Veterinary surgery : VS2009; 37(8); 713-724; doi: 10.1111/j.1532-950X.2008.00462.x

Comparison of chondrogenic potential in equine mesenchymal stromal cells derived from adipose tissue and bone marrow.

Abstract: To compare the chondrogenic potential of adult equine mesenchymal stem cells derived from bone marrow (MSCs) or adipose tissue (ASCs). Methods: In vitro experimental study. Methods: Adult Thoroughbred horses (n=11). Methods: BM (5 horses; mean [+/-SD] age, 4+/-1.4 years) or adipose tissue (6 horses; mean age, 3.5+/-1.1 years) samples were obtained. Cryopreserved MSCs and ASCs were used for pellet cultures in stromal medium (C) or induced into chondrogenesis+/-transforming growth factor-3 (TGFbeta(3)) and bone morphogenic factor-6 (BMP-6). Pellets harvested after 3, 7, 14, and 21 days were examined for cross-sectional size and tissue composition (hematoxylin and eosin), glycosaminoglycan (GAG) staining (Alcian blue), collagen type II immunohistochemistry, and by transmission electron microscopy. Pellet GAG and total DNA content were measured using dimethylmethylene blue and Hoechst DNA assays. Results: Collagen type II synthesis was predominantly observed in MSC pellets from Day 7 onward. Unlike ASC cultures, MSC pellets had hyaline-like matrix by Day 14. GAG deposition occurred earlier in MSC cultures compared with ASC cultures and growth factors enhanced both MSC GAG concentrations (P<.0001) and MSC pellet size (P<.004) after 2 weeks in culture. Conclusions: Equine MSCs have superior chondrogenic potential compared with ASCs and the equine ASC growth factor response suggests possible differences compared with other species. Conclusions: Elucidation of equine ASC and MSC receptor profiles will enhance the use of these cells in regenerative cartilage repair.
Publication Date: 2009-01-06 PubMed ID: 19121166PubMed Central: PMC2746327DOI: 10.1111/j.1532-950X.2008.00462.xGoogle Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article
  • Research Support
  • Non-U.S. Gov't

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

The study examines the potential for cartilage formation in adult horse stem cells derived from bone marrow and fat tissue, and finds that the stem cells from bone marrow show a stronger potential for this.

Study Methodology

  • The researchers conducted an in vitro experimental study using adult Thoroughbred horses. They obtained samples of bone marrow (from 5 horses) and adipose tissue (from 6 horses) to extract mesenchymal stem cells (MSCs) and adipose stem cells (ASCs) respectively.
  • Cryopreserved MSCs and ASCs were cultured in a specific medium or induced into chondrogenesis, a process that allows the formation of cartilage, using transforming growth factor-3 (TGFbeta(3)) and bone morphogenic factor-6 (BMP-6).
  • The culture samples, referred to as pellets, were harvested at intervals (3, 7, 14, and 21 days) and examined for size, tissue composition, glycosaminoglycan (GAG) staining using a dye called Alcian blue, collagen type II immunohistochemistry, and by transmission electron microscopy.
  • GAG and total DNA content of the pellets were measured using dimethylmethylene blue and Hoechst DNA assays.

Results and Findings

  • The results showed that synthesis of collagen type II, which is a critical component of cartilage, was observed predominantly in the bone marrow-derived MSC pellets from Day 7 onwards.
  • Unlike the fat-derived ASC cultures, the MSC pellets showed evidence of a hyaline-like matrix by Day 14. A hyaline-like matrix resembles healthy cartilage structure.
  • Deposition of GAG, a substance that gives cartilage its flexibility and resistance, occurred earlier in the MSC cultures compared to the ASC cultures.
  • The presence of growth factors enhanced the GAG concentrations and pellet size in the MSC cultures after two weeks.

Conclusions

  • The results suggest that equine bone marrow-derived MSCs have superior potential for formation of cartilage compared to ASCs derived from adipose tissue.
  • The response of ASCs to growth factors suggests there may be differences when compared with other species. Further research into this could enhance the use of these cells in regenerative cartilage repair.

Cite This Article

APA
Vidal MA, Robinson SO, Lopez MJ, Paulsen DB, Borkhsenious O, Johnson JR, Moore RM, Gimble JM. (2009). Comparison of chondrogenic potential in equine mesenchymal stromal cells derived from adipose tissue and bone marrow. Vet Surg, 37(8), 713-724. https://doi.org/10.1111/j.1532-950X.2008.00462.x

Publication

ISSN: 1532-950X
NlmUniqueID: 8113214
Country: United States
Language: English
Volume: 37
Issue: 8
Pages: 713-724

Researcher Affiliations

Vidal, Martin A
  • Equine Health Studies Program, Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA. mavidal@ucdavis.edu
Robinson, Sandra O
    Lopez, Mandi J
      Paulsen, Daniel B
        Borkhsenious, Olga
          Johnson, Jill R
            Moore, Rustin M
              Gimble, Jeffrey M

                MeSH Terms

                • Adipocytes / cytology
                • Adipocytes / physiology
                • Animals
                • Bone Marrow Cells / cytology
                • Bone Marrow Cells / physiology
                • Bone Morphogenetic Protein 6 / metabolism
                • Cell Differentiation / physiology
                • Cells, Cultured
                • Chondrogenesis / physiology
                • Collagen Type II / metabolism
                • Horses
                • Male
                • Mesenchymal Stem Cells / cytology
                • Mesenchymal Stem Cells / physiology
                • Osteogenesis / physiology
                • Species Specificity
                • Time Factors
                • Transforming Growth Factors / metabolism

                Grant Funding

                • P30 DK072476 / NIDDK NIH HHS
                • P30 DK072476-04 / NIDDK NIH HHS

                References

                This article includes 49 references
                1. Koerner J, Nesic D, Romero JD, Brehm W, Mainil-Varlet P, Grogan SP. Equine peripheral blood-derived progenitors in comparison to bone marrow-derived mesenchymal stem cells.. Stem Cells 2006 Jun;24(6):1613-9.
                  pubmed: 16769763doi: 10.1634/stemcells.2005-0264google scholar: lookup
                2. Arnhold SJ, Goletz I, Klein H, Stumpf G, Beluche LA, Rohde C, Addicks K, Litzke LF. Isolation and characterization of bone marrow-derived equine mesenchymal stem cells.. Am J Vet Res 2007 Oct;68(10):1095-105.
                  pubmed: 17916017doi: 10.2460/ajvr.68.10.1095google scholar: lookup
                3. Giovannini S, Brehm W, Mainil-Varlet P, Nesic D. Multilineage differentiation potential of equine blood-derived fibroblast-like cells.. Differentiation 2008 Feb;76(2):118-29.
                4. Vidal MA, Kilroy GE, Johnson JR, Lopez MJ, Moore RM, Gimble JM. Cell growth characteristics and differentiation frequency of adherent equine bone marrow-derived mesenchymal stromal cells: adipogenic and osteogenic capacity.. Vet Surg 2006 Oct;35(7):601-10.
                5. Vidal MA, Kilroy GE, Lopez MJ, Johnson JR, Moore RM, Gimble JM. Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells.. Vet Surg 2007 Oct;36(7):613-22.
                6. Fortier LA, Nixon AJ, Williams J, Cable CS. Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells.. Am J Vet Res 1998 Sep;59(9):1182-7.
                  pubmed: 9736400
                7. Worster AA, Brower-Toland BD, Fortier LA, Bent SJ, Williams J, Nixon AJ. Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-beta1 in monolayer and insulin-like growth factor-I in a three-dimensional matrix.. J Orthop Res 2001 Jul;19(4):738-49.
                  pubmed: 11518286doi: 10.1016/S0736-0266(00)00054-1google scholar: lookup
                8. Hegewald AA, Ringe J, Bartel J, Kru00fcger I, Notter M, Barnewitz D, Kaps C, Sittinger M. Hyaluronic acid and autologous synovial fluid induce chondrogenic differentiation of equine mesenchymal stem cells: a preliminary study.. Tissue Cell 2004 Dec;36(6):431-8.
                  pubmed: 15533458doi: 10.1016/j.tice.2004.07.003google scholar: lookup
                9. Stewart AA, Byron CR, Pondenis H, Stewart MC. Effect of fibroblast growth factor-2 on equine mesenchymal stem cell monolayer expansion and chondrogenesis.. Am J Vet Res 2007 Sep;68(9):941-5.
                  pubmed: 17764407doi: 10.2460/ajvr.68.9.941google scholar: lookup
                10. Kisiday JD, Kopesky PW, Evans CH, Grodzinsky AJ, McIlwraith CW, Frisbie DD. Evaluation of adult equine bone marrow- and adipose-derived progenitor cell chondrogenesis in hydrogel cultures.. J Orthop Res 2008 Mar;26(3):322-31.
                  pubmed: 17960654doi: 10.1002/jor.20508google scholar: lookup
                11. Giovannini S, Brehm W, Mainil-Varlet P, Nesic D. Multilineage differentiation potential of equine blood-derived fibroblast-like cells.. Differentiation 2008 Feb;76(2):118-29.
                12. Im GI, Shin YW, Lee KB. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?. Osteoarthritis Cartilage 2005 Oct;13(10):845-53.
                  pubmed: 16129630doi: 10.1016/j.joca.2005.05.005google scholar: lookup
                13. Hennig T, Lorenz H, Thiel A, Goetzke K, Dickhut A, Geiger F, Richter W. Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFbeta receptor and BMP profile and is overcome by BMP-6.. J Cell Physiol 2007 Jun;211(3):682-91.
                  pubmed: 17238135doi: 10.1002/jcp.20977google scholar: lookup
                14. Sekiya I, Larson BL, Vuoristo JT, Reger RL, Prockop DJ. Comparison of effect of BMP-2, -4, and -6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma.. Cell Tissue Res 2005 May;320(2):269-76.
                  pubmed: 15778851doi: 10.1007/s00441-004-1075-3google scholar: lookup
                15. Indrawattana N, Chen G, Tadokoro M, Shann LH, Ohgushi H, Tateishi T, Tanaka J, Bunyaratvej A. Growth factor combination for chondrogenic induction from human mesenchymal stem cell.. Biochem Biophys Res Commun 2004 Jul 30;320(3):914-9.
                  pubmed: 15240135doi: 10.1016/j.bbrc.2004.06.029google scholar: lookup
                16. Orsini JA, Divers TJ. Manual of Equine Emergencies: Treatment and Procedures. 1. Philadelphia, PA: Saunders; 1998.
                17. Smith RK, Korda M, Blunn GW, Goodship AE. Isolation and implantation of autologous equine mesenchymal stem cells from bone marrow into the superficial digital flexor tendon as a potential novel treatment.. Equine Vet J 2003 Jan;35(1):99-102.
                  pubmed: 12553472doi: 10.2746/042516403775467388google scholar: lookup
                18. Aust L, Devlin B, Foster SJ, Halvorsen YD, Hicok K, du Laney T, Sen A, Willingmyre GD, Gimble JM. Yield of human adipose-derived adult stem cells from liposuction aspirates.. Cytotherapy 2004;6(1):7-14.
                  pubmed: 14985162doi: 10.1080/14653240310004539google scholar: lookup
                19. Goh BC, Thirumala S, Kilroy G, Devireddy RV, Gimble JM. Cryopreservation characteristics of adipose-derived stem cells: maintenance of differentiation potential and viability.. J Tissue Eng Regen Med 2007 Jul-Aug;1(4):322-4.
                  pubmed: 18038424doi: 10.1002/term.35google scholar: lookup
                20. Holmdahl R, Rubin K, Klareskog L, Larsson E, Wigzell H. Characterization of the antibody response in mice with type II collagen-induced arthritis, using monoclonal anti-type II collagen antibodies.. Arthritis Rheum 1986 Mar;29(3):400-10.
                  pubmed: 2421741doi: 10.1002/art.1780290314google scholar: lookup
                21. Sokolova YY, Fuxa JR, Borkhsenious ON. The nature of Thelohania solenopsae (Microsporidia) cysts in abdomens of red imported fire ants, Solenopsis invicta.. J Invertebr Pathol 2005 Sep;90(1):24-31.
                  pubmed: 15894329doi: 10.1016/j.jip.2005.03.006google scholar: lookup
                22. Labarca C, Paigen K. A simple, rapid, and sensitive DNA assay procedure.. Anal Biochem 1980 Mar 1;102(2):344-52.
                  pubmed: 6158890doi: 10.1016/0003-2697(80)90165-7google scholar: lookup
                23. Farndale RW, Sayers CA, Barrett AJ. A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures.. Connect Tissue Res 1982;9(4):247-8.
                  pubmed: 6215207doi: 10.3109/03008208209160269google scholar: lookup
                24. Guilak F, Awad HA, Fermor B, Leddy HA, Gimble JM. Adipose-derived adult stem cells for cartilage tissue engineering.. Biorheology 2004;41(3-4):389-99.
                  pubmed: 15299271
                25. Murphy JM, Fink DJ, Hunziker EB, Barry FP. Stem cell therapy in a caprine model of osteoarthritis.. Arthritis Rheum 2003 Dec;48(12):3464-74.
                  pubmed: 14673997doi: 10.1002/art.11365google scholar: lookup
                26. Agung M, Ochi M, Yanada S, Adachi N, Izuta Y, Yamasaki T, Toda K. Mobilization of bone marrow-derived mesenchymal stem cells into the injured tissues after intraarticular injection and their contribution to tissue regeneration.. Knee Surg Sports Traumatol Arthrosc 2006 Dec;14(12):1307-14.
                  pubmed: 16788809doi: 10.1007/s00167-006-0124-8google scholar: lookup
                27. Izuta Y, Ochi M, Adachi N, Deie M, Yamasaki T, Shinomiya R. Meniscal repair using bone marrow-derived mesenchymal stem cells: experimental study using green fluorescent protein transgenic rats.. Knee 2005 Jun;12(3):217-23.
                  pubmed: 15911296doi: 10.1016/j.knee.2001.06.001google scholar: lookup
                28. Yamasaki T, Deie M, Shinomiya R, Izuta Y, Yasunaga Y, Yanada S, Sharman P, Ochi M. Meniscal regeneration using tissue engineering with a scaffold derived from a rat meniscus and mesenchymal stromal cells derived from rat bone marrow.. J Biomed Mater Res A 2005 Oct 1;75(1):23-30.
                  pubmed: 16049928doi: 10.1002/jbm.a.30369google scholar: lookup
                29. Wilke MM, Nydam DV, Nixon AJ. Enhanced early chondrogenesis in articular defects following arthroscopic mesenchymal stem cell implantation in an equine model.. J Orthop Res 2007 Jul;25(7):913-25.
                  pubmed: 17405160doi: 10.1002/jor.20382google scholar: lookup
                30. Worster AA, Nixon AJ, Brower-Toland BD, Williams J. Effect of transforming growth factor beta1 on chondrogenic differentiation of cultured equine mesenchymal stem cells.. Am J Vet Res 2000 Sep;61(9):1003-10.
                  pubmed: 10976727doi: 10.2460/ajvr.2000.61.1003google scholar: lookup
                31. Winter A, Breit S, Parsch D, Benz K, Steck E, Hauner H, Weber RM, Ewerbeck V, Richter W. Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells.. Arthritis Rheum 2003 Feb;48(2):418-29.
                  pubmed: 12571852doi: 10.1002/art.10767google scholar: lookup
                32. Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source.. Arthritis Rheum 2005 Aug;52(8):2521-9.
                  pubmed: 16052568doi: 10.1002/art.21212google scholar: lookup
                33. Robledo MM, Hidalgo A, Lastres P, Arroyo AG, Bernabeu C, Su00e1nchez-Madrid F, Teixidu00f3 J. Characterization of TGF-beta 1-binding proteins in human bone marrow stromal cells.. Br J Haematol 1996 Jun;93(3):507-14.
                34. Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM. Surface protein characterization of human adipose tissue-derived stromal cells.. J Cell Physiol 2001 Oct;189(1):54-63.
                  pubmed: 11573204doi: 10.1002/jcp.1138google scholar: lookup
                35. Barry FP, Boynton RE, Haynesworth S, Murphy JM, Zaia J. The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105).. Biochem Biophys Res Commun 1999 Nov;265(1):134-9.
                  pubmed: 10548503doi: 10.1006/bbrc.1999.1620google scholar: lookup
                36. Awad HA, Halvorsen YD, Gimble JM, Guilak F. Effects of transforming growth factor beta1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells.. Tissue Eng 2003 Dec;9(6):1301-12.
                  pubmed: 14670117doi: 10.1089/10763270360728215google scholar: lookup
                37. Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow.. Tissue Eng 1998 Winter;4(4):415-28.
                  pubmed: 9916173doi: 10.1089/ten.1998.4.415google scholar: lookup
                38. Ponticiello MS, Schinagl RM, Kadiyala S, Barry FP. Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy.. J Biomed Mater Res 2000 Nov;52(2):246-55.
                39. Barry F, Boynton RE, Liu B, Murphy JM. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components.. Exp Cell Res 2001 Aug 15;268(2):189-200.
                  pubmed: 11478845doi: 10.1006/excr.2001.5278google scholar: lookup
                40. Estes BT, Wu AW, Guilak F. Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6.. Arthritis Rheum 2006 Apr;54(4):1222-32.
                  pubmed: 16572454doi: 10.1002/art.21779google scholar: lookup
                41. Wang DW, Fermor B, Gimble JM, Awad HA, Guilak F. Influence of oxygen on the proliferation and metabolism of adipose derived adult stem cells.. J Cell Physiol 2005 Jul;204(1):184-91.
                  pubmed: 15754341doi: 10.1002/jcp.20324google scholar: lookup
                42. Zhou S, Cui Z, Urban JP. Factors influencing the oxygen concentration gradient from the synovial surface of articular cartilage to the cartilage-bone interface: a modeling study.. Arthritis Rheum 2004 Dec;50(12):3915-24.
                  pubmed: 15593204doi: 10.1002/art.20675google scholar: lookup
                43. Kinner B, Spector M. Smooth muscle actin expression by human articular chondrocytes and their contraction of a collagen-glycosaminoglycan matrix in vitro.. J Orthop Res 2001 Mar;19(2):233-41.
                  pubmed: 11347696doi: 10.1016/S0736-0266(00)00081-4google scholar: lookup
                44. Kinner B, Zaleskas JM, Spector M. Regulation of smooth muscle actin expression and contraction in adult human mesenchymal stem cells.. Exp Cell Res 2002 Aug 1;278(1):72-83.
                  pubmed: 12126959doi: 10.1006/excr.2002.5561google scholar: lookup
                45. Zaleskas JM, Kinner B, Freyman TM, Yannas IV, Gibson LJ, Spector M. Growth factor regulation of smooth muscle actin expression and contraction of human articular chondrocytes and meniscal cells in a collagen-GAG matrix.. Exp Cell Res 2001 Oct 15;270(1):21-31.
                  pubmed: 11597124doi: 10.1006/excr.2001.5325google scholar: lookup
                46. Vickers SM, Squitieri LS, Spector M. Effects of cross-linking type II collagen-GAG scaffolds on chondrogenesis in vitro: dynamic pore reduction promotes cartilage formation.. Tissue Eng 2006 May;12(5):1345-55.
                  pubmed: 16771647doi: 10.1089/ten.2006.12.1345google scholar: lookup
                47. Veilleux N, Spector M. Effects of FGF-2 and IGF-1 on adult canine articular chondrocytes in type II collagen-glycosaminoglycan scaffolds in vitro.. Osteoarthritis Cartilage 2005 Apr;13(4):278-86.
                  pubmed: 15780641doi: 10.1016/j.joca.2004.12.013google scholar: lookup
                48. Shirasawa S, Sekiya I, Sakaguchi Y, Yagishita K, Ichinose S, Muneta T. In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: optimal condition and comparison with bone marrow-derived cells.. J Cell Biochem 2006 Jan 1;97(1):84-97.
                  pubmed: 16088956doi: 10.1002/jcb.20546google scholar: lookup
                49. Muraglia A, Corsi A, Riminucci M, Mastrogiacomo M, Cancedda R, Bianco P, Quarto R. Formation of a chondro-osseous rudiment in micromass cultures of human bone-marrow stromal cells.. J Cell Sci 2003 Jul 15;116(Pt 14):2949-55.
                  pubmed: 12783985doi: 10.1242/jcs.00527google scholar: lookup

                Citations

                This article has been cited 56 times.
                1. Stage HJ, Trappe S, Su00f6llig K, Trachsel DS, Kirsch K, Zieger C, Merle R, Aschenbach JR, Gehlen H. Multilineage Differentiation Potential of Equine Adipose-Derived Stromal/Stem Cells from Different Sources.. Animals (Basel) 2023 Apr 15;13(8).
                  doi: 10.3390/ani13081352pubmed: 37106915google scholar: lookup
                2. Bagge J, Berg LC, Janes J, MacLeod JN. Donor age effects on in vitro chondrogenic and osteogenic differentiation performance of equine bone marrow- and adipose tissue-derived mesenchymal stromal cells.. BMC Vet Res 2022 Nov 3;18(1):388.
                  doi: 10.1186/s12917-022-03475-2pubmed: 36329434google scholar: lookup
                3. Soukup R, Gerner I, Gu00fcltekin S, Baik H, Oesterreicher J, Grillari J, Jenner F. Characterisation of Extracellular Vesicles from Equine Mesenchymal Stem Cells.. Int J Mol Sci 2022 May 23;23(10).
                  doi: 10.3390/ijms23105858pubmed: 35628667google scholar: lookup
                4. Naumenko E, Guryanov I, Zakirova E, Fakhrullin R. Forskolin-Loaded Halloysite Nanotubes as Osteoconductive Additive for the Biopolymer Tissue Engineering Scaffolds.. Polymers (Basel) 2021 Nov 15;13(22).
                  doi: 10.3390/polym13223949pubmed: 34833247google scholar: lookup
                5. Fu00fclber J, Agreste FR, Seidel SRT, Sotelo EDP, Barbosa u00c2P, Michelacci YM, Baccarin RYA. Chondrogenic potential of mesenchymal stem cells from horses using a magnetic 3D cell culture system.. World J Stem Cells 2021 Jun 26;13(6):645-658.
                  doi: 10.4252/wjsc.v13.i6.645pubmed: 34249233google scholar: lookup
                6. Zha K, Sun Z, Yang Y, Chen M, Gao C, Fu L, Li H, Sui X, Guo Q, Liu S. Recent Developed Strategies for Enhancing Chondrogenic Differentiation of MSC: Impact on MSC-Based Therapy for Cartilage Regeneration.. Stem Cells Int 2021;2021:8830834.
                  doi: 10.1155/2021/8830834pubmed: 33824665google scholar: lookup
                7. Bertoni L, Jacquet-Guibon S, Branly T, Desancu00e9 M, Legendre F, Melin M, Rivory P, Hartmann DJ, Schmutz A, Denoix JM, Demoor M, Audigiu00e9 F, Galu00e9ra P. Evaluation of Allogeneic Bone-Marrow-Derived and Umbilical Cord Blood-Derived Mesenchymal Stem Cells to Prevent the Development of Osteoarthritis in An Equine Model.. Int J Mol Sci 2021 Mar 2;22(5).
                  doi: 10.3390/ijms22052499pubmed: 33801461google scholar: lookup
                8. Voga M, Kovau010d V, Majdic G. Comparison of Canine and Feline Adipose-Derived Mesenchymal Stem Cells/Medicinal Signaling Cells With Regard to Cell Surface Marker Expression, Viability, Proliferation, and Differentiation Potential.. Front Vet Sci 2020;7:610240.
                  doi: 10.3389/fvets.2020.610240pubmed: 33521084google scholar: lookup
                9. Bagge J, MacLeod JN, Berg LC. Cellular Proliferation of Equine Bone Marrow- and Adipose Tissue-Derived Mesenchymal Stem Cells Decline With Increasing Donor Age.. Front Vet Sci 2020;7:602403.
                  doi: 10.3389/fvets.2020.602403pubmed: 33363241google scholar: lookup
                10. Voga M, Adamic N, Vengust M, Majdic G. Stem Cells in Veterinary Medicine-Current State and Treatment Options.. Front Vet Sci 2020;7:278.
                  doi: 10.3389/fvets.2020.00278pubmed: 32656249google scholar: lookup
                11. Al Naem M, Bourebaba L, Kucharczyk K, Ru00f6cken M, Marycz K. Therapeutic mesenchymal stromal stem cells: Isolation, characterization and role in equine regenerative medicine and metabolic disorders.. Stem Cell Rev Rep 2020 Apr;16(2):301-322.
                  doi: 10.1007/s12015-019-09932-0pubmed: 31797146google scholar: lookup
                12. Gugjoo MB, Fazili MR, Gayas MA, Ahmad RA, Dhama K. Animal mesenchymal stem cell research in cartilage regenerative medicine - a review.. Vet Q 2019 Dec;39(1):95-120.
                  doi: 10.1080/01652176.2019.1643051pubmed: 31291836google scholar: lookup
                13. Yamasaki A, Omura T, Murata D, Kobayashi M, Sunaga T, Kusano K, Ueno Y, Kuramoto T, Hobo S, Misumi K. A pilot study of regenerative therapy by implanting synovium-derived mesenchymal stromal cells in equine osteochondral defect models.. J Equine Sci 2018 Dec;29(4):117-122.
                  doi: 10.1294/jes.29.117pubmed: 30607136google scholar: lookup
                14. Martin-Pena A, Porter RM, Plumton G, McCarrel TM, Morton AJ, Guijarro MV, Ghivizzani SC, Sharma B, Palmer GD. Lentiviral-based reporter constructs for profiling chondrogenic activity in primary equine cell populations.. Eur Cell Mater 2018 Oct 12;36:156-170.
                  doi: 10.22203/eCM.v036a12pubmed: 30311630google scholar: lookup
                15. Shaw B, Darrow M, Derian A. Short-Term Outcomes in Treatment of Knee Osteoarthritis With 4 Bone Marrow Concentrate Injections.. Clin Med Insights Arthritis Musculoskelet Disord 2018;11:1179544118781080.
                  doi: 10.1177/1179544118781080pubmed: 29977117google scholar: lookup
                16. Ayala-Cuellar AP, Kang JH, Jeung EB, Choi KC. Roles of Mesenchymal Stem Cells in Tissue Regeneration and Immunomodulation.. Biomol Ther (Seoul) 2019 Jan 1;27(1):25-33.
                  doi: 10.4062/biomolther.2017.260pubmed: 29902862google scholar: lookup
                17. Bogers SH. Cell-Based Therapies for Joint Disease in Veterinary Medicine: What We Have Learned and What We Need to Know.. Front Vet Sci 2018;5:70.
                  doi: 10.3389/fvets.2018.00070pubmed: 29713634google scholar: lookup
                18. Barboni B, Russo V, Berardinelli P, Mauro A, Valbonetti L, Sanyal H, Canciello A, Greco L, Muttini A, Gatta V, Stuppia L, Mattioli M. Placental Stem Cells from Domestic Animals: Translational Potential and Clinical Relevance.. Cell Transplant 2018 Jan;27(1):93-116.
                  doi: 10.1177/0963689717724797pubmed: 29562773google scholar: lookup
                19. Duan W, Chen C, Haque M, Hayes D, Lopez MJ. Polymer-mineral scaffold augments in vivo equine multipotent stromal cell osteogenesis.. Stem Cell Res Ther 2018 Mar 9;9(1):60.
                  doi: 10.1186/s13287-018-0790-8pubmed: 29523214google scholar: lookup
                20. Haleem AM, Chu CR. Advances in Tissue Engineering Techniques for Articular Cartilage Repair.. Oper Tech Orthop 2010 Jun;20(2):76-89.
                  doi: 10.1053/j.oto.2009.10.004pubmed: 29430164google scholar: lookup
                21. Matsiko A, Levingstone TJ, O'Brien FJ. Advanced Strategies for Articular Cartilage Defect Repair.. Materials (Basel) 2013 Feb 22;6(2):637-668.
                  doi: 10.3390/ma6020637pubmed: 28809332google scholar: lookup
                22. Tidd N, Michelsen J, Hilbert B, Quinn JC. Minicircle Mediated Gene Delivery to Canine and Equine Mesenchymal Stem Cells.. Int J Mol Sci 2017 Apr 12;18(4).
                  doi: 10.3390/ijms18040819pubmed: 28417917google scholar: lookup
                23. Zayed M, Caniglia C, Misk N, Dhar MS. Donor-Matched Comparison of Chondrogenic Potential of Equine Bone Marrow- and Synovial Fluid-Derived Mesenchymal Stem Cells: Implications for Cartilage Tissue Regeneration.. Front Vet Sci 2016;3:121.
                  doi: 10.3389/fvets.2016.00121pubmed: 28149840google scholar: lookup
                24. Harman R, Carlson K, Gaynor J, Gustafson S, Dhupa S, Clement K, Hoelzler M, McCarthy T, Schwartz P, Adams C. A Prospective, Randomized, Masked, and Placebo-Controlled Efficacy Study of Intraarticular Allogeneic Adipose Stem Cells for the Treatment of Osteoarthritis in Dogs.. Front Vet Sci 2016;3:81.
                  doi: 10.3389/fvets.2016.00081pubmed: 27695698google scholar: lookup
                25. Weiss-Bilka HE, McGann ME, Meagher MJ, Roeder RK, Wagner DR. Ectopic models for endochondral ossification: comparing pellet and alginate bead culture methods.. J Tissue Eng Regen Med 2018 Jan;12(1):e541-e549.
                  doi: 10.1002/term.2324pubmed: 27690279google scholar: lookup
                26. Markoski MM. Advances in the Use of Stem Cells in Veterinary Medicine: From Basic Research to Clinical Practice.. Scientifica (Cairo) 2016;2016:4516920.
                  doi: 10.1155/2016/4516920pubmed: 27379197google scholar: lookup
                27. Barrett JG. A Set of Grand Challenges for Veterinary Regenerative Medicine.. Front Vet Sci 2016;3:20.
                  doi: 10.3389/fvets.2016.00020pubmed: 26973846google scholar: lookup
                28. Fu00fclber J, Maria DA, da Silva LC, Massoco CO, Agreste F, Baccarin RY. Comparative study of equine mesenchymal stem cells from healthy and injured synovial tissues: an in vitro assessment.. Stem Cell Res Ther 2016 Mar 5;7:35.
                  doi: 10.1186/s13287-016-0294-3pubmed: 26944403google scholar: lookup
                29. Bianchessi M, Chen Y, Durgam S, Pondenis H, Stewart M. Effect of Fibroblast Growth Factor 2 on Equine Synovial Fluid Chondroprogenitor Expansion and Chondrogenesis.. Stem Cells Int 2016;2016:9364974.
                  doi: 10.1155/2016/9364974pubmed: 26839571google scholar: lookup
                30. Sullivan MO, Gordon-Evans WJ, Fredericks LP, Kiefer K, Conzemius MG, Griffon DJ. Comparison of Mesenchymal Stem Cell Surface Markers from Bone Marrow Aspirates and Adipose Stromal Vascular Fraction Sites.. Front Vet Sci 2015;2:82.
                  doi: 10.3389/fvets.2015.00082pubmed: 26835460google scholar: lookup
                31. Lombana KG, Goodrich LR, Phillips JN, Kisiday JD, Ruple-Czerniak A, McIlwraith CW. An Investigation of Equine Mesenchymal Stem Cell Characteristics from Different Harvest Sites: More Similar Than Not.. Front Vet Sci 2015;2:67.
                  doi: 10.3389/fvets.2015.00067pubmed: 26664993google scholar: lookup
                32. Maia L, da Cruz Landim-Alvarenga F, Taffarel MO, de Moraes CN, Machado GF, Melo GD, Amorim RM. Feasibility and safety of intrathecal transplantation of autologous bone marrow mesenchymal stem cells in horses.. BMC Vet Res 2015 Mar 15;11:63.
                  doi: 10.1186/s12917-015-0361-5pubmed: 25879519google scholar: lookup
                33. Alipour F, Parham A, Kazemi Mehrjerdi H, Dehghani H. Equine adipose-derived mesenchymal stem cells: phenotype and growth characteristics, gene expression profile and differentiation potentials.. Cell J 2015 Winter;16(4):456-65.
                  doi: 10.22074/cellj.2015.491pubmed: 25685736google scholar: lookup
                34. Zhang N, Dietrich MA, Lopez MJ. Therapeutic doses of multipotent stromal cells from minimal adipose tissue.. Stem Cell Rev Rep 2014 Aug;10(4):600-11.
                  doi: 10.1007/s12015-014-9508-1pubmed: 24850472google scholar: lookup
                35. Hubka KM, Dahlin RL, Meretoja VV, Kasper FK, Mikos AG. Enhancing chondrogenic phenotype for cartilage tissue engineering: monoculture and coculture of articular chondrocytes and mesenchymal stem cells.. Tissue Eng Part B Rev 2014 Dec;20(6):641-54.
                  doi: 10.1089/ten.TEB.2014.0034pubmed: 24834484google scholar: lookup
                36. Ardeshirylajimi A, Soleimani M, Hosseinkhani S, Parivar K, Yaghmaei P. A comparative study of osteogenic differentiation human induced pluripotent stem cells and adipose tissue derived mesenchymal stem cells.. Cell J 2014 Fall;16(3):235-44.
                  pubmed: 24611148
                37. Barberini DJ, Freitas NP, Magnoni MS, Maia L, Listoni AJ, Heckler MC, Sudano MJ, Golim MA, da Cruz Landim-Alvarenga F, Amorim RM. Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: immunophenotypic characterization and differentiation potential.. Stem Cell Res Ther 2014 Feb 21;5(1):25.
                  doi: 10.1186/scrt414pubmed: 24559797google scholar: lookup
                38. Mohanty N, Gulati BR, Kumar R, Gera S, Kumar P, Somasundaram RK, Kumar S. Immunophenotypic characterization and tenogenic differentiation of mesenchymal stromal cells isolated from equine umbilical cord blood.. In Vitro Cell Dev Biol Anim 2014 Jun;50(6):538-48.
                  doi: 10.1007/s11626-013-9729-7pubmed: 24414976google scholar: lookup
                39. Rutigliano L, Corradetti B, Valentini L, Bizzaro D, Meucci A, Cremonesi F, Lange-Consiglio A. Molecular characterization and in vitro differentiation of feline progenitor-like amniotic epithelial cells.. Stem Cell Res Ther 2013 Oct 30;4(5):133.
                  doi: 10.1186/scrt344pubmed: 24405576google scholar: lookup
                40. Mendez JJ, Ghaedi M, Steinbacher D, Niklason LE. Epithelial cell differentiation of human mesenchymal stromal cells in decellularized lung scaffolds.. Tissue Eng Part A 2014 Jun;20(11-12):1735-46.
                  doi: 10.1089/ten.TEA.2013.0647pubmed: 24393055google scholar: lookup
                41. Anderson JA, Little D, Toth AP, Moorman CT 3rd, Tucker BS, Ciccotti MG, Guilak F. Stem cell therapies for knee cartilage repair: the current status of preclinical and clinical studies.. Am J Sports Med 2014 Sep;42(9):2253-61.
                  doi: 10.1177/0363546513508744pubmed: 24220016google scholar: lookup
                42. Smith RK, Werling NJ, Dakin SG, Alam R, Goodship AE, Dudhia J. Beneficial effects of autologous bone marrow-derived mesenchymal stem cells in naturally occurring tendinopathy.. PLoS One 2013;8(9):e75697.
                  doi: 10.1371/journal.pone.0075697pubmed: 24086616google scholar: lookup
                43. Volk SW, Theoret C. Translating stem cell therapies: the role of companion animals in regenerative medicine.. Wound Repair Regen 2013 May-Jun;21(3):382-94.
                  doi: 10.1111/wrr.12044pubmed: 23627495google scholar: lookup
                44. Carrade DD, Lame MW, Kent MS, Clark KC, Walker NJ, Borjesson DL. Comparative Analysis of the Immunomodulatory Properties of Equine Adult-Derived Mesenchymal Stem Cells().. Cell Med 2012;4(1):1-11.
                  doi: 10.3727/215517912X647217pubmed: 23152950google scholar: lookup
                45. Torensma R, Prins HJ, Schrama E, Verwiel ET, Martens AC, Roelofs H, Jansen BJ. The impact of cell source, culture methodology, culture location, and individual donors on gene expression profiles of bone marrow-derived and adipose-derived stromal cells.. Stem Cells Dev 2013 Apr 1;22(7):1086-96.
                  doi: 10.1089/scd.2012.0384pubmed: 23145933google scholar: lookup
                46. Spaas JH, Guest DJ, Van de Walle GR. Tendon regeneration in human and equine athletes: Ubi Sumus-Quo Vadimus (where are we and where are we going to)?. Sports Med 2012 Oct 1;42(10):871-90.
                  doi: 10.1007/BF03262300pubmed: 22963225google scholar: lookup
                47. Perera JR, Gikas PD, Bentley G. The present state of treatments for articular cartilage defects in the knee.. Ann R Coll Surg Engl 2012 Sep;94(6):381-7.
                48. Delling U, Lindner K, Ribitsch I, Ju00fclke H, Brehm W. Comparison of bone marrow aspiration at the sternum and the tuber coxae in middle-aged horses.. Can J Vet Res 2012 Jan;76(1):52-6.
                  pubmed: 22754095
                49. Reich CM, Raabe O, Wenisch S, Bridger PS, Kramer M, Arnhold S. Isolation, culture and chondrogenic differentiation of canine adipose tissue- and bone marrow-derived mesenchymal stem cells--a comparative study.. Vet Res Commun 2012 Jun;36(2):139-48.
                  doi: 10.1007/s11259-012-9523-0pubmed: 22392598google scholar: lookup
                50. Mokbel AN, El Tookhy OS, Shamaa AA, Rashed LA, Sabry D, El Sayed AM. Homing and reparative effect of intra-articular injection of autologus mesenchymal stem cells in osteoarthritic animal model.. BMC Musculoskelet Disord 2011 Nov 15;12:259.
                  doi: 10.1186/1471-2474-12-259pubmed: 22085445google scholar: lookup
                51. Fortier LA, Travis AJ. Stem cells in veterinary medicine.. Stem Cell Res Ther 2011 Feb 23;2(1):9.
                  doi: 10.1186/scrt50pubmed: 21371354google scholar: lookup
                52. Spencer ND, Chun R, Vidal MA, Gimble JM, Lopez MJ. In vitro expansion and differentiation of fresh and revitalized adult canine bone marrow-derived and adipose tissue-derived stromal cells.. Vet J 2012 Feb;191(2):231-9.
                  doi: 10.1016/j.tvjl.2010.12.030pubmed: 21315625google scholar: lookup
                53. Raabe O, Reich C, Wenisch S, Hild A, Burg-Roderfeld M, Siebert HC, Arnhold S. Hydrolyzed fish collagen induced chondrogenic differentiation of equine adipose tissue-derived stromal cells.. Histochem Cell Biol 2010 Dec;134(6):545-54.
                  doi: 10.1007/s00418-010-0760-4pubmed: 21076963google scholar: lookup
                54. Williams R, Khan IM, Richardson K, Nelson L, McCarthy HE, Analbelsi T, Singhrao SK, Dowthwaite GP, Jones RE, Baird DM, Lewis H, Roberts S, Shaw HM, Dudhia J, Fairclough J, Briggs T, Archer CW. Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage.. PLoS One 2010 Oct 14;5(10):e13246.
                  doi: 10.1371/journal.pone.0013246pubmed: 20976230google scholar: lookup
                55. Estes BT, Diekman BO, Gimble JM, Guilak F. Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype.. Nat Protoc 2010 Jul;5(7):1294-311.
                  doi: 10.1038/nprot.2010.81pubmed: 20595958google scholar: lookup
                56. Chu CR, Szczodry M, Bruno S. Animal models for cartilage regeneration and repair.. Tissue Eng Part B Rev 2010 Feb;16(1):105-15.
                  doi: 10.1089/ten.TEB.2009.0452pubmed: 19831641google scholar: lookup