxae cannot be recommended for BM aspiration in middle-aged horses. Cette étude visait à comparer les aspirations de moelle osseuse (MO) provenant du sternum et de la tubérosité de la hanche de chevaux d’âge moyen. La MO fut obtenue du sternum et des deux tubérosités de la hanche de 12 hongres âgés de 13 ans. Deux techniques de ponctions différentes ont été utilisées pour la tubérosité de la hanche. Les 2 seringues utilisées pour l’échantillonnage du sternum furent évaluées séparément. La fraction des cellules mononucléaires (MNC) de la MO a été isolée et les cellules souches mésensychamenteuses (CSM) ont été multipliées par culture. À partir du sternum, les aspirations de MO étaient toujours possibles. L’aspiration de moelle osseuse à partir de la tubérosité de la hanche nécessitait de combiner une pénétration droite et profonde de l’aiguille ainsi qu’une pression négative élevée. Au moyen de cette technique une quantité médiane de 11,0 mL d’échantillon était obtenue, avec de grandes variations individuelles. Une quantité médiane de 3,06 × 10 CSM/mL de MO (1 seringue) et de 2,46 × 10 CSM/mL de MO (2 seringue) était obtenue à partir des échantillons du sternum. Ceci contrastait avec la médiane de 0,27 × 10 CSM/mL de MO obtenue de la tubérosité de la hanche. Une médiane de 2,19 × 10 CSM (1 seringue) et de 1,13 × 10 CSM (2 seringue) a été obtenu des échantillons provenant du sternum, comparativement à une quantité médiane significativement moindre de MSC provenant de la MO de la tubérosité de la hanche (0,06 × 10 CSM). Le nombre de cellules mononucléaires et de CSM pouvant être obtenues à partir d’aspiration de MO provenant de la tubérosité de la hanche est significativement plus bas que celui obtenu à partir d’une aspiration de MO provenant du sternum. Pour un athlète équin, de la MO homologue a une signification clinique particulière chez un animal plus âgé. Selon nos trouvailles, la tubérosité de la hanche ne peut être recommandée pour une aspiration de MO chez des chevaux d’âge moyen. (Traduit par Docteur Serge Messier)
Publication Date: 2012-07-04 PubMed ID: 22754095PubMed Central: PMC3244288
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Comparative Study
  • Journal Article

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

This study focuses on comparing the effectiveness of bone marrow aspiration from two different locations in middle-aged horses: the sternum and the tuber coxae. Results showed that bone marrow aspiration was always successful from the sternum, while aspiration at the tuber coxae was found to be less reliable and yielded significantly lower numbers of mononuclear cells and mesenchymal stem cells.

Study Objective and Methodology

  • The purpose of this study was to examine the differences between bone marrow aspirates obtained from the sternum and the tuber coxae (hip bone) of middle-aged horses.
  • The study involved 12 healthy, 13-year-old geldings (castrated male horses) from which bone marrow was extracted from the sternum and both sides of the tuber coxae.
  • Two different puncture methods were used for retrieving bone marrow from the tuber coxae and the two syringes used for the sternum were evaluated separately
  • The fractions of mononuclear cells (MNC) and mesenchymal stem cells (MSC) were isolated and culture-expanded for thorough examination.

Key Findings

  • The bone marrow aspiration was always successful when conducted on the sternum.
  • The aspiration from the tuber coxae required a straight and deep needle penetration combined with a high level of negative pressure.
  • The amount of sample gathered from the tuber coxae using this technique had a median volume of 11.0 mL and varied significantly among individuals.
  • The median count of MNC and MSC from the sternal samples was markedly higher compared to those from the tuber coxae.
  • The findings strongly suggest that the number of MNC and MSC obtainable from the bone marrow aspirates retrieved from the tuber coxae is significantly lower than that obtained from the sternum.

Conclusion and Clinical Relevance

  • For the equine athlete, autologous bone marrow – bone marrow from the same individual – is particularly relevant at an advanced age.
  • Considering the gathered data, the researchers do not recommend the tuber coxae as a suitable location for bone marrow aspiration in middle-aged horses due to the significantly lower yield of MNC and MSC compared to those obtained from the sternum.

Cite This Article

APA
Delling U, Lindner K, Ribitsch I, Ju00fclke H, Brehm W. (2012). Comparison of bone marrow aspiration at the sternum and the tuber coxae in middle-aged horses. Can J Vet Res, 76(1), 52-56.

Publication

ISSN: 1928-9022
NlmUniqueID: 8607793
Country: Canada
Language: English
Volume: 76
Issue: 1
Pages: 52-56

Researcher Affiliations

Delling, Uta
  • Large Animal Clinic for Surgery, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 21, 04103 Leipzig, Germany. delling@vetmed.uni-leipzig.de
Lindner, Katrin
    Ribitsch, Iris
      Ju00fclke, Henriette
        Brehm, Walter

          MeSH Terms

          • Animals
          • Biopsy, Needle / methods
          • Biopsy, Needle / veterinary
          • Bone Marrow / surgery
          • Bone Marrow Cells / cytology
          • Cell Count / veterinary
          • Centrifugation, Density Gradient / veterinary
          • Horses / anatomy & histology
          • Ilium / surgery
          • Male
          • Statistics, Nonparametric
          • Sternum / surgery

          References

          This article includes 23 references
          1. Fortier LA, Nixon AJ, Williams J, Cable CS. Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells.. Am J Vet Res 1998 Sep;59(9):1182-7.
            pubmed: 9736400
          2. Kisiday JD, Kopesky PW, Evans CH, Grodzinsky AJ, McIlwraith CW, Frisbie DD. Evaluation of adult equine bone marrow- and adipose-derived progenitor cell chondrogenesis in hydrogel cultures.. J Orthop Res 2008 Mar;26(3):322-31.
            pubmed: 17960654doi: 10.1002/jor.20508google scholar: lookup
          3. Stewart AA, Byron CR, Pondenis HC, Stewart MC. Effect of dexamethasone supplementation on chondrogenesis of equine mesenchymal stem cells.. Am J Vet Res 2008 Aug;69(8):1013-21.
            pubmed: 18672964doi: 10.2460/ajvr.69.8.1013google scholar: lookup
          4. Durando MM, Zarucco L, Schaer TP, Ross M, Reef VB. Pneumopericardium in a horse secondary to sternal bone marrow aspiration. Equine Vet Educ. 2006;18:75u201379.
          5. Bain BJ. Bone marrow trephine biopsy.. J Clin Pathol 2001 Oct;54(10):737-42.
            pmc: PMC1731298pubmed: 11577117doi: 10.1136/jcp.54.10.737google scholar: lookup
          6. Abla O, Friedman J, Doyle J. Performing bone marrow aspiration and biopsy in children: Recommended guidelines.. Paediatr Child Health 2008 Jul;13(6):499-501.
            pmc: PMC2532899pubmed: 19436420doi: 10.1093/pch/13.6.499google scholar: lookup
          7. Townsend FI 3rd. Bone marrow aspiration in dogs and cats.. Lab Anim (NY) 2008 Nov;37(11):497-8.
            pubmed: 18948989doi: 10.1038/laban1108-497google scholar: lookup
          8. Abukawa H, Phelps M, Jackson P, Smith RM, Vacanti JP, Kaban LB, Troulis MJ. Effect of ibuprofen on osteoblast differentiation of porcine bone marrow-derived progenitor cells.. J Oral Maxillofac Surg 2009 Nov;67(11):2412-7.
            pubmed: 19837310doi: 10.1016/j.joms.2009.05.434google scholar: lookup
          9. Lindl T, Gstraunthaler G. Zell- und Gewebekultur [Cell- and tissue culture] 6th ed. Heidelberg: Spektrum Akademischer Verlag; 2008. pp. 150u2013151.pp. 380u2013381.
          10. Ilial Bone Marrow Aspiration Protocol. [Last accessed October 19, 2011]. Available from www.art4dvm.com/PDF/Getting-Started/Equine-Ilial-Aspiration-protocol.pdf.
          11. StemRegen Procedurec. [Last accessed October 19, 2011]. Available from www.vetcell.com/stemregen-procedures; and www.vetcell.com/assets/Uploads/StemRegen-BMA-Procedures-Tuber-Coxa2.pdf.
          12. Smith RK. Mesenchymal stem cell therapy for equine tendinopathy.. Disabil Rehabil 2008;30(20-22):1752-8.
            pubmed: 18608378doi: 10.1080/09638280701788241google scholar: lookup
          13. Frisbie DD, Kisiday JD, Kawcak CE, Werpy NM, McIlwraith CW. Evaluation of adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis.. J Orthop Res 2009 Dec;27(12):1675-80.
            pubmed: 19544397doi: 10.1002/jor.20933google scholar: lookup
          14. Ferris DJ, Frisbie DD, Kisiday JD, et al. Clinical follow-up of horses treated with bone-marrow derived mesenchymal stem cells for muskuloskeletal lesions. Proc AAEP. 2009;59
          15. Toupadakis CA, Wong A, Genetos DC, Cheung WK, Borjesson DL, Ferraro GL, Galuppo LD, Leach JK, Owens SD, Yellowley CE. Comparison of the osteogenic potential of equine mesenchymal stem cells from bone marrow, adipose tissue, umbilical cord blood, and umbilical cord tissue.. Am J Vet Res 2010 Oct;71(10):1237-45.
            pubmed: 20919913doi: 10.2460/ajvr.71.10.1237google scholar: lookup
          16. Kasashima Y, Smith RKW, Goodship A. Optimizing the recovery of mesenchymal progenitor cells from bone marrow. Proc World Conf on Regenerative Medicine. 2009:S19u201320.
          17. Smith RK, Korda M, Blunn GW, Goodship AE. Isolation and implantation of autologous equine mesenchymal stem cells from bone marrow into the superficial digital flexor tendon as a potential novel treatment.. Equine Vet J 2003 Jan;35(1):99-102.
            pubmed: 12553472doi: 10.2746/042516403775467388google scholar: lookup
          18. Pacini S, Spinabella S, Trombi L, Fazzi R, Galimberti S, Dini F, Carlucci F, Petrini M. Suspension of bone marrow-derived undifferentiated mesenchymal stromal cells for repair of superficial digital flexor tendon in race horses.. Tissue Eng 2007 Dec;13(12):2949-55.
            pubmed: 17919069doi: 10.1089/ten.2007.0108google scholar: lookup
          19. Vidal MA, Robinson SO, Lopez MJ, Paulsen DB, Borkhsenious O, Johnson JR, Moore RM, Gimble JM. Comparison of chondrogenic potential in equine mesenchymal stromal cells derived from adipose tissue and bone marrow.. Vet Surg 2008 Dec;37(8):713-24.
          20. Hackett CH, Flaminio MJ, Fortier LA. Analysis of CD14 expression levels in putative mesenchymal progenitor cells isolated from equine bone marrow.. Stem Cells Dev 2011 Apr;20(4):721-35.
            pmc: PMC3128771pubmed: 20722500doi: 10.1089/scd.2010.0175google scholar: lookup
          21. Bourzac C, Smith LC, Vincent P, Beauchamp G, Lavoie JP, Laverty S. Isolation of equine bone marrow-derived mesenchymal stem cells: a comparison between three protocols.. Equine Vet J 2010 Sep;42(6):519-27.
          22. Horn P, Bork S, Diehlmann A, Walenda T, Eckstein V, Ho AD, Wagner W. Isolation of human mesenchymal stromal cells is more efficient by red blood cell lysis.. Cytotherapy 2008;10(7):676-85.
            pubmed: 18985474doi: 10.1080/14653240802398845google scholar: lookup
          23. Peterbauer-Scherb A, van Griensven M, Meinl A, Gabriel C, Redl H, Wolbank S. Isolation of pig bone marrow mesenchymal stem cells suitable for one-step procedures in chondrogenic regeneration.. J Tissue Eng Regen Med 2010 Aug;4(6):485-90.
            pubmed: 20112279doi: 10.1002/term.262google scholar: lookup

          Citations

          This article has been cited 12 times.
          1. Soukup R, Gerner I, Mohr T, Gueltekin S, Grillari J, Jenner F. Mesenchymal Stem Cell Conditioned Medium Modulates Inflammation in Tenocytes: Complete Conditioned Medium Has Superior Therapeutic Efficacy than Its Extracellular Vesicle Fraction.. Int J Mol Sci 2023 Jun 29;24(13).
            doi: 10.3390/ijms241310857pubmed: 37446034google scholar: lookup
          2. Al-Mutheffer EA, Reinwald Y, El Haj AJ. Donor variability of ovine bone marrow derived mesenchymal stem cell - implications for cell therapy.. Int J Vet Sci Med 2023;11(1):23-37.
            doi: 10.1080/23144599.2023.2197393pubmed: 37092030google scholar: lookup
          3. Maleas G, Mageed M. Effectiveness of Platelet-Rich Plasma and Bone Marrow Aspirate Concentrate as Treatments for Chronic Hindlimb Proximal Suspensory Desmopathy.. Front Vet Sci 2021;8:678453.
            doi: 10.3389/fvets.2021.678453pubmed: 34222402google scholar: lookup
          4. Longhini ALF, Salazar TE, Vieira C, Trinh T, Duan Y, Pay LM, Li Calzi S, Losh M, Johnston NA, Xie H, Kim M, Hunt RJ, Yoder MC, Santoro D, McCarrel TM, Grant MB. Peripheral blood-derived mesenchymal stem cells demonstrate immunomodulatory potential for therapeutic use in horses.. PLoS One 2019;14(3):e0212642.
            doi: 10.1371/journal.pone.0212642pubmed: 30870461google scholar: lookup
          5. Bogers SH. Cell-Based Therapies for Joint Disease in Veterinary Medicine: What We Have Learned and What We Need to Know.. Front Vet Sci 2018;5:70.
            doi: 10.3389/fvets.2018.00070pubmed: 29713634google scholar: lookup
          6. Eydt C, Geburek F, Schru00f6ck C, Hambruch N, Rohn K, Pfarrer C, Staszyk C. Sternal bone marrow derived equine multipotent mesenchymal stromal cells (MSCs): investigations considering the sampling site and the use of different culture media.. Vet Med Sci 2016 Aug;2(3):200-210.
            doi: 10.1002/vms3.36pubmed: 29067195google scholar: lookup
          7. Ghem C, Dias LD, Sant'Anna RT, Kalil RAK, Markoski M, Nardi NB. Combined Analysis of Endothelial, Hematopoietic, and Mesenchymal Stem Cell Compartments Shows Simultaneous but Independent Effects of Age and Heart Disease.. Stem Cells Int 2017;2017:5237634.
            doi: 10.1155/2017/5237634pubmed: 28819363google scholar: lookup
          8. Metcalf GL, McClure SR, Hostetter JM, Martinez RF, Wang C. Evaluation of adipose-derived stromal vascular fraction from the lateral tailhead, inguinal region, and mesentery of horses.. Can J Vet Res 2016 Oct;80(4):294-301.
            pubmed: 27733784
          9. Espina M, Ju00fclke H, Brehm W, Ribitsch I, Winter K, Delling U. Evaluation of transport conditions for autologous bone marrow-derived mesenchymal stromal cells for therapeutic application in horses.. PeerJ 2016;4:e1773.
            doi: 10.7717/peerj.1773pubmed: 27019778google scholar: lookup
          10. Lombana KG, Goodrich LR, Phillips JN, Kisiday JD, Ruple-Czerniak A, McIlwraith CW. An Investigation of Equine Mesenchymal Stem Cell Characteristics from Different Harvest Sites: More Similar Than Not.. Front Vet Sci 2015;2:67.
            doi: 10.3389/fvets.2015.00067pubmed: 26664993google scholar: lookup
          11. Schnabel LV, Pezzanite LM, Antczak DF, Felippe MJ, Fortier LA. Equine bone marrow-derived mesenchymal stromal cells are heterogeneous in MHC class II expression and capable of inciting an immune response in vitro.. Stem Cell Res Ther 2014 Jan 24;5(1):13.
            doi: 10.1186/scrt402pubmed: 24461709google scholar: lookup
          12. Adams MK, Goodrich LR, Rao S, Olea-Popelka F, Phillips N, Kisiday JD, McIlwraith CW. Equine bone marrow-derived mesenchymal stromal cells (BMDMSCs) from the ilium and sternum: are there differences?. Equine Vet J 2013 May;45(3):372-5.