Comparison of chondrogenic potential in equine mesenchymal stromal cells derived from adipose tissue and bone marrow.
Abstract: To compare the chondrogenic potential of adult equine mesenchymal stem cells derived from bone marrow (MSCs) or adipose tissue (ASCs). Methods: In vitro experimental study. Methods: Adult Thoroughbred horses (n=11). Methods: BM (5 horses; mean [+/-SD] age, 4+/-1.4 years) or adipose tissue (6 horses; mean age, 3.5+/-1.1 years) samples were obtained. Cryopreserved MSCs and ASCs were used for pellet cultures in stromal medium (C) or induced into chondrogenesis+/-transforming growth factor-3 (TGFbeta(3)) and bone morphogenic factor-6 (BMP-6). Pellets harvested after 3, 7, 14, and 21 days were examined for cross-sectional size and tissue composition (hematoxylin and eosin), glycosaminoglycan (GAG) staining (Alcian blue), collagen type II immunohistochemistry, and by transmission electron microscopy. Pellet GAG and total DNA content were measured using dimethylmethylene blue and Hoechst DNA assays. Results: Collagen type II synthesis was predominantly observed in MSC pellets from Day 7 onward. Unlike ASC cultures, MSC pellets had hyaline-like matrix by Day 14. GAG deposition occurred earlier in MSC cultures compared with ASC cultures and growth factors enhanced both MSC GAG concentrations (P<.0001) and MSC pellet size (P<.004) after 2 weeks in culture. Conclusions: Equine MSCs have superior chondrogenic potential compared with ASCs and the equine ASC growth factor response suggests possible differences compared with other species. Conclusions: Elucidation of equine ASC and MSC receptor profiles will enhance the use of these cells in regenerative cartilage repair.
Publication Date: 2009-01-06
PubMed ID: 19121166PubMed Central: PMC2746327DOI: 10.1111/j.1532-950X.2008.00462.xGoogle Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
- Journal Article
- Research Support
- Non-U.S. Gov't
Summary
This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.
The study examines the potential for cartilage formation in adult horse stem cells derived from bone marrow and fat tissue, and finds that the stem cells from bone marrow show a stronger potential for this.
Study Methodology
- The researchers conducted an in vitro experimental study using adult Thoroughbred horses. They obtained samples of bone marrow (from 5 horses) and adipose tissue (from 6 horses) to extract mesenchymal stem cells (MSCs) and adipose stem cells (ASCs) respectively.
- Cryopreserved MSCs and ASCs were cultured in a specific medium or induced into chondrogenesis, a process that allows the formation of cartilage, using transforming growth factor-3 (TGFbeta(3)) and bone morphogenic factor-6 (BMP-6).
- The culture samples, referred to as pellets, were harvested at intervals (3, 7, 14, and 21 days) and examined for size, tissue composition, glycosaminoglycan (GAG) staining using a dye called Alcian blue, collagen type II immunohistochemistry, and by transmission electron microscopy.
- GAG and total DNA content of the pellets were measured using dimethylmethylene blue and Hoechst DNA assays.
Results and Findings
- The results showed that synthesis of collagen type II, which is a critical component of cartilage, was observed predominantly in the bone marrow-derived MSC pellets from Day 7 onwards.
- Unlike the fat-derived ASC cultures, the MSC pellets showed evidence of a hyaline-like matrix by Day 14. A hyaline-like matrix resembles healthy cartilage structure.
- Deposition of GAG, a substance that gives cartilage its flexibility and resistance, occurred earlier in the MSC cultures compared to the ASC cultures.
- The presence of growth factors enhanced the GAG concentrations and pellet size in the MSC cultures after two weeks.
Conclusions
- The results suggest that equine bone marrow-derived MSCs have superior potential for formation of cartilage compared to ASCs derived from adipose tissue.
- The response of ASCs to growth factors suggests there may be differences when compared with other species. Further research into this could enhance the use of these cells in regenerative cartilage repair.
Cite This Article
APA
Vidal MA, Robinson SO, Lopez MJ, Paulsen DB, Borkhsenious O, Johnson JR, Moore RM, Gimble JM.
(2009).
Comparison of chondrogenic potential in equine mesenchymal stromal cells derived from adipose tissue and bone marrow.
Vet Surg, 37(8), 713-724.
https://doi.org/10.1111/j.1532-950X.2008.00462.x
Publication
Researcher Affiliations
- Equine Health Studies Program, Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA. mavidal@ucdavis.edu
MeSH Terms
- Adipocytes / cytology
- Adipocytes / physiology
- Animals
- Bone Marrow Cells / cytology
- Bone Marrow Cells / physiology
- Bone Morphogenetic Protein 6 / metabolism
- Cell Differentiation / physiology
- Cells, Cultured
- Chondrogenesis / physiology
- Collagen Type II / metabolism
- Horses
- Male
- Mesenchymal Stem Cells / cytology
- Mesenchymal Stem Cells / physiology
- Osteogenesis / physiology
- Species Specificity
- Time Factors
- Transforming Growth Factors / metabolism
Grant Funding
- P30 DK072476 / NIDDK NIH HHS
- P30 DK072476-04 / NIDDK NIH HHS
References
This article includes 49 references
- Koerner J, Nesic D, Romero JD, Brehm W, Mainil-Varlet P, Grogan SP. Equine peripheral blood-derived progenitors in comparison to bone marrow-derived mesenchymal stem cells.. Stem Cells 2006 Jun;24(6):1613-9.
- Arnhold SJ, Goletz I, Klein H, Stumpf G, Beluche LA, Rohde C, Addicks K, Litzke LF. Isolation and characterization of bone marrow-derived equine mesenchymal stem cells.. Am J Vet Res 2007 Oct;68(10):1095-105.
- Giovannini S, Brehm W, Mainil-Varlet P, Nesic D. Multilineage differentiation potential of equine blood-derived fibroblast-like cells.. Differentiation 2008 Feb;76(2):118-29.
- Vidal MA, Kilroy GE, Johnson JR, Lopez MJ, Moore RM, Gimble JM. Cell growth characteristics and differentiation frequency of adherent equine bone marrow-derived mesenchymal stromal cells: adipogenic and osteogenic capacity.. Vet Surg 2006 Oct;35(7):601-10.
- Vidal MA, Kilroy GE, Lopez MJ, Johnson JR, Moore RM, Gimble JM. Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells.. Vet Surg 2007 Oct;36(7):613-22.
- Fortier LA, Nixon AJ, Williams J, Cable CS. Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells.. Am J Vet Res 1998 Sep;59(9):1182-7.
- Worster AA, Brower-Toland BD, Fortier LA, Bent SJ, Williams J, Nixon AJ. Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-beta1 in monolayer and insulin-like growth factor-I in a three-dimensional matrix.. J Orthop Res 2001 Jul;19(4):738-49.
- Hegewald AA, Ringe J, Bartel J, Kru00fcger I, Notter M, Barnewitz D, Kaps C, Sittinger M. Hyaluronic acid and autologous synovial fluid induce chondrogenic differentiation of equine mesenchymal stem cells: a preliminary study.. Tissue Cell 2004 Dec;36(6):431-8.
- Stewart AA, Byron CR, Pondenis H, Stewart MC. Effect of fibroblast growth factor-2 on equine mesenchymal stem cell monolayer expansion and chondrogenesis.. Am J Vet Res 2007 Sep;68(9):941-5.
- Kisiday JD, Kopesky PW, Evans CH, Grodzinsky AJ, McIlwraith CW, Frisbie DD. Evaluation of adult equine bone marrow- and adipose-derived progenitor cell chondrogenesis in hydrogel cultures.. J Orthop Res 2008 Mar;26(3):322-31.
- Giovannini S, Brehm W, Mainil-Varlet P, Nesic D. Multilineage differentiation potential of equine blood-derived fibroblast-like cells.. Differentiation 2008 Feb;76(2):118-29.
- Im GI, Shin YW, Lee KB. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?. Osteoarthritis Cartilage 2005 Oct;13(10):845-53.
- Hennig T, Lorenz H, Thiel A, Goetzke K, Dickhut A, Geiger F, Richter W. Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFbeta receptor and BMP profile and is overcome by BMP-6.. J Cell Physiol 2007 Jun;211(3):682-91.
- Sekiya I, Larson BL, Vuoristo JT, Reger RL, Prockop DJ. Comparison of effect of BMP-2, -4, and -6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma.. Cell Tissue Res 2005 May;320(2):269-76.
- Indrawattana N, Chen G, Tadokoro M, Shann LH, Ohgushi H, Tateishi T, Tanaka J, Bunyaratvej A. Growth factor combination for chondrogenic induction from human mesenchymal stem cell.. Biochem Biophys Res Commun 2004 Jul 30;320(3):914-9.
- Orsini JA, Divers TJ. Manual of Equine Emergencies: Treatment and Procedures. 1. Philadelphia, PA: Saunders; 1998.
- Smith RK, Korda M, Blunn GW, Goodship AE. Isolation and implantation of autologous equine mesenchymal stem cells from bone marrow into the superficial digital flexor tendon as a potential novel treatment.. Equine Vet J 2003 Jan;35(1):99-102.
- Aust L, Devlin B, Foster SJ, Halvorsen YD, Hicok K, du Laney T, Sen A, Willingmyre GD, Gimble JM. Yield of human adipose-derived adult stem cells from liposuction aspirates.. Cytotherapy 2004;6(1):7-14.
- Goh BC, Thirumala S, Kilroy G, Devireddy RV, Gimble JM. Cryopreservation characteristics of adipose-derived stem cells: maintenance of differentiation potential and viability.. J Tissue Eng Regen Med 2007 Jul-Aug;1(4):322-4.
- Holmdahl R, Rubin K, Klareskog L, Larsson E, Wigzell H. Characterization of the antibody response in mice with type II collagen-induced arthritis, using monoclonal anti-type II collagen antibodies.. Arthritis Rheum 1986 Mar;29(3):400-10.
- Sokolova YY, Fuxa JR, Borkhsenious ON. The nature of Thelohania solenopsae (Microsporidia) cysts in abdomens of red imported fire ants, Solenopsis invicta.. J Invertebr Pathol 2005 Sep;90(1):24-31.
- Labarca C, Paigen K. A simple, rapid, and sensitive DNA assay procedure.. Anal Biochem 1980 Mar 1;102(2):344-52.
- Farndale RW, Sayers CA, Barrett AJ. A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures.. Connect Tissue Res 1982;9(4):247-8.
- Guilak F, Awad HA, Fermor B, Leddy HA, Gimble JM. Adipose-derived adult stem cells for cartilage tissue engineering.. Biorheology 2004;41(3-4):389-99.
- Murphy JM, Fink DJ, Hunziker EB, Barry FP. Stem cell therapy in a caprine model of osteoarthritis.. Arthritis Rheum 2003 Dec;48(12):3464-74.
- Agung M, Ochi M, Yanada S, Adachi N, Izuta Y, Yamasaki T, Toda K. Mobilization of bone marrow-derived mesenchymal stem cells into the injured tissues after intraarticular injection and their contribution to tissue regeneration.. Knee Surg Sports Traumatol Arthrosc 2006 Dec;14(12):1307-14.
- Izuta Y, Ochi M, Adachi N, Deie M, Yamasaki T, Shinomiya R. Meniscal repair using bone marrow-derived mesenchymal stem cells: experimental study using green fluorescent protein transgenic rats.. Knee 2005 Jun;12(3):217-23.
- Yamasaki T, Deie M, Shinomiya R, Izuta Y, Yasunaga Y, Yanada S, Sharman P, Ochi M. Meniscal regeneration using tissue engineering with a scaffold derived from a rat meniscus and mesenchymal stromal cells derived from rat bone marrow.. J Biomed Mater Res A 2005 Oct 1;75(1):23-30.
- Wilke MM, Nydam DV, Nixon AJ. Enhanced early chondrogenesis in articular defects following arthroscopic mesenchymal stem cell implantation in an equine model.. J Orthop Res 2007 Jul;25(7):913-25.
- Worster AA, Nixon AJ, Brower-Toland BD, Williams J. Effect of transforming growth factor beta1 on chondrogenic differentiation of cultured equine mesenchymal stem cells.. Am J Vet Res 2000 Sep;61(9):1003-10.
- Winter A, Breit S, Parsch D, Benz K, Steck E, Hauner H, Weber RM, Ewerbeck V, Richter W. Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells.. Arthritis Rheum 2003 Feb;48(2):418-29.
- Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source.. Arthritis Rheum 2005 Aug;52(8):2521-9.
- Robledo MM, Hidalgo A, Lastres P, Arroyo AG, Bernabeu C, Su00e1nchez-Madrid F, Teixidu00f3 J. Characterization of TGF-beta 1-binding proteins in human bone marrow stromal cells.. Br J Haematol 1996 Jun;93(3):507-14.
- Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM. Surface protein characterization of human adipose tissue-derived stromal cells.. J Cell Physiol 2001 Oct;189(1):54-63.
- Barry FP, Boynton RE, Haynesworth S, Murphy JM, Zaia J. The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105).. Biochem Biophys Res Commun 1999 Nov;265(1):134-9.
- Awad HA, Halvorsen YD, Gimble JM, Guilak F. Effects of transforming growth factor beta1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells.. Tissue Eng 2003 Dec;9(6):1301-12.
- Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow.. Tissue Eng 1998 Winter;4(4):415-28.
- Ponticiello MS, Schinagl RM, Kadiyala S, Barry FP. Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy.. J Biomed Mater Res 2000 Nov;52(2):246-55.
- Barry F, Boynton RE, Liu B, Murphy JM. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components.. Exp Cell Res 2001 Aug 15;268(2):189-200.
- Estes BT, Wu AW, Guilak F. Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6.. Arthritis Rheum 2006 Apr;54(4):1222-32.
- Wang DW, Fermor B, Gimble JM, Awad HA, Guilak F. Influence of oxygen on the proliferation and metabolism of adipose derived adult stem cells.. J Cell Physiol 2005 Jul;204(1):184-91.
- Zhou S, Cui Z, Urban JP. Factors influencing the oxygen concentration gradient from the synovial surface of articular cartilage to the cartilage-bone interface: a modeling study.. Arthritis Rheum 2004 Dec;50(12):3915-24.
- Kinner B, Spector M. Smooth muscle actin expression by human articular chondrocytes and their contraction of a collagen-glycosaminoglycan matrix in vitro.. J Orthop Res 2001 Mar;19(2):233-41.
- Kinner B, Zaleskas JM, Spector M. Regulation of smooth muscle actin expression and contraction in adult human mesenchymal stem cells.. Exp Cell Res 2002 Aug 1;278(1):72-83.
- Zaleskas JM, Kinner B, Freyman TM, Yannas IV, Gibson LJ, Spector M. Growth factor regulation of smooth muscle actin expression and contraction of human articular chondrocytes and meniscal cells in a collagen-GAG matrix.. Exp Cell Res 2001 Oct 15;270(1):21-31.
- Vickers SM, Squitieri LS, Spector M. Effects of cross-linking type II collagen-GAG scaffolds on chondrogenesis in vitro: dynamic pore reduction promotes cartilage formation.. Tissue Eng 2006 May;12(5):1345-55.
- Veilleux N, Spector M. Effects of FGF-2 and IGF-1 on adult canine articular chondrocytes in type II collagen-glycosaminoglycan scaffolds in vitro.. Osteoarthritis Cartilage 2005 Apr;13(4):278-86.
- Shirasawa S, Sekiya I, Sakaguchi Y, Yagishita K, Ichinose S, Muneta T. In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: optimal condition and comparison with bone marrow-derived cells.. J Cell Biochem 2006 Jan 1;97(1):84-97.
- Muraglia A, Corsi A, Riminucci M, Mastrogiacomo M, Cancedda R, Bianco P, Quarto R. Formation of a chondro-osseous rudiment in micromass cultures of human bone-marrow stromal cells.. J Cell Sci 2003 Jul 15;116(Pt 14):2949-55.
Citations
This article has been cited 56 times.- Stage HJ, Trappe S, Su00f6llig K, Trachsel DS, Kirsch K, Zieger C, Merle R, Aschenbach JR, Gehlen H. Multilineage Differentiation Potential of Equine Adipose-Derived Stromal/Stem Cells from Different Sources.. Animals (Basel) 2023 Apr 15;13(8).
- Bagge J, Berg LC, Janes J, MacLeod JN. Donor age effects on in vitro chondrogenic and osteogenic differentiation performance of equine bone marrow- and adipose tissue-derived mesenchymal stromal cells.. BMC Vet Res 2022 Nov 3;18(1):388.
- Soukup R, Gerner I, Gu00fcltekin S, Baik H, Oesterreicher J, Grillari J, Jenner F. Characterisation of Extracellular Vesicles from Equine Mesenchymal Stem Cells.. Int J Mol Sci 2022 May 23;23(10).
- Naumenko E, Guryanov I, Zakirova E, Fakhrullin R. Forskolin-Loaded Halloysite Nanotubes as Osteoconductive Additive for the Biopolymer Tissue Engineering Scaffolds.. Polymers (Basel) 2021 Nov 15;13(22).
- Fu00fclber J, Agreste FR, Seidel SRT, Sotelo EDP, Barbosa u00c2P, Michelacci YM, Baccarin RYA. Chondrogenic potential of mesenchymal stem cells from horses using a magnetic 3D cell culture system.. World J Stem Cells 2021 Jun 26;13(6):645-658.
- Zha K, Sun Z, Yang Y, Chen M, Gao C, Fu L, Li H, Sui X, Guo Q, Liu S. Recent Developed Strategies for Enhancing Chondrogenic Differentiation of MSC: Impact on MSC-Based Therapy for Cartilage Regeneration.. Stem Cells Int 2021;2021:8830834.
- Bertoni L, Jacquet-Guibon S, Branly T, Desancu00e9 M, Legendre F, Melin M, Rivory P, Hartmann DJ, Schmutz A, Denoix JM, Demoor M, Audigiu00e9 F, Galu00e9ra P. Evaluation of Allogeneic Bone-Marrow-Derived and Umbilical Cord Blood-Derived Mesenchymal Stem Cells to Prevent the Development of Osteoarthritis in An Equine Model.. Int J Mol Sci 2021 Mar 2;22(5).
- Voga M, Kovau010d V, Majdic G. Comparison of Canine and Feline Adipose-Derived Mesenchymal Stem Cells/Medicinal Signaling Cells With Regard to Cell Surface Marker Expression, Viability, Proliferation, and Differentiation Potential.. Front Vet Sci 2020;7:610240.
- Bagge J, MacLeod JN, Berg LC. Cellular Proliferation of Equine Bone Marrow- and Adipose Tissue-Derived Mesenchymal Stem Cells Decline With Increasing Donor Age.. Front Vet Sci 2020;7:602403.
- Voga M, Adamic N, Vengust M, Majdic G. Stem Cells in Veterinary Medicine-Current State and Treatment Options.. Front Vet Sci 2020;7:278.
- Al Naem M, Bourebaba L, Kucharczyk K, Ru00f6cken M, Marycz K. Therapeutic mesenchymal stromal stem cells: Isolation, characterization and role in equine regenerative medicine and metabolic disorders.. Stem Cell Rev Rep 2020 Apr;16(2):301-322.
- Gugjoo MB, Fazili MR, Gayas MA, Ahmad RA, Dhama K. Animal mesenchymal stem cell research in cartilage regenerative medicine - a review.. Vet Q 2019 Dec;39(1):95-120.
- Yamasaki A, Omura T, Murata D, Kobayashi M, Sunaga T, Kusano K, Ueno Y, Kuramoto T, Hobo S, Misumi K. A pilot study of regenerative therapy by implanting synovium-derived mesenchymal stromal cells in equine osteochondral defect models.. J Equine Sci 2018 Dec;29(4):117-122.
- Martin-Pena A, Porter RM, Plumton G, McCarrel TM, Morton AJ, Guijarro MV, Ghivizzani SC, Sharma B, Palmer GD. Lentiviral-based reporter constructs for profiling chondrogenic activity in primary equine cell populations.. Eur Cell Mater 2018 Oct 12;36:156-170.
- Shaw B, Darrow M, Derian A. Short-Term Outcomes in Treatment of Knee Osteoarthritis With 4 Bone Marrow Concentrate Injections.. Clin Med Insights Arthritis Musculoskelet Disord 2018;11:1179544118781080.
- Ayala-Cuellar AP, Kang JH, Jeung EB, Choi KC. Roles of Mesenchymal Stem Cells in Tissue Regeneration and Immunomodulation.. Biomol Ther (Seoul) 2019 Jan 1;27(1):25-33.
- Bogers SH. Cell-Based Therapies for Joint Disease in Veterinary Medicine: What We Have Learned and What We Need to Know.. Front Vet Sci 2018;5:70.
- Barboni B, Russo V, Berardinelli P, Mauro A, Valbonetti L, Sanyal H, Canciello A, Greco L, Muttini A, Gatta V, Stuppia L, Mattioli M. Placental Stem Cells from Domestic Animals: Translational Potential and Clinical Relevance.. Cell Transplant 2018 Jan;27(1):93-116.
- Duan W, Chen C, Haque M, Hayes D, Lopez MJ. Polymer-mineral scaffold augments in vivo equine multipotent stromal cell osteogenesis.. Stem Cell Res Ther 2018 Mar 9;9(1):60.
- Haleem AM, Chu CR. Advances in Tissue Engineering Techniques for Articular Cartilage Repair.. Oper Tech Orthop 2010 Jun;20(2):76-89.
- Matsiko A, Levingstone TJ, O'Brien FJ. Advanced Strategies for Articular Cartilage Defect Repair.. Materials (Basel) 2013 Feb 22;6(2):637-668.
- Tidd N, Michelsen J, Hilbert B, Quinn JC. Minicircle Mediated Gene Delivery to Canine and Equine Mesenchymal Stem Cells.. Int J Mol Sci 2017 Apr 12;18(4).
- Zayed M, Caniglia C, Misk N, Dhar MS. Donor-Matched Comparison of Chondrogenic Potential of Equine Bone Marrow- and Synovial Fluid-Derived Mesenchymal Stem Cells: Implications for Cartilage Tissue Regeneration.. Front Vet Sci 2016;3:121.
- Harman R, Carlson K, Gaynor J, Gustafson S, Dhupa S, Clement K, Hoelzler M, McCarthy T, Schwartz P, Adams C. A Prospective, Randomized, Masked, and Placebo-Controlled Efficacy Study of Intraarticular Allogeneic Adipose Stem Cells for the Treatment of Osteoarthritis in Dogs.. Front Vet Sci 2016;3:81.
- Weiss-Bilka HE, McGann ME, Meagher MJ, Roeder RK, Wagner DR. Ectopic models for endochondral ossification: comparing pellet and alginate bead culture methods.. J Tissue Eng Regen Med 2018 Jan;12(1):e541-e549.
- Markoski MM. Advances in the Use of Stem Cells in Veterinary Medicine: From Basic Research to Clinical Practice.. Scientifica (Cairo) 2016;2016:4516920.
- Barrett JG. A Set of Grand Challenges for Veterinary Regenerative Medicine.. Front Vet Sci 2016;3:20.
- Fu00fclber J, Maria DA, da Silva LC, Massoco CO, Agreste F, Baccarin RY. Comparative study of equine mesenchymal stem cells from healthy and injured synovial tissues: an in vitro assessment.. Stem Cell Res Ther 2016 Mar 5;7:35.
- Bianchessi M, Chen Y, Durgam S, Pondenis H, Stewart M. Effect of Fibroblast Growth Factor 2 on Equine Synovial Fluid Chondroprogenitor Expansion and Chondrogenesis.. Stem Cells Int 2016;2016:9364974.
- Sullivan MO, Gordon-Evans WJ, Fredericks LP, Kiefer K, Conzemius MG, Griffon DJ. Comparison of Mesenchymal Stem Cell Surface Markers from Bone Marrow Aspirates and Adipose Stromal Vascular Fraction Sites.. Front Vet Sci 2015;2:82.
- Lombana KG, Goodrich LR, Phillips JN, Kisiday JD, Ruple-Czerniak A, McIlwraith CW. An Investigation of Equine Mesenchymal Stem Cell Characteristics from Different Harvest Sites: More Similar Than Not.. Front Vet Sci 2015;2:67.
- Maia L, da Cruz Landim-Alvarenga F, Taffarel MO, de Moraes CN, Machado GF, Melo GD, Amorim RM. Feasibility and safety of intrathecal transplantation of autologous bone marrow mesenchymal stem cells in horses.. BMC Vet Res 2015 Mar 15;11:63.
- Alipour F, Parham A, Kazemi Mehrjerdi H, Dehghani H. Equine adipose-derived mesenchymal stem cells: phenotype and growth characteristics, gene expression profile and differentiation potentials.. Cell J 2015 Winter;16(4):456-65.
- Zhang N, Dietrich MA, Lopez MJ. Therapeutic doses of multipotent stromal cells from minimal adipose tissue.. Stem Cell Rev Rep 2014 Aug;10(4):600-11.
- Hubka KM, Dahlin RL, Meretoja VV, Kasper FK, Mikos AG. Enhancing chondrogenic phenotype for cartilage tissue engineering: monoculture and coculture of articular chondrocytes and mesenchymal stem cells.. Tissue Eng Part B Rev 2014 Dec;20(6):641-54.
- Ardeshirylajimi A, Soleimani M, Hosseinkhani S, Parivar K, Yaghmaei P. A comparative study of osteogenic differentiation human induced pluripotent stem cells and adipose tissue derived mesenchymal stem cells.. Cell J 2014 Fall;16(3):235-44.
- Barberini DJ, Freitas NP, Magnoni MS, Maia L, Listoni AJ, Heckler MC, Sudano MJ, Golim MA, da Cruz Landim-Alvarenga F, Amorim RM. Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: immunophenotypic characterization and differentiation potential.. Stem Cell Res Ther 2014 Feb 21;5(1):25.
- Mohanty N, Gulati BR, Kumar R, Gera S, Kumar P, Somasundaram RK, Kumar S. Immunophenotypic characterization and tenogenic differentiation of mesenchymal stromal cells isolated from equine umbilical cord blood.. In Vitro Cell Dev Biol Anim 2014 Jun;50(6):538-48.
- Rutigliano L, Corradetti B, Valentini L, Bizzaro D, Meucci A, Cremonesi F, Lange-Consiglio A. Molecular characterization and in vitro differentiation of feline progenitor-like amniotic epithelial cells.. Stem Cell Res Ther 2013 Oct 30;4(5):133.
- Mendez JJ, Ghaedi M, Steinbacher D, Niklason LE. Epithelial cell differentiation of human mesenchymal stromal cells in decellularized lung scaffolds.. Tissue Eng Part A 2014 Jun;20(11-12):1735-46.
- Anderson JA, Little D, Toth AP, Moorman CT 3rd, Tucker BS, Ciccotti MG, Guilak F. Stem cell therapies for knee cartilage repair: the current status of preclinical and clinical studies.. Am J Sports Med 2014 Sep;42(9):2253-61.
- Smith RK, Werling NJ, Dakin SG, Alam R, Goodship AE, Dudhia J. Beneficial effects of autologous bone marrow-derived mesenchymal stem cells in naturally occurring tendinopathy.. PLoS One 2013;8(9):e75697.
- Volk SW, Theoret C. Translating stem cell therapies: the role of companion animals in regenerative medicine.. Wound Repair Regen 2013 May-Jun;21(3):382-94.
- Carrade DD, Lame MW, Kent MS, Clark KC, Walker NJ, Borjesson DL. Comparative Analysis of the Immunomodulatory Properties of Equine Adult-Derived Mesenchymal Stem Cells().. Cell Med 2012;4(1):1-11.
- Torensma R, Prins HJ, Schrama E, Verwiel ET, Martens AC, Roelofs H, Jansen BJ. The impact of cell source, culture methodology, culture location, and individual donors on gene expression profiles of bone marrow-derived and adipose-derived stromal cells.. Stem Cells Dev 2013 Apr 1;22(7):1086-96.
- Spaas JH, Guest DJ, Van de Walle GR. Tendon regeneration in human and equine athletes: Ubi Sumus-Quo Vadimus (where are we and where are we going to)?. Sports Med 2012 Oct 1;42(10):871-90.
- Perera JR, Gikas PD, Bentley G. The present state of treatments for articular cartilage defects in the knee.. Ann R Coll Surg Engl 2012 Sep;94(6):381-7.
- Delling U, Lindner K, Ribitsch I, Ju00fclke H, Brehm W. Comparison of bone marrow aspiration at the sternum and the tuber coxae in middle-aged horses.. Can J Vet Res 2012 Jan;76(1):52-6.
- Reich CM, Raabe O, Wenisch S, Bridger PS, Kramer M, Arnhold S. Isolation, culture and chondrogenic differentiation of canine adipose tissue- and bone marrow-derived mesenchymal stem cells--a comparative study.. Vet Res Commun 2012 Jun;36(2):139-48.
- Mokbel AN, El Tookhy OS, Shamaa AA, Rashed LA, Sabry D, El Sayed AM. Homing and reparative effect of intra-articular injection of autologus mesenchymal stem cells in osteoarthritic animal model.. BMC Musculoskelet Disord 2011 Nov 15;12:259.
- Fortier LA, Travis AJ. Stem cells in veterinary medicine.. Stem Cell Res Ther 2011 Feb 23;2(1):9.
- Spencer ND, Chun R, Vidal MA, Gimble JM, Lopez MJ. In vitro expansion and differentiation of fresh and revitalized adult canine bone marrow-derived and adipose tissue-derived stromal cells.. Vet J 2012 Feb;191(2):231-9.
- Raabe O, Reich C, Wenisch S, Hild A, Burg-Roderfeld M, Siebert HC, Arnhold S. Hydrolyzed fish collagen induced chondrogenic differentiation of equine adipose tissue-derived stromal cells.. Histochem Cell Biol 2010 Dec;134(6):545-54.
- Williams R, Khan IM, Richardson K, Nelson L, McCarthy HE, Analbelsi T, Singhrao SK, Dowthwaite GP, Jones RE, Baird DM, Lewis H, Roberts S, Shaw HM, Dudhia J, Fairclough J, Briggs T, Archer CW. Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage.. PLoS One 2010 Oct 14;5(10):e13246.
- Estes BT, Diekman BO, Gimble JM, Guilak F. Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype.. Nat Protoc 2010 Jul;5(7):1294-311.
- Chu CR, Szczodry M, Bruno S. Animal models for cartilage regeneration and repair.. Tissue Eng Part B Rev 2010 Feb;16(1):105-15.