Cell medicine2012; 4(1); 1-11; doi: 10.3727/215517912X647217

Comparative Analysis of the Immunomodulatory Properties of Equine Adult-Derived Mesenchymal Stem Cells().

Abstract: Mesenchymal stem cells (MSCs) derived from bone marrow (BM), adipose tissue (AT), umbilical cord blood (CB), and umbilical cord tissue (CT) are increasingly being used to treat equine inflammatory and degenerative lesions. MSCs modulate the immune system in part through mediator secretion. Animal species and MSC tissue of origin are both important determinants of MSC function. In spite of widespread clinical use, how equine MSCs function to heal tissues is fully unknown. In this study, MSCs derived from BM, AT, CB, and CT were compared for their ability to inhibit lymphocyte proliferation and secrete mediators in response to activation. Five MSC lines from each tissue were isolated. Lymphocyte proliferation was assessed in a mixed leukocyte reaction, and mediator secretion was determined by ELISA. Regardless of tissue of origin, quiescent MSCs did not alter lymphocyte proliferation or secrete mediators, except for transforming growth factor-β (TGF-β1). When stimulated, MSCs of all tissue types decreased lymphocyte proliferation, increased prostaglandin (PGE(2)) and interleukin-6 (IL-6) secretion, and decreased production of tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). BM-MSCs and CB-MSCs also produced nitric oxide (NO), while AT-MSCs and CT-MSCs did not. Equine MSCs did not produce indoleamine 2,3-dioxygenase (IDO). These data suggest that activated equine MSCs derived from BM, AT, CT, and CB secrete high concentration of mediators and are similar to MSCs from rodents and humans in their immunomodulatory profiles. These findings have implication for the treatment of inflammatory lesions dominated by activated lymphocytes and TNF-α and IFN-γ in vivo.
Publication Date: 2012-01-01 PubMed ID: 23152950PubMed Central: PMC3495591DOI: 10.3727/215517912X647217Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

The research focuses on examining how mesenchymal stem cells(MSCs), extracted from different origins in horses, regulate the immune system and contribute to healing bodily damage. Although these cells are broadly applied in treating horse injuries, their exact mode of operation is still unclear. This study identified common immunomodulatory profiles among these cells regardless of their source and their potential application in handling injuries characterized by aggressive lymphocytes and certain inflammatory substances.

Research Methodology

  • The study was conducted using five lines of MSCs derived from four different tissues – bone marrow, adipose tissue, umbilical cord blood, and umbilical cord tissue.
  • The ability of these cells to inhibit the multiplication of lymphocytes, a type of white blood cell, was tested in a mixed leukocyte reaction.
  • The secretion of mediators, or substances facilitating cell communication, in the stem cells was determined via an enzyme-linked immunosorbent assay (ELISA).

Research Findings

  • The study found that inactive MSCs, regardless of their origin, did not interfere with lymphocyte growth or secrete mediators with the exception of a protein called transforming growth factor-beta (TGF-β1).
  • When activated, all tested types of MSCs decreased lymphocyte multiplication, escalated the secretion of substances known as prostaglandin and interleukin 6, while decreasing the production of other substances referred to as tumor necrosis factor-α and interferon-γ.
  • Furthermore, stem cells derived from bone marrow and umbilical cord blood produced a molecule called nitric oxide that wasn’t produced by stem cells derived from adipose tissue or umbilical cord tissue.
  • Notably, the study found that none of the equine MSCs produced an enzyme known as indoleamine 2,3-dioxygenase.

Implication of the Findings

  • The research findings point towards a common functional role of MSCs derived from different tissues in horses, similar to MSCs of rodents and humans, in terms of their immunomodulatory properties.
  • This might translate into the potential use of these stem cells in treating conditions characterized by activated lymphocytes and inflammatory substances such as TNF-α and IFN-γ.

Cite This Article

APA
Carrade DD, Lame MW, Kent MS, Clark KC, Walker NJ, Borjesson DL. (2012). Comparative Analysis of the Immunomodulatory Properties of Equine Adult-Derived Mesenchymal Stem Cells(). Cell Med, 4(1), 1-11. https://doi.org/10.3727/215517912X647217

Publication

ISSN: 2155-1790
NlmUniqueID: 101544564
Country: United States
Language: English
Volume: 4
Issue: 1
Pages: 1-11

Researcher Affiliations

Carrade, Danielle D
  • Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA.
Lame, Michael W
    Kent, Michael S
      Clark, Kaitlin C
        Walker, Naomi J
          Borjesson, Dori L

            Grant Funding

            • R43 AG033965 / NIA NIH HHS

            References

            This article includes 59 references
            1. Agauguu00e9 S, Perrin-Cocon L, Coutant F, Andru00e9 P, Lotteau V. 1-Methyl-tryptophan can interfere with TLR signaling in dendritic cells independently of IDO activity.. J Immunol 2006 Aug 15;177(4):2061-71.
              pmc: PMC2377404pubmed: 16887964doi: 10.4049/jimmunol.177.4.2061google scholar: lookup
            2. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses.. Blood 2005 Feb 15;105(4):1815-22.
              pubmed: 15494428doi: 10.1182/blood-2004-04-1559google scholar: lookup
            3. Arnhold SJ, Goletz I, Klein H, Stumpf G, Beluche LA, Rohde C, Addicks K, Litzke LF. Isolation and characterization of bone marrow-derived equine mesenchymal stem cells.. Am J Vet Res 2007 Oct;68(10):1095-105.
              pubmed: 17916017doi: 10.2460/ajvr.68.10.1095google scholar: lookup
            4. Bartholomew S, Owens SD, Ferraro GL, Carrade DD, Lara DJ, Librach FA, Borjesson DL, Galuppo LD. Collection of equine cord blood and placental tissues in 40 thoroughbred mares.. Equine Vet J 2009 Nov;41(8):724-8.
              pubmed: 20095217doi: 10.2746/042516409x429446google scholar: lookup
            5. Batten P, Sarathchandra P, Antoniw JW, Tay SS, Lowdell MW, Taylor PM, Yacoub MH. Human mesenchymal stem cells induce T cell anergy and downregulate T cell allo-responses via the TH2 pathway: relevance to tissue engineering human heart valves.. Tissue Eng 2006 Aug;12(8):2263-73.
              pubmed: 16968166doi: 10.1089/ten.2006.12.2263google scholar: lookup
            6. Beggs KJ, Lyubimov A, Borneman JN, Bartholomew A, Moseley A, Dodds R, Archambault MP, Smith AK, McIntosh KR. Immunologic consequences of multiple, high-dose administration of allogeneic mesenchymal stem cells to baboons.. Cell Transplant 2006;15(8-9):711-21.
              pubmed: 17269442doi: 10.3727/000000006783981503google scholar: lookup
            7. Berg L, Koch T, Heerkens T, Bessonov K, Thomsen P, Betts D. Chondrogenic potential of mesenchymal stromal cells derived from equine bone marrow and umbilical cord blood.. Vet Comp Orthop Traumatol 2009;22(5):363-70.
              pubmed: 19750290doi: 10.3415/VCOT-08-10-0107google scholar: lookup
            8. Blanchard-Channell M, Moore PF, Stott JL. Characterization of monoclonal antibodies specific for equine homologues of CD3 and CD5.. Immunology 1994 Aug;82(4):548-54.
              pmc: PMC1414917pubmed: 7530685
            9. Bradley L. M. Cell Proliferation. In: Mishell B. B.; Shiigi S. M., eds. Selected methods in cellular immunology. San Francisco, CA: W. H. Freeman & Co.; 1980:153u2013166.
            10. Braun J, Hack A, Weis-Klemm M, Conrad S, Treml S, Kohler K, Walliser U, Skutella T, Aicher WK. Evaluation of the osteogenic and chondrogenic differentiation capacities of equine adipose tissue-derived mesenchymal stem cells.. Am J Vet Res 2010 Oct;71(10):1228-36.
              pubmed: 20919912doi: 10.2460/ajvr.71.10.1228google scholar: lookup
            11. Brunswig-Spickenheier B, Boche J, Westenfelder C, Peimann F, Gruber AD, Jaquet K, Krause K, Zustin J, Zander AR, Lange C. Limited immune-modulating activity of porcine mesenchymal stromal cells abolishes their protective efficacy in acute kidney injury.. Stem Cells Dev 2010 May;19(5):719-29.
              pubmed: 20143956doi: 10.1089/scd.2009.0494google scholar: lookup
            12. Burton AB, Wagner B, Erb HN, Ainsworth DM. Serum interleukin-6 (IL-6) and IL-10 concentrations in normal and septic neonatal foals.. Vet Immunol Immunopathol 2009 Dec 15;132(2-4):122-8.
              pubmed: 19501415doi: 10.1016/j.vetimm.2009.05.006google scholar: lookup
            13. Carrade DD, Owens SD, Galuppo LD, Vidal MA, Ferraro GL, Librach F, Buerchler S, Friedman MS, Walker NJ, Borjesson DL. Clinicopathologic findings following intra-articular injection of autologous and allogeneic placentally derived equine mesenchymal stem cells in horses.. Cytotherapy 2011 Apr;13(4):419-30.
              pubmed: 21105841doi: 10.3109/14653249.2010.536213google scholar: lookup
            14. Crop MJ, Baan CC, Korevaar SS, Ijzermans JN, Pescatori M, Stubbs AP, van Ijcken WF, Dahlke MH, Eggenhofer E, Weimar W, Hoogduijn MJ. Inflammatory conditions affect gene expression and function of human adipose tissue-derived mesenchymal stem cells.. Clin Exp Immunol 2010 Dec;162(3):474-86.
            15. Deuse T, Stubbendorff M, Tang-Quan K, Phillips N, Kay MA, Eiermann T, Phan TT, Volk HD, Reichenspurner H, Robbins RC, Schrepfer S. Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells.. Cell Transplant 2011;20(5):655-67.
              pubmed: 21054940doi: 10.3727/096368910X536473google scholar: lookup
            16. Flaminio MJ, Ibrahim S, Lunn DP, Stark R, Steinbach F. Further analysis of anti-human leukocyte mAbs with reactivity to equine leukocytes by two-colour flow cytometry and immunohistochemistry.. Vet Immunol Immunopathol 2007 Sep 15;119(1-2):92-9.
              pubmed: 17706294doi: 10.1016/j.vetimm.2007.06.035google scholar: lookup
            17. Fortier LA, Nixon AJ, Williams J, Cable CS. Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells.. Am J Vet Res 1998 Sep;59(9):1182-7.
              pubmed: 9736400
            18. Fortier LA, Smith RK. Regenerative medicine for tendinous and ligamentous injuries of sport horses.. Vet Clin North Am Equine Pract 2008 Apr;24(1):191-201.
              pubmed: 18314043doi: 10.1016/j.cveq.2007.11.002google scholar: lookup
            19. Frisbie DD, Al-Sobayil F, Billinghurst RC, Kawcak CE, McIlwraith CW. Changes in synovial fluid and serum biomarkers with exercise and early osteoarthritis in horses.. Osteoarthritis Cartilage 2008 Oct;16(10):1196-204.
              pubmed: 18442931doi: 10.1016/j.joca.2008.03.008google scholar: lookup
            20. Groh ME, Maitra B, Szekely E, Kou00e7 ON. Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells.. Exp Hematol 2005 Aug;33(8):928-34.
              pubmed: 16038786doi: 10.1016/j.exphem.2005.05.002google scholar: lookup
            21. Han KH, Ro H, Hong JH, Lee EM, Cho B, Yeom HJ, Kim MG, Oh KH, Ahn C, Yang J. Immunosuppressive mechanisms of embryonic stem cells and mesenchymal stem cells in alloimmune response.. Transpl Immunol 2011 Jul;25(1):7-15.
              pubmed: 21635949doi: 10.1016/j.trim.2011.05.004google scholar: lookup
            22. Kang JW, Kang KS, Koo HC, Park JR, Choi EW, Park YH. Soluble factors-mediated immunomodulatory effects of canine adipose tissue-derived mesenchymal stem cells.. Stem Cells Dev 2008 Aug;17(4):681-93.
              pubmed: 18717642doi: 10.1089/scd.2007.0153google scholar: lookup
            23. Kern S, Eichler H, Stoeve J, Klu00fcter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue.. Stem Cells 2006 May;24(5):1294-301.
              pubmed: 16410387doi: 10.1634/stemcells.2005-0342google scholar: lookup
            24. Keyser KA, Beagles KE, Kiem HP. Comparison of mesenchymal stem cells from different tissues to suppress T-cell activation.. Cell Transplant 2007;16(5):555-62.
              pubmed: 17708345doi: 10.3727/000000007783464939google scholar: lookup
            25. Koch TG, Heerkens T, Thomsen PD, Betts DH. Isolation of mesenchymal stem cells from equine umbilical cord blood.. BMC Biotechnol 2007 May 30;7:26.
              pmc: PMC1904213pubmed: 17537254doi: 10.1186/1472-6750-7-26google scholar: lookup
            26. Koch TG, Thomsen PD, Betts DH. Improved isolation protocol for equine cord blood-derived mesenchymal stromal cells.. Cytotherapy 2009;11(4):443-7.
              pubmed: 19513899doi: 10.1080/14653240902887259google scholar: lookup
            27. Ku00f6gler G, Sensken S, Airey JA, Trapp T, Mu00fcschen M, Feldhahn N, Liedtke S, Sorg RV, Fischer J, Rosenbaum C, Greschat S, Knipper A, Bender J, Degistirici O, Gao J, Caplan AI, Colletti EJ, Almeida-Porada G, Mu00fcller HW, Zanjani E, Wernet P. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential.. J Exp Med 2004 Jul 19;200(2):123-35.
              pmc: PMC2212008pubmed: 15263023doi: 10.1084/jem.20040440google scholar: lookup
            28. Krampera M, Franchini M, Pizzolo G, Aprili G. Mesenchymal stem cells: from biology to clinical use.. Blood Transfus 2007 Jul;5(3):120-9.
              pmc: PMC2535891pubmed: 19204764doi: 10.2450/2007.0029-07google scholar: lookup
            29. Krampera M, Pasini A, Pizzolo G, Cosmi L, Romagnani S, Annunziato F. Regenerative and immunomodulatory potential of mesenchymal stem cells.. Curr Opin Pharmacol 2006 Aug;6(4):435-41.
              pubmed: 16777484doi: 10.1016/j.coph.2006.02.008google scholar: lookup
            30. Kronsteiner B, Wolbank S, Peterbauer A, Hackl C, Redl H, van Griensven M, Gabriel C. Human mesenchymal stem cells from adipose tissue and amnion influence T-cells depending on stimulation method and presence of other immune cells.. Stem Cells Dev 2011 Dec;20(12):2115-26.
              pubmed: 21381973doi: 10.1089/scd.2011.0031google scholar: lookup
            31. Lettry V, Hosoya K, Takagi S, Okumura M. Coculture of equine mesenchymal stem cells and mature equine articular chondrocytes results in improved chondrogenic differentiation of the stem cells.. Jpn J Vet Res 2010 May;58(1):5-15.
              pubmed: 20645581
            32. Lunn DP, Holmes MA, Antczak DF, Agerwal N, Baker J, Bendali-Ahcene S, Blanchard-Channell M, Byrne KM, Cannizzo K, Davis W, Hamilton MJ, Hannant D, Kondo T, Kydd JH, Monier MC, Moore PF, O'Neil T, Schram BR, Sheoran A, Stott JL, Sugiura T, Vagnoni KE. Report of the Second Equine Leucocyte Antigen Workshop, Squaw valley, California, July 1995.. Vet Immunol Immunopathol 1998 Mar 31;62(2):101-43.
              pubmed: 9638857doi: 10.1016/s0165-2427(97)00160-8google scholar: lookup
            33. McCarrel T, Fortier L. Temporal growth factor release from platelet-rich plasma, trehalose lyophilized platelets, and bone marrow aspirate and their effect on tendon and ligament gene expression.. J Orthop Res 2009 Aug;27(8):1033-42.
              pubmed: 19170097doi: 10.1002/jor.20853google scholar: lookup
            34. McFarlane D, Holbrook TC. Cytokine dysregulation in aged horses and horses with pituitary pars intermedia dysfunction.. J Vet Intern Med 2008 Mar-Apr;22(2):436-42.
            35. McIntosh K, Zvonic S, Garrett S, Mitchell JB, Floyd ZE, Hammill L, Kloster A, Di Halvorsen Y, Ting JP, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM. The immunogenicity of human adipose-derived cells: temporal changes in vitro.. Stem Cells 2006 May;24(5):1246-53.
              pubmed: 16410391doi: 10.1634/stemcells.2005-0235google scholar: lookup
            36. Meirelles Lda S, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells.. Cytokine Growth Factor Rev 2009 Oct-Dec;20(5-6):419-27.
              pubmed: 19926330doi: 10.1016/j.cytogfr.2009.10.002google scholar: lookup
            37. Meisel R, Zibert A, Laryea M, Gu00f6bel U, Du00e4ubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation.. Blood 2004 Jun 15;103(12):4619-21.
              pubmed: 15001472doi: 10.1182/blood-2003-11-3909google scholar: lookup
            38. Mueller SM, Glowacki J. Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges.. J Cell Biochem 2001;82(4):583-90.
              pubmed: 11500936doi: 10.1002/jcb.1174google scholar: lookup
            39. Najar M, Rouas R, Raicevic G, Boufker HI, Lewalle P, Meuleman N, Bron D, Toungouz M, Martiat P, Lagneaux L. Mesenchymal stromal cells promote or suppress the proliferation of T lymphocytes from cord blood and peripheral blood: the importance of low cell ratio and role of interleukin-6.. Cytotherapy 2009;11(5):570-83.
              pubmed: 19565371doi: 10.1080/14653240903079377google scholar: lookup
            40. Nauta AJ, Westerhuis G, Kruisselbrink AB, Lurvink EG, Willemze R, Fibbe WE. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting.. Blood 2006 Sep 15;108(6):2114-20.
            41. Passeri S, Nocchi F, Lamanna R, Lapi S, Miragliotta V, Giannessi E, Abramo F, Stornelli MR, Matarazzo M, Plenteda D, Urciuoli P, Scatena F, Coli A. Isolation and expansion of equine umbilical cord-derived matrix cells (EUCMCs).. Cell Biol Int 2009 Jan;33(1):100-5.
              pubmed: 18996215doi: 10.1016/j.cellbi.2008.10.012google scholar: lookup
            42. Polchert D, Sobinsky J, Douglas G, Kidd M, Moadsiri A, Reina E, Genrich K, Mehrotra S, Setty S, Smith B, Bartholomew A. IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease.. Eur J Immunol 2008 Jun;38(6):1745-55.
              pmc: PMC3021120pubmed: 18493986doi: 10.1002/eji.200738129google scholar: lookup
            43. Poncelet AJ, Vercruysse J, Saliez A, Gianello P. Although pig allogeneic mesenchymal stem cells are not immunogenic in vitro, intracardiac injection elicits an immune response in vivo.. Transplantation 2007 Mar 27;83(6):783-90.
            44. Prasanna SJ, Gopalakrishnan D, Shankar SR, Vasandan AB. Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially.. PLoS One 2010 Feb 2;5(2):e9016.
            45. Puissant B, Barreau C, Bourin P, Clavel C, Corre J, Bousquet C, Taureau C, Cousin B, Abbal M, Laharrague P, Penicaud L, Casteilla L, Blancher A. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells.. Br J Haematol 2005 Apr;129(1):118-29.
            46. Ren G, Su J, Zhang L, Zhao X, Ling W, L'huillie A, Zhang J, Lu Y, Roberts AI, Ji W, Zhang H, Rabson AB, Shi Y. Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression.. Stem Cells 2009 Aug;27(8):1954-62.
              pubmed: 19544427doi: 10.1002/stem.118google scholar: lookup
            47. Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, Zhao RC, Shi Y. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide.. Cell Stem Cell 2008 Feb 7;2(2):141-50.
              pubmed: 18371435doi: 10.1016/j.stem.2007.11.014google scholar: lookup
            48. Rubinstein P, Dobrila L, Rosenfield RE, Adamson JW, Migliaccio G, Migliaccio AR, Taylor PE, Stevens CE. Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution.. Proc Natl Acad Sci U S A 1995 Oct 24;92(22):10119-22.
              pmc: PMC40747pubmed: 7479737doi: 10.1073/pnas.92.22.10119google scholar: lookup
            49. Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T, Muroi K, Ozawa K. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells.. Blood 2007 Jan 1;109(1):228-34.
              pubmed: 16985180doi: 10.1182/blood-2006-02-002246google scholar: lookup
            50. Schuh EM, Friedman MS, Carrade DD, Li J, Heeke D, Oyserman SM, Galuppo LD, Lara DJ, Walker NJ, Ferraro GL, Owens SD, Borjesson DL. Identification of variables that optimize isolation and culture of multipotent mesenchymal stem cells from equine umbilical-cord blood.. Am J Vet Res 2009 Dec;70(12):1526-35.
              pubmed: 19951125doi: 10.2460/ajvr.70.12.1526google scholar: lookup
            51. Sudres M, Norol F, Trenado A, Gru00e9goire S, Charlotte F, Levacher B, Lataillade JJ, Bourin P, Holy X, Vernant JP, Klatzmann D, Cohen JL. Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft-versus-host disease in mice.. J Immunol 2006 Jun 15;176(12):7761-7.
              pubmed: 16751424doi: 10.4049/jimmunol.176.12.7761google scholar: lookup
            52. Toupadakis CA, Wong A, Genetos DC, Cheung WK, Borjesson DL, Ferraro GL, Galuppo LD, Leach JK, Owens SD, Yellowley CE. Comparison of the osteogenic potential of equine mesenchymal stem cells from bone marrow, adipose tissue, umbilical cord blood, and umbilical cord tissue.. Am J Vet Res 2010 Oct;71(10):1237-45.
              pubmed: 20919913doi: 10.2460/ajvr.71.10.1237google scholar: lookup
            53. Tung JT, Venta PJ, Caron JP. Inducible nitric oxide expression in equine articular chondrocytes: effects of antiinflammatory compounds.. Osteoarthritis Cartilage 2002 Jan;10(1):5-12.
              pubmed: 11795978doi: 10.1053/joca.2001.0476google scholar: lookup
            54. Vidal MA, Walker NJ, Napoli E, Borjesson DL. Evaluation of senescence in mesenchymal stem cells isolated from equine bone marrow, adipose tissue, and umbilical cord tissue.. Stem Cells Dev 2012 Jan 20;21(2):273-83.
              pubmed: 21410356doi: 10.1089/scd.2010.0589google scholar: lookup
            55. Vidal MA, Kilroy GE, Johnson JR, Lopez MJ, Moore RM, Gimble JM. Cell growth characteristics and differentiation frequency of adherent equine bone marrow-derived mesenchymal stromal cells: adipogenic and osteogenic capacity.. Vet Surg 2006 Oct;35(7):601-10.
            56. Vidal MA, Kilroy GE, Lopez MJ, Johnson JR, Moore RM, Gimble JM. Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells.. Vet Surg 2007 Oct;36(7):613-22.
            57. Vidal MA, Robinson SO, Lopez MJ, Paulsen DB, Borkhsenious O, Johnson JR, Moore RM, Gimble JM. Comparison of chondrogenic potential in equine mesenchymal stromal cells derived from adipose tissue and bone marrow.. Vet Surg 2008 Dec;37(8):713-24.
            58. Wohler JE, Barnum SR. Nylon wool purification alters the activation of T cells.. Mol Immunol 2009 Feb;46(5):1007-10.
            59. Yoo KH, Jang IK, Lee MW, Kim HE, Yang MS, Eom Y, Lee JE, Kim YJ, Yang SK, Jung HL, Sung KW, Kim CW, Koo HH. Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues.. Cell Immunol 2009;259(2):150-6.
              pubmed: 19608159doi: 10.1016/j.cellimm.2009.06.010google scholar: lookup

            Citations

            This article has been cited 81 times.
            1. Petrova V, Vachkova E. Outlook of Adipose-Derived Stem Cells: Challenges to Their Clinical Application in Horses.. Vet Sci 2023 May 12;10(5).
              doi: 10.3390/vetsci10050348pubmed: 37235430google scholar: lookup
            2. Stage HJ, Trappe S, Su00f6llig K, Trachsel DS, Kirsch K, Zieger C, Merle R, Aschenbach JR, Gehlen H. Multilineage Differentiation Potential of Equine Adipose-Derived Stromal/Stem Cells from Different Sources.. Animals (Basel) 2023 Apr 15;13(8).
              doi: 10.3390/ani13081352pubmed: 37106915google scholar: lookup
            3. Jammes M, Contentin R, Cassu00e9 F, Galu00e9ra P. Equine osteoarthritis: Strategies to enhance mesenchymal stromal cell-based acellular therapies.. Front Vet Sci 2023;10:1115774.
              doi: 10.3389/fvets.2023.1115774pubmed: 36846261google scholar: lookup
            4. Clarke EJ, Johnson E, Caamau00f1o Gutierrez E, Andersen C, Berg LC, Jenkins RE, Lindegaard C, Uvebrant K, Lundgren-u00c5kerlund E, Turlo A, James V, Jacobsen S, Peffers MJ. Temporal extracellular vesicle protein changes following intraarticular treatment with integrin u03b110u03b21-selected mesenchymal stem cells in equine osteoarthritis.. Front Vet Sci 2022;9:1057667.
              doi: 10.3389/fvets.2022.1057667pubmed: 36504839google scholar: lookup
            5. Cequier A, Vu00e1zquez FJ, Romero A, Vitoria A, Bernad E, Garcu00eda-Martu00ednez M, Gascu00f3n I, Barrachina L, Rodellar C. The immunomodulation-immunogenicity balance of equine Mesenchymal Stem Cells (MSCs) is differentially affected by the immune cell response depending on inflammatory licensing and major histocompatibility complex (MHC) compatibility.. Front Vet Sci 2022;9:957153.
              doi: 10.3389/fvets.2022.957153pubmed: 36337202google scholar: lookup
            6. Koch DW, Schnabel LV, Ellis IM, Bates RE, Berglund AK. TGF-u03b22 enhances expression of equine bone marrow-derived mesenchymal stem cell paracrine factors with known associations to tendon healing.. Stem Cell Res Ther 2022 Sep 16;13(1):477.
              doi: 10.1186/s13287-022-03172-9pubmed: 36114555google scholar: lookup
            7. Kearney CM, Khatab S, van Buul GM, Plomp SGM, Korthagen NM, Labbertu00e9 MC, Goodrich LR, Kisiday JD, Van Weeren PR, van Osch GJVM, Brama PAJ. Treatment Effects of Intra-Articular Allogenic Mesenchymal Stem Cell Secretome in an Equine Model of Joint Inflammation.. Front Vet Sci 2022;9:907616.
              doi: 10.3389/fvets.2022.907616pubmed: 35812845google scholar: lookup
            8. Taylor SD, Serpa PBS, Santos AP, Hart KA, Vaughn SA, Moore GE, Mukhopadhyay A, Page AE. Effects of intravenous administration of peripheral blood-derived mesenchymal stromal cells after infusion of lipopolysaccharide in horses.. J Vet Intern Med 2022 Jul;36(4):1491-1501.
              doi: 10.1111/jvim.16447pubmed: 35698909google scholar: lookup
            9. Rosa GDS, Krieck AMT, Padula ET, Stievani FC, Rossi MC, Pfeifer JPH, Basso RM, Braz AMM, Golim MA, Alves ALG. Production of Cytotoxic Antibodies After Intra-Articular Injection of Allogeneic Synovial Membrane Mesenchymal Stem Cells With and Without LPS Administration.. Front Immunol 2022;13:871216.
              doi: 10.3389/fimmu.2022.871216pubmed: 35572507google scholar: lookup
            10. Cequier A, Romero A, Vu00e1zquez FJ, Vitoria A, Bernad E, Fuente S, Zaragoza P, Rodellar C, Barrachina L. Equine Mesenchymal Stem Cells Influence the Proliferative Response of Lymphocytes: Effect of Inflammation, Differentiation and MHC-Compatibility.. Animals (Basel) 2022 Apr 11;12(8).
              doi: 10.3390/ani12080984pubmed: 35454231google scholar: lookup
            11. Uberti B, Plaza A, Henru00edquez C. Pre-conditioning Strategies for Mesenchymal Stromal/Stem Cells in Inflammatory Conditions of Livestock Species.. Front Vet Sci 2022;9:806069.
              doi: 10.3389/fvets.2022.806069pubmed: 35372550google scholar: lookup
            12. Avellar HK, Lutter JD, Ganta CK, Beard W, Smith JR, Jonnalagadda N, Peloquin S, Kang Q, Ayub K. In vitro antimicrobial activity of equine platelet lysate and mesenchymal stromal cells against common clinical pathogens.. Can J Vet Res 2022 Jan;86(1):59-64.
              pubmed: 34975224
            13. Arzi B, Webb TL, Koch TG, Volk SW, Betts DH, Watts A, Goodrich L, Kallos MS, Kol A. Cell Therapy in Veterinary Medicine as a Proof-of-Concept for Human Therapies: Perspectives From the North American Veterinary Regenerative Medicine Association.. Front Vet Sci 2021;8:779109.
              doi: 10.3389/fvets.2021.779109pubmed: 34917671google scholar: lookup
            14. Aru00e9valo-Turrubiarte M, Baratta M, Ponti G, Chiaradia E, Martignani E. Extracellular vesicles from equine mesenchymal stem cells decrease inflammation markers in chondrocytes in vitro.. Equine Vet J 2022 Nov;54(6):1133-1143.
              doi: 10.1111/evj.13537pubmed: 34741769google scholar: lookup
            15. Zayed M, Adair S, Dhar M. Effects of Normal Synovial Fluid and Interferon Gamma on Chondrogenic Capability and Immunomodulatory Potential Respectively on Equine Mesenchymal Stem Cells.. Int J Mol Sci 2021 Jun 15;22(12).
              doi: 10.3390/ijms22126391pubmed: 34203758google scholar: lookup
            16. Nieto-Nicolau N, Martu00ednez-Conesa EM, Fuentes-Juliu00e1n S, Arnalich-Montiel F, Garcu00eda-Tuu00f1u00f3n I, De Miguel MP, Casaroli-Marano RP. Priming human adipose-derived mesenchymal stem cells for corneal surface regeneration.. J Cell Mol Med 2021 Jun;25(11):5124-5137.
              doi: 10.1111/jcmm.16501pubmed: 33951289google scholar: lookup
            17. Berglund AK, Long JM, Robertson JB, Schnabel LV. TGF-u03b22 Reduces the Cell-Mediated Immunogenicity of Equine MHC-Mismatched Bone Marrow-Derived Mesenchymal Stem Cells Without Altering Immunomodulatory Properties.. Front Cell Dev Biol 2021;9:628382.
              doi: 10.3389/fcell.2021.628382pubmed: 33614658google scholar: lookup
            18. Shahsavari A, Weeratunga P, Ovchinnikov DA, Whitworth DJ. Pluripotency and immunomodulatory signatures of canine induced pluripotent stem cell-derived mesenchymal stromal cells are similar to harvested mesenchymal stromal cells.. Sci Rep 2021 Feb 10;11(1):3486.
              doi: 10.1038/s41598-021-82856-3pubmed: 33568729google scholar: lookup
            19. Um S, Ha J, Choi SJ, Oh W, Jin HJ. Prospects for the therapeutic development of umbilical cord blood-derived mesenchymal stem cells.. World J Stem Cells 2020 Dec 26;12(12):1511-1528.
              doi: 10.4252/wjsc.v12.i12.1511pubmed: 33505598google scholar: lookup
            20. Ribitsch I, Oreff GL, Jenner F. Regenerative Medicine for Equine Musculoskeletal Diseases.. Animals (Basel) 2021 Jan 19;11(1).
              doi: 10.3390/ani11010234pubmed: 33477808google scholar: lookup
            21. Russell KA, Garbin LC, Wong JM, Koch TG. Mesenchymal Stromal Cells as Potential Antimicrobial for Veterinary Use-A Comprehensive Review.. Front Microbiol 2020;11:606404.
              doi: 10.3389/fmicb.2020.606404pubmed: 33335522google scholar: lookup
            22. Shimoni C, Goldstein M, Ribarski-Chorev I, Schauten I, Nir D, Strauss C, Schlesinger S. Heat Shock Alters Mesenchymal Stem Cell Identity and Induces Premature Senescence.. Front Cell Dev Biol 2020;8:565970.
              doi: 10.3389/fcell.2020.565970pubmed: 33072750google scholar: lookup
            23. Bukowska J, Szu00f3stek-Mioduchowska AZ, Kopcewicz M, Walendzik K, Machciu0144ska S, Gawrou0144ska-Kozak B. Adipose-Derived Stromal/Stem Cells from Large Animal Models: from Basic to Applied Science.. Stem Cell Rev Rep 2021 Jun;17(3):719-738.
              doi: 10.1007/s12015-020-10049-ypubmed: 33025392google scholar: lookup
            24. Amorim RM, Clark KC, Walker NJ, Kumar P, Herout K, Borjesson DL, Wang A. Placenta-derived multipotent mesenchymal stromal cells: a promising potential cell-based therapy for canine inflammatory brain disease.. Stem Cell Res Ther 2020 Jul 22;11(1):304.
              doi: 10.1186/s13287-020-01799-0pubmed: 32698861google scholar: lookup
            25. Caffi V, Espinosa G, Gajardo G, Morales N, Duru00e1n MC, Uberti B, Moru00e1n G, Plaza A, Henru00edquez C. Pre-conditioning of Equine Bone Marrow-Derived Mesenchymal Stromal Cells Increases Their Immunomodulatory Capacity.. Front Vet Sci 2020;7:318.
              doi: 10.3389/fvets.2020.00318pubmed: 32656251google scholar: lookup
            26. Manu00e7anares ACF, Cabezas J, Manru00edquez J, de Oliveira VC, Wong Alvaro YS, Rojas D, Navarrete Aguirre F, Rodriguez-Alvarez L, Castro FO. Edition of Prostaglandin E2 Receptors EP2 and EP4 by CRISPR/Cas9 Technology in Equine Adipose Mesenchymal Stem Cells.. Animals (Basel) 2020 Jun 23;10(6).
              doi: 10.3390/ani10061078pubmed: 32585798google scholar: lookup
            27. Shukla L, Yuan Y, Shayan R, Greening DW, Karnezis T. Fat Therapeutics: The Clinical Capacity of Adipose-Derived Stem Cells and Exosomes for Human Disease and Tissue Regeneration.. Front Pharmacol 2020;11:158.
              doi: 10.3389/fphar.2020.00158pubmed: 32194404google scholar: lookup
            28. Arzi B, Peralta S, Fiani N, Vapniarsky N, Taechangam N, Delatorre U, Clark KC, Walker NJ, Loscar MR, Lommer MJ, Fulton A, Battig J, Borjesson DL. A multicenter experience using adipose-derived mesenchymal stem cell therapy for cats with chronic, non-responsive gingivostomatitis.. Stem Cell Res Ther 2020 Mar 13;11(1):115.
              doi: 10.1186/s13287-020-01623-9pubmed: 32169089google scholar: lookup
            29. Lange-Consiglio A, Romele P, Magatti M, Silini A, Idda A, Martino NA, Cremonesi F, Parolini O. Priming with inflammatory cytokines is not a prerequisite to increase immune-suppressive effects and responsiveness of equine amniotic mesenchymal stromal cells.. Stem Cell Res Ther 2020 Mar 4;11(1):99.
              doi: 10.1186/s13287-020-01611-zpubmed: 32131892google scholar: lookup
            30. MacDonald ES, Barrett JG. The Potential of Mesenchymal Stem Cells to Treat Systemic Inflammation in Horses.. Front Vet Sci 2019;6:507.
              doi: 10.3389/fvets.2019.00507pubmed: 32039250google scholar: lookup
            31. Gugjoo MB, Hussain S, Amarpal, Shah RA, Dhama K. Mesenchymal Stem Cell-Mediated Immuno-Modulatory and Anti- Inflammatory Mechanisms in Immune and Allergic Disorders.. Recent Pat Inflamm Allergy Drug Discov 2020;14(1):3-14.
            32. Al Naem M, Bourebaba L, Kucharczyk K, Ru00f6cken M, Marycz K. Therapeutic mesenchymal stromal stem cells: Isolation, characterization and role in equine regenerative medicine and metabolic disorders.. Stem Cell Rev Rep 2020 Apr;16(2):301-322.
              doi: 10.1007/s12015-019-09932-0pubmed: 31797146google scholar: lookup
            33. Saldinger LK, Nelson SG, Bellone RR, Lassaline M, Mack M, Walker NJ, Borjesson DL. Horses with equine recurrent uveitis have an activated CD4+ T-cell phenotype that can be modulated by mesenchymal stem cells in vitro.. Vet Ophthalmol 2020 Jan;23(1):160-170.
              doi: 10.1111/vop.12704pubmed: 31441218google scholar: lookup
            34. Gugjoo MB, Fazili MR, Gayas MA, Ahmad RA, Dhama K. Animal mesenchymal stem cell research in cartilage regenerative medicine - a review.. Vet Q 2019 Dec;39(1):95-120.
              doi: 10.1080/01652176.2019.1643051pubmed: 31291836google scholar: lookup
            35. Hillmann A, Paebst F, Brehm W, Piehler D, Schubert S, Tu00e1rnok A, Burk J. A novel direct co-culture assay analyzed by multicolor flow cytometry reveals context- and cell type-specific immunomodulatory effects of equine mesenchymal stromal cells.. PLoS One 2019;14(6):e0218949.
              doi: 10.1371/journal.pone.0218949pubmed: 31247035google scholar: lookup
            36. Taechangam N, Iyer SS, Walker NJ, Arzi B, Borjesson DL. Mechanisms utilized by feline adipose-derived mesenchymal stem cells to inhibit T lymphocyte proliferation.. Stem Cell Res Ther 2019 Jun 25;10(1):188.
              doi: 10.1186/s13287-019-1300-3pubmed: 31238978google scholar: lookup
            37. Bertoni L, Branly T, Jacquet S, Desancu00e9 M, Desquilbet L, Rivory P, Hartmann DJ, Denoix JM, Audigiu00e9 F, Galu00e9ra P, Demoor M. Intra-Articular Injection of 2 Different Dosages of Autologous and Allogeneic Bone Marrow- and Umbilical Cord-Derived Mesenchymal Stem Cells Triggers a Variable Inflammatory Response of the Fetlock Joint on 12 Sound Experimental Horses.. Stem Cells Int 2019;2019:9431894.
              doi: 10.1155/2019/9431894pubmed: 31191689google scholar: lookup
            38. Pessu00f4a LVF, Pires PRL, Del Collado M, Pieri NCG, Recchia K, Souza AF, Perecin F, da Silveira JC, de Andrade AFC, Ambrosio CE, Bressan FF, Meirelles FV. Generation and miRNA Characterization of Equine Induced Pluripotent Stem Cells Derived from Fetal and Adult Multipotent Tissues.. Stem Cells Int 2019;2019:1393791.
              doi: 10.1155/2019/1393791pubmed: 31191664google scholar: lookup
            39. Roberts EL, Dang T, Lepage SIM, Alizadeh AH, Walsh T, Koch TG, Kallos MS. Improved expansion of equine cord blood derived mesenchymal stromal cells by using microcarriers in stirred suspension bioreactors.. J Biol Eng 2019;13:25.
              doi: 10.1186/s13036-019-0153-8pubmed: 30949237google scholar: lookup
            40. Broeckx SY, Seys B, Suls M, Vandenberghe A, Mariu00ebn T, Adriaensen E, Declercq J, Van Hecke L, Braun G, Hellmann K, Spaas JH. Equine Allogeneic Chondrogenic Induced Mesenchymal Stem Cells Are an Effective Treatment for Degenerative Joint Disease in Horses.. Stem Cells Dev 2019 Mar 15;28(6):410-422.
              doi: 10.1089/scd.2018.0061pubmed: 30623737google scholar: lookup
            41. Dutton LC, Dudhia J, Catchpole B, Hodgkiss-Geere H, Werling D, Connolly DJ. Cardiosphere-derived cells suppress allogeneic lymphocytes by production of PGE2 acting via the EP4 receptor.. Sci Rep 2018 Sep 6;8(1):13351.
              doi: 10.1038/s41598-018-31569-1pubmed: 30190508google scholar: lookup
            42. Calle A, Barraju00f3n-Masa C, Gu00f3mez-Fidalgo E, Martu00edn-Lluch M, Cruz-Vigo P, Su00e1nchez-Su00e1nchez R, Ramu00edrez Mu00c1. Iberian pig mesenchymal stem/stromal cells from dermal skin, abdominal and subcutaneous adipose tissues, and peripheral blood: in vitro characterization and migratory properties in inflammation.. Stem Cell Res Ther 2018 Jul 4;9(1):178.
              doi: 10.1186/s13287-018-0933-ypubmed: 29973295google scholar: lookup
            43. Li Q, Pang Y, Liu T, Tang Y, Xie J, Zhang B, Chen H. Effects of human umbilical cord-derived mesenchymal stem cells on hematologic malignancies.. Oncol Lett 2018 May;15(5):6982-6990.
              doi: 10.3892/ol.2018.8254pubmed: 29731869google scholar: lookup
            44. Bogers SH. Cell-Based Therapies for Joint Disease in Veterinary Medicine: What We Have Learned and What We Need to Know.. Front Vet Sci 2018;5:70.
              doi: 10.3389/fvets.2018.00070pubmed: 29713634google scholar: lookup
            45. Barberini DJ, Aleman M, Aristizabal F, Spriet M, Clark KC, Walker NJ, Galuppo LD, Amorim RM, Woolard KD, Borjesson DL. Safety and tracking of intrathecal allogeneic mesenchymal stem cell transplantation in healthy and diseased horses.. Stem Cell Res Ther 2018 Apr 10;9(1):96.
              doi: 10.1186/s13287-018-0849-6pubmed: 29631634google scholar: lookup
            46. Barboni B, Russo V, Berardinelli P, Mauro A, Valbonetti L, Sanyal H, Canciello A, Greco L, Muttini A, Gatta V, Stuppia L, Mattioli M. Placental Stem Cells from Domestic Animals: Translational Potential and Clinical Relevance.. Cell Transplant 2018 Jan;27(1):93-116.
              doi: 10.1177/0963689717724797pubmed: 29562773google scholar: lookup
            47. White JL, Walker NJ, Hu JC, Borjesson DL, Athanasiou KA. A Comparison of Bone Marrow and Cord Blood Mesenchymal Stem Cells for Cartilage Self-Assembly.. Tissue Eng Part A 2018 Aug;24(15-16):1262-1272.
              doi: 10.1089/ten.TEA.2017.0424pubmed: 29478385google scholar: lookup
            48. Textor JA, Clark KC, Walker NJ, Aristizobal FA, Kol A, LeJeune SS, Bledsoe A, Davidyan A, Gray SN, Bohannon-Worsley LK, Woolard KD, Borjesson DL. Allogeneic Stem Cells Alter Gene Expression and Improve Healing of Distal Limb Wounds in Horses.. Stem Cells Transl Med 2018 Jan;7(1):98-108.
              doi: 10.1002/sctm.17-0071pubmed: 29063737google scholar: lookup
            49. Beerts C, Suls M, Broeckx SY, Seys B, Vandenberghe A, Declercq J, Duchateau L, Vidal MA, Spaas JH. Tenogenically Induced Allogeneic Peripheral Blood Mesenchymal Stem Cells in Allogeneic Platelet-Rich Plasma: 2-Year Follow-up after Tendon or Ligament Treatment in Horses.. Front Vet Sci 2017;4:158.
              doi: 10.3389/fvets.2017.00158pubmed: 29018808google scholar: lookup
            50. Bearden RN, Huggins SS, Cummings KJ, Smith R, Gregory CA, Saunders WB. In-vitro characterization of canine multipotent stromal cells isolated from synovium, bone marrow, and adipose tissue: a donor-matched comparative study.. Stem Cell Res Ther 2017 Oct 3;8(1):218.
              doi: 10.1186/s13287-017-0639-6pubmed: 28974260google scholar: lookup
            51. Berglund AK, Fisher MB, Cameron KA, Poole EJ, Schnabel LV. Transforming Growth Factor-u03b22 Downregulates Major Histocompatibility Complex (MHC) I and MHC II Surface Expression on Equine Bone Marrow-Derived Mesenchymal Stem Cells Without Altering Other Phenotypic Cell Surface Markers.. Front Vet Sci 2017;4:84.
              doi: 10.3389/fvets.2017.00084pubmed: 28660198google scholar: lookup
            52. Blu00e1zquez-Prunera A, Almeida CR, Barbosa MA. Human Bone Marrow Mesenchymal Stem/Stromal Cells Preserve Their Immunomodulatory and Chemotactic Properties When Expanded in a Human Plasma Derived Xeno-Free Medium.. Stem Cells Int 2017;2017:2185351.
              doi: 10.1155/2017/2185351pubmed: 28588620google scholar: lookup
            53. Grafe I, Alexander S, Peterson JR, Snider TN, Levi B, Lee B, Mishina Y. TGF-u03b2 Family Signaling in Mesenchymal Differentiation.. Cold Spring Harb Perspect Biol 2018 May 1;10(5).
              doi: 10.1101/cshperspect.a022202pubmed: 28507020google scholar: lookup
            54. Clark KC, Fierro FA, Ko EM, Walker NJ, Arzi B, Tepper CG, Dahlenburg H, Cicchetto A, Kol A, Marsh L, Murphy WJ, Fazel N, Borjesson DL. Human and feline adipose-derived mesenchymal stem cells have comparable phenotype, immunomodulatory functions, and transcriptome.. Stem Cell Res Ther 2017 Mar 20;8(1):69.
              doi: 10.1186/s13287-017-0528-zpubmed: 28320483google scholar: lookup
            55. Berglund AK, Schnabel LV. Allogeneic major histocompatibility complex-mismatched equine bone marrow-derived mesenchymal stem cells are targeted for death by cytotoxic anti-major histocompatibility complex antibodies.. Equine Vet J 2017 Jul;49(4):539-544.
              doi: 10.1111/evj.12647pubmed: 27862236google scholar: lookup
            56. Huang Z, Godkin O, Schulze-Tanzil G. The Challenge in Using Mesenchymal Stromal Cells for Recellularization of Decellularized Cartilage.. Stem Cell Rev Rep 2017 Feb;13(1):50-67.
              doi: 10.1007/s12015-016-9699-8pubmed: 27826794google scholar: lookup
            57. Williams LB, Co C, Koenig JB, Tse C, Lindsay E, Koch TG. Response to Intravenous Allogeneic Equine Cord Blood-Derived Mesenchymal Stromal Cells Administered from Chilled or Frozen State in Serum and Protein-Free Media.. Front Vet Sci 2016;3:56.
              doi: 10.3389/fvets.2016.00056pubmed: 27500136google scholar: lookup
            58. Karimi MH, Barzkar Z, Babaee M, Naghdi M. Evaluating Effect of Mesenchymal Stem Cells on Expression of TLR2 and TLR4 in Mouse DCs.. Adv Pharm Bull 2016 Jun;6(2):179-86.
              doi: 10.15171/apb.2016.025pubmed: 27478779google scholar: lookup
            59. Markoski MM. Advances in the Use of Stem Cells in Veterinary Medicine: From Basic Research to Clinical Practice.. Scientifica (Cairo) 2016;2016:4516920.
              doi: 10.1155/2016/4516920pubmed: 27379197google scholar: lookup
            60. Somal A, Bhat IA, B I, Pandey S, Panda BS, Thakur N, Sarkar M, Chandra V, Saikumar G, Sharma GT. A Comparative Study of Growth Kinetics, In Vitro Differentiation Potential and Molecular Characterization of Fetal Adnexa Derived Caprine Mesenchymal Stem Cells.. PLoS One 2016;11(6):e0156821.
              doi: 10.1371/journal.pone.0156821pubmed: 27257959google scholar: lookup
            61. Ardanaz N, Vu00e1zquez FJ, Romero A, Remacha AR, Barrachina L, Sanz A, Ranera B, Vitoria A, Albareda J, Prades M, Zaragoza P, Martu00edn-Burriel I, Rodellar C. Inflammatory response to the administration of mesenchymal stem cells in an equine experimental model: effect of autologous, and single and repeat doses of pooled allogeneic cells in healthy joints.. BMC Vet Res 2016 Mar 31;12:65.
              doi: 10.1186/s12917-016-0692-xpubmed: 27029614google scholar: lookup
            62. Fu00fclber J, Maria DA, da Silva LC, Massoco CO, Agreste F, Baccarin RY. Comparative study of equine mesenchymal stem cells from healthy and injured synovial tissues: an in vitro assessment.. Stem Cell Res Ther 2016 Mar 5;7:35.
              doi: 10.1186/s13287-016-0294-3pubmed: 26944403google scholar: lookup
            63. Bavin EP, Smith O, Baird AE, Smith LC, Guest DJ. Equine Induced Pluripotent Stem Cells have a Reduced Tendon Differentiation Capacity Compared to Embryonic Stem Cells.. Front Vet Sci 2015;2:55.
              doi: 10.3389/fvets.2015.00055pubmed: 26664982google scholar: lookup
            64. Clark KC, Kol A, Shahbenderian S, Granick JL, Walker NJ, Borjesson DL. Canine and Equine Mesenchymal Stem Cells Grown in Serum Free Media Have Altered Immunophenotype.. Stem Cell Rev Rep 2016 Apr;12(2):245-56.
              doi: 10.1007/s12015-015-9638-0pubmed: 26638159google scholar: lookup
            65. Arzi B, Mills-Ko E, Verstraete FJ, Kol A, Walker NJ, Badgley MR, Fazel N, Murphy WJ, Vapniarsky N, Borjesson DL. Therapeutic Efficacy of Fresh, Autologous Mesenchymal Stem Cells for Severe Refractory Gingivostomatitis in Cats.. Stem Cells Transl Med 2016 Jan;5(1):75-86.
              doi: 10.5966/sctm.2015-0127pubmed: 26582907google scholar: lookup
            66. Falomo ME, Ferroni L, Tocco I, Gardin C, Zavan B. Immunomodulatory Role of Adipose-Derived Stem Cells on Equine Endometriosis.. Biomed Res Int 2015;2015:141485.
              doi: 10.1155/2015/141485pubmed: 26180781google scholar: lookup
            67. Tessier L, Bienzle D, Williams LB, Koch TG. Phenotypic and immunomodulatory properties of equine cord blood-derived mesenchymal stromal cells.. PLoS One 2015;10(4):e0122954.
              doi: 10.1371/journal.pone.0122954pubmed: 25902064google scholar: lookup
            68. Pezzanite LM, Fortier LA, Antczak DF, Cassano JM, Brosnahan MM, Miller D, Schnabel LV. Equine allogeneic bone marrow-derived mesenchymal stromal cells elicit antibody responses in vivo.. Stem Cell Res Ther 2015 Apr 12;6(1):54.
              doi: 10.1186/s13287-015-0053-xpubmed: 25889095google scholar: lookup
            69. Kol A, Wood JA, Carrade Holt DD, Gillette JA, Bohannon-Worsley LK, Puchalski SM, Walker NJ, Clark KC, Watson JL, Borjesson DL. Multiple intravenous injections of allogeneic equine mesenchymal stem cells do not induce a systemic inflammatory response but do alter lymphocyte subsets in healthy horses.. Stem Cell Res Ther 2015 Apr 15;6(1):73.
              doi: 10.1186/s13287-015-0050-0pubmed: 25888916google scholar: lookup
            70. Chung E, Rytlewski JA, Merchant AG, Dhada KS, Lewis EW, Suggs LJ. Fibrin-based 3D matrices induce angiogenic behavior of adipose-derived stem cells.. Acta Biomater 2015 Apr;17:78-88.
              doi: 10.1016/j.actbio.2015.01.012pubmed: 25600400google scholar: lookup
            71. Williams LB, Tessier L, Koenig JB, Koch TG. Post-thaw non-cultured and post-thaw cultured equine cord blood mesenchymal stromal cells equally suppress lymphocyte proliferation in vitro.. PLoS One 2014;9(12):e113615.
              doi: 10.1371/journal.pone.0113615pubmed: 25438145google scholar: lookup
            72. Kyurkchiev D, Bochev I, Ivanova-Todorova E, Mourdjeva M, Oreshkova T, Belemezova K, Kyurkchiev S. Secretion of immunoregulatory cytokines by mesenchymal stem cells.. World J Stem Cells 2014 Nov 26;6(5):552-70.
              doi: 10.4252/wjsc.v6.i5.552pubmed: 25426252google scholar: lookup
            73. Burk J, Gittel C, Heller S, Pfeiffer B, Paebst F, Ahrberg AB, Brehm W. Gene expression of tendon markers in mesenchymal stromal cells derived from different sources.. BMC Res Notes 2014 Nov 20;7:826.
              doi: 10.1186/1756-0500-7-826pubmed: 25412928google scholar: lookup
            74. Arzi B, Kol A, Murphy B, Walker NJ, Wood JA, Clark K, Verstraete FJ, Borjesson DL. Feline foamy virus adversely affects feline mesenchymal stem cell culture and expansion: implications for animal model development.. Stem Cells Dev 2015 Apr 1;24(7):814-23.
              doi: 10.1089/scd.2014.0317pubmed: 25404388google scholar: lookup
            75. Paterson YZ, Rash N, Garvican ER, Paillot R, Guest DJ. Equine mesenchymal stromal cells and embryo-derived stem cells are immune privileged in vitro.. Stem Cell Res Ther 2014 Jul 30;5(4):90.
              doi: 10.1186/scrt479pubmed: 25080326google scholar: lookup
            76. Kol A, Foutouhi S, Walker NJ, Kong NT, Weimer BC, Borjesson DL. Gastrointestinal microbes interact with canine adipose-derived mesenchymal stem cells in vitro and enhance immunomodulatory functions.. Stem Cells Dev 2014 Aug 15;23(16):1831-43.
              doi: 10.1089/scd.2014.0128pubmed: 24803072google scholar: lookup
            77. Tanabe S. Role of mesenchymal stem cells in cell life and their signaling.. World J Stem Cells 2014 Jan 26;6(1):24-32.
              doi: 10.4252/wjsc.v6.i1.24pubmed: 24567785google scholar: lookup
            78. Barberini DJ, Freitas NP, Magnoni MS, Maia L, Listoni AJ, Heckler MC, Sudano MJ, Golim MA, da Cruz Landim-Alvarenga F, Amorim RM. Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: immunophenotypic characterization and differentiation potential.. Stem Cell Res Ther 2014 Feb 21;5(1):25.
              doi: 10.1186/scrt414pubmed: 24559797google scholar: lookup
            79. Schnabel LV, Pezzanite LM, Antczak DF, Felippe MJ, Fortier LA. Equine bone marrow-derived mesenchymal stromal cells are heterogeneous in MHC class II expression and capable of inciting an immune response in vitro.. Stem Cell Res Ther 2014 Jan 24;5(1):13.
              doi: 10.1186/scrt402pubmed: 24461709google scholar: lookup
            80. De Schauwer C, Goossens K, Piepers S, Hoogewijs MK, Govaere JL, Smits K, Meyer E, Van Soom A, Van de Walle GR. Characterization and profiling of immunomodulatory genes of equine mesenchymal stromal cells from non-invasive sources.. Stem Cell Res Ther 2014 Jan 13;5(1):6.
              doi: 10.1186/scrt395pubmed: 24418262google scholar: lookup
            81. Carrade DD, Borjesson DL. Immunomodulation by mesenchymal stem cells in veterinary species.. Comp Med 2013 Jun;63(3):207-17.
              pubmed: 23759523