BMC biotechnology2007; 7; 26; doi: 10.1186/1472-6750-7-26

Isolation of mesenchymal stem cells from equine umbilical cord blood.

Abstract: There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC) have been isolated from fresh umbilical cord blood of humans collected non-invasively at the time of birth and from sheep cord blood collected invasively by a surgical intrauterine approach. Mesenchymal stem cells isolation percentage from frozen-thawed human cord blood is low and the future isolation percentage of MSCs from cryopreserved equine cord blood is therefore expectedly low. The hypothesis of this study was that equine MSCs could be isolated from fresh whole equine cord blood. Results: Cord blood was collected from 7 foals immediately after foaling. The mononuclear cell fraction was isolated by Ficoll density centrifugation and cultured in a DMEM low glucose based media at 38.5 degrees C in humidified atmosphere containing 5% CO2. In 4 out of 7 samples colonies with MSC morphology were observed. Cellular morphology varied between monolayers of elongated spindle-shaped cells to layered cell clusters of cuboidal cells with shorter cytoplasmic extensions. Positive Alizarin Red and von Kossa staining as well as significant calcium deposition and alkaline phosphatase activity confirmed osteogenesis. Histology and positive Safranin O staining of matrix glycosaminoglycans illustrated chondrogenesis. Oil Red O staining of lipid droplets confirmed adipogenesis. Conclusions: We here report, for the first time, the isolation of mesenchymal-like stem cells from fresh equine cord blood and their differentiation into osteocytes, chondrocytes and adipocytes. This novel isolation of equine cord blood MSCs and their preliminary in vitro differentiation positions the horse as the ideal pre-clinical animal model for proof-of-principle studies of cord blood derived MSCs.
Publication Date: 2007-05-30 PubMed ID: 17537254PubMed Central: PMC1904213DOI: 10.1186/1472-6750-7-26Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article
  • Research Support
  • Non-U.S. Gov't

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

This study demonstrates for the first time that mesenchymal-like stem cells can be isolated from fresh equine cord blood, differentiating into osteocytes, chondrocytes and adipocytes. This suggests the horse as an ideal pre-clinical animal model for proof-of principle studies of cord blood derived mesenchymal stem cells.

Research Objectives and Hypothesis

  • The researchers aimed to isolate mesenchymal stem cells (MSC) from fresh equine umbilical cord blood, which had not been studied or documented before.
  • The study hypothesized that MSCs, already known to be isolable from human and sheep cord blood, could also be isolated from equine cord blood.

Methodology

  • Cord blood was collected from 7 foals immediately after their birth.
  • The mononuclear cell fraction was then isolated by Ficoll density centrifugation and cultured in a specially created environment (DMEM low glucose based media at 38.5 degrees C in humidified atmosphere containing 5% CO2).
  • Using this method, MSC-like colonies were observed in 4 out of 7 samples. The cellular morphology in these colonies varied widely.

Results and Observations

  • Cultures displayed positive Alizarin Red and von Kossa staining, indicating calcium deposition and alkaline phosphatase activity, thus confirming osteogenesis (formation of bone cells).
  • Histology and positive Safranin O staining of matrix glycosaminoglycans (complex carbohydrates) demonstrated chondrogenesis (formation of cartilage cells).
  • Oil Red O staining of lipid droplets illustrated adipogenesis (formation of fat cells).

Conclusions and Implications

  • The study successfully isolated mesenchymal-like stem cells from fresh equine cord blood and induced them to differentiate into osteocytes, chondrocytes and adipocytes.
  • This novel discovery holds significance as it supports the horse as an ideal pre-clinical animal model for proof-of-principle studies of cord blood-derived MSCs.
  • This research could pave the way for future studies and prospective applications related to equine cord blood MSCs, even though the isolation percentage from frozen-thawed cord blood is expected to be low.

Cite This Article

APA
Koch TG, Heerkens T, Thomsen PD, Betts DH. (2007). Isolation of mesenchymal stem cells from equine umbilical cord blood. BMC Biotechnol, 7, 26. https://doi.org/10.1186/1472-6750-7-26

Publication

ISSN: 1472-6750
NlmUniqueID: 101088663
Country: England
Language: English
Volume: 7
Pages: 26

Researcher Affiliations

Koch, Thomas G
  • Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada. tkoch@uoguelph.ca
Heerkens, Tammy
    Thomsen, Preben D
      Betts, Dean H

        MeSH Terms

        • Adipocytes / cytology
        • Animals
        • Animals, Newborn
        • Cell Culture Techniques / methods
        • Cell Differentiation
        • Cell Separation / methods
        • Cells, Cultured
        • Chondrocytes / cytology
        • Cryopreservation / methods
        • Fetal Blood / cytology
        • Horses
        • Mesenchymal Stem Cells / cytology
        • Osteocytes / cytology
        • Tissue Engineering / methods

        References

        This article includes 40 references
        1. The Jockey Club
        2. Jeffcott LB, Rossdale PD, Freestone J, Frank CJ, Towers-Clark PF. An assessment of wastage in thoroughbred racing from conception to 4 years of age.. Equine Vet J 1982 Jul;14(3):185-98.
        3. Bailey CJ, Reid SW, Hodgson DR, Rose RJ. Impact of injuries and disease on a cohort of two- and three-year-old thoroughbreds in training.. Vet Rec 1999 Oct 23;145(17):487-93.
          pubmed: 10596871doi: 10.1136/vr.145.17.487google scholar: lookup
        4. Olivier A, Nurton JP, Guthrie AJ. An epizoological study of wastage in thoroughbred racehorses in Gauteng, South Africa.. J S Afr Vet Assoc 1997 Dec;68(4):125-9.
          pubmed: 9561496doi: 10.4102/jsava.v68i4.893google scholar: lookup
        5. Rossdale PD, Hopes R, Digby NJ, offord K. Epidemiological study of wastage among racehorses 1982 and 1983.. Vet Rec 1985 Jan 19;116(3):66-9.
          pubmed: 3976145doi: 10.1136/vr.116.3.66google scholar: lookup
        6. Frisbie DD. Future directions in treatment of joint disease in horses.. Vet Clin North Am Equine Pract 2005 Dec;21(3):713-24, viii.
          doi: 10.1016/j.cveq.2005.07.001pubmed: 16297729google scholar: lookup
        7. Stromberg B. A review of the salient features of osteochondrosis in the horse.. Equine Vet J 1979 Oct;11(4):211-4.
        8. Jeffcott LB, Henson FM. Studies on growth cartilage in the horse and their application to aetiopathogenesis of dyschondroplasia (osteochondrosis).. Vet J 1998 Nov;156(3):177-92.
          doi: 10.1016/S1090-0233(98)80121-4pubmed: 9883086google scholar: lookup
        9. Nixon AJ, Fortier LA. New horizons in articular cartilage repair. AAEP. 2001. pp. 217u2013226.
        10. Nixon AJ. Advances in cell-based grafting. ACVS. 2001. pp. 128u2013131.
        11. Hidaka C, Goodrich LR, Chen CT, Warren RF, Crystal RG, Nixon AJ. Acceleration of cartilage repair by genetically modified chondrocytes over expressing bone morphogenetic protein-7.. J Orthop Res 2003 Jul;21(4):573-83.
          doi: 10.1016/S0736-0266(02)00264-4pubmed: 12798054google scholar: lookup
        12. Bieback K, Kern S, Klu00fcter H, Eichler H. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood.. Stem Cells 2004;22(4):625-34.
          doi: 10.1634/stemcells.22-4-625pubmed: 15277708google scholar: lookup
        13. Ku00f6gler G, Sensken S, Airey JA, Trapp T, Mu00fcschen M, Feldhahn N, Liedtke S, Sorg RV, Fischer J, Rosenbaum C, Greschat S, Knipper A, Bender J, Degistirici O, Gao J, Caplan AI, Colletti EJ, Almeida-Porada G, Mu00fcller HW, Zanjani E, Wernet P. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential.. J Exp Med 2004 Jul 19;200(2):123-35.
          doi: 10.1084/jem.20040440pmc: PMC2212008pubmed: 15263023google scholar: lookup
        14. Fuchs JR, Hannouche D, Terada S, Zand S, Vacanti JP, Fauza DO. Cartilage engineering from ovine umbilical cord blood mesenchymal progenitor cells.. Stem Cells 2005 Aug;23(7):958-64.
          doi: 10.1634/stemcells.2004-0310pubmed: 16043460google scholar: lookup
        15. Watt SM, Contreras M. Stem cell medicine: umbilical cord blood and its stem cell potential.. Semin Fetal Neonatal Med 2005 Jun;10(3):209-20.
          doi: 10.1016/j.siny.2005.02.001pubmed: 15927877google scholar: lookup
        16. Kern S, Eichler H, Stoeve J, Klu00fcter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue.. Stem Cells 2006 May;24(5):1294-301.
          doi: 10.1634/stemcells.2005-0342pubmed: 16410387google scholar: lookup
        17. Goessler UR, Bieback K, Bugert P, Heller T, Sadick H, Hu00f6rmann K, Riedel F. In vitro analysis of integrin expression during chondrogenic differentiation of mesenchymal stem cells and chondrocytes upon dedifferentiation in cell culture.. Int J Mol Med 2006 Feb;17(2):301-7.
          pubmed: 16391830
        18. Goessler UR, Bugert P, Bieback K, Bag S, Sadick H, Klu00fcter H, Hu00f6rmann K, Riedel F. [A comparison of the gene expression patterns of human chondrocytes and chondrogen differentiated mesenchymal stem cells for tissue engineering].. HNO 2006 Apr;54(4):258-66.
          doi: 10.1007/s00106-005-1322-2pubmed: 16341720google scholar: lookup
        19. Goessler UR, Bugert P, Bieback K, Deml M, Sadick H, Hormann K, Riedel F. In-vitro analysis of the expression of TGFbeta -superfamily-members during chondrogenic differentiation of mesenchymal stem cells and chondrocytes during dedifferentiation in cell culture.. Cell Mol Biol Lett 2005;10(2):345-62.
          pubmed: 16010298
        20. Feldmann RE Jr, Bieback K, Maurer MH, Kalenka A, Bu00fcrgers HF, Gross B, Hunzinger C, Klu00fcter H, Kuschinsky W, Eichler H. Stem cell proteomes: a profile of human mesenchymal stem cells derived from umbilical cord blood.. Electrophoresis 2005 Jul;26(14):2749-58.
          doi: 10.1002/elps.200410406pubmed: 15971194google scholar: lookup
        21. Aoki M, Yasutake M, Murohara T. Derivation of functional endothelial progenitor cells from human umbilical cord blood mononuclear cells isolated by a novel cell filtration device.. Stem Cells 2004;22(6):994-1002.
          doi: 10.1634/stemcells.22-6-994pubmed: 15536190google scholar: lookup
        22. Ju00e4ger M, Sager M, Knipper A, Degistirici O, Fischer J, Ku00f6gler G, Wernet P, Krauspe R. [In vivo and in vitro bone regeneration from cord blood derived mesenchymal stem cells].. Orthopade 2004 Dec;33(12):1361-72.
          doi: 10.1007/s00132-004-0737-xpubmed: 15549251google scholar: lookup
        23. Le Ricousse-Roussanne S, Barateau V, Contreres JO, Boval B, Kraus-Berthier L, Tobelem G. Ex vivo differentiated endothelial and smooth muscle cells from human cord blood progenitors home to the angiogenic tumor vasculature.. Cardiovasc Res 2004 Apr 1;62(1):176-84.
        24. Rocha V, Labopin M, Sanz G, Arcese W, Schwerdtfeger R, Bosi A, Jacobsen N, Ruutu T, de Lima M, Finke J, Frassoni F, Gluckman E. Transplants of umbilical-cord blood or bone marrow from unrelated donors in adults with acute leukemia.. N Engl J Med 2004 Nov 25;351(22):2276-85.
          doi: 10.1056/NEJMoa041469pubmed: 15564544google scholar: lookup
        25. Koerner J, Nesic D, Romero JD, Brehm W, Mainil-Varlet P, Grogan SP. Equine peripheral blood-derived progenitors in comparison to bone marrow-derived mesenchymal stem cells.. Stem Cells 2006 Jun;24(6):1613-9.
          doi: 10.1634/stemcells.2005-0264pubmed: 16769763google scholar: lookup
        26. Fortier LA, Nixon AJ, Williams J, Cable CS. Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells.. Am J Vet Res 1998 Sep;59(9):1182-7.
          pubmed: 9736400
        27. Fortier LA. Stem cells: classifications, controversies, and clinical applications.. Vet Surg 2005 Sep-Oct;34(5):415-23.
        28. Smith RK, Korda M, Blunn GW, Goodship AE. Isolation and implantation of autologous equine mesenchymal stem cells from bone marrow into the superficial digital flexor tendon as a potential novel treatment.. Equine Vet J 2003 Jan;35(1):99-102.
          doi: 10.2746/042516403775467388pubmed: 12553472google scholar: lookup
        29. VetCell
        30. Vet-Stem
        31. Ku00f6gler G, Radke TF, Lefort A, Sensken S, Fischer J, Sorg RV, Wernet P. Cytokine production and hematopoiesis supporting activity of cord blood-derived unrestricted somatic stem cells.. Exp Hematol 2005 May;33(5):573-83.
          doi: 10.1016/j.exphem.2005.01.012pubmed: 15850835google scholar: lookup
        32. Ku00f6gler G, Sensken S, Wernet P. Comparative generation and characterization of pluripotent unrestricted somatic stem cells with mesenchymal stem cells from human cord blood.. Exp Hematol 2006 Nov;34(11):1589-95.
          doi: 10.1016/j.exphem.2006.07.011pubmed: 17046580google scholar: lookup
        33. Belvedere O, Feruglio C, Malangone W, Bonora ML, Minisini AM, Spizzo R, Donini A, Sala P, De Anna D, Hilbert DM, Degrassi A. Increased blood volume and CD34(+)CD38(-) progenitor cell recovery using a novel umbilical cord blood collection system.. Stem Cells 2000;18(4):245-51.
          doi: 10.1634/stemcells.18-4-245pubmed: 10924090google scholar: lookup
        34. Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow.. Tissue Eng 1998 Winter;4(4):415-28.
          doi: 10.1089/ten.1998.4.415pubmed: 9916173google scholar: lookup
        35. Janderovu00e1 L, McNeil M, Murrell AN, Mynatt RL, Smith SR. Human mesenchymal stem cells as an in vitro model for human adipogenesis.. Obes Res 2003 Jan;11(1):65-74.
          pubmed: 12529487doi: 10.1038/oby.2003.11google scholar: lookup
        36. Frisbie DD, Cross MW, McIlwraith CW. A comparative study of articular cartilage thickness in the stifle of animal species used in human pre-clinical studies compared to articular cartilage thickness in the human knee.. Vet Comp Orthop Traumatol 2006;19(3):142-6.
          pubmed: 16971996
        37. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro.. J Cell Biochem 1997 Feb;64(2):295-312.
        38. Cambrex Bio Sciences
        39. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells.. Exp Cell Res 1998 Jan 10;238(1):265-72.
          doi: 10.1006/excr.1997.3858pubmed: 9457080google scholar: lookup
        40. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells.. Science 1999 Apr 2;284(5411):143-7.
          doi: 10.1126/science.284.5411.143pubmed: 10102814google scholar: lookup

        Citations

        This article has been cited 63 times.
        1. Zhang J, Peng Y, Guo M, Li C. Large-Scale Expansion of Human Umbilical Cord-Derived Mesenchymal Stem Cells in a Stirred Suspension Bioreactor Enabled by Computational Fluid Dynamics Modeling.. Bioengineering (Basel) 2022 Jun 23;9(7).
          doi: 10.3390/bioengineering9070274pubmed: 35877325google scholar: lookup
        2. Voga M, Majdic G. Articular Cartilage Regeneration in Veterinary Medicine.. Adv Exp Med Biol 2022;1401:23-55.
          doi: 10.1007/5584_2022_717pubmed: 35733035google scholar: lookup
        3. Soukup R, Gerner I, Gu00fcltekin S, Baik H, Oesterreicher J, Grillari J, Jenner F. Characterisation of Extracellular Vesicles from Equine Mesenchymal Stem Cells.. Int J Mol Sci 2022 May 23;23(10).
          doi: 10.3390/ijms23105858pubmed: 35628667google scholar: lookup
        4. Um S, Ha J, Choi SJ, Oh W, Jin HJ. Prospects for the therapeutic development of umbilical cord blood-derived mesenchymal stem cells.. World J Stem Cells 2020 Dec 26;12(12):1511-1528.
          doi: 10.4252/wjsc.v12.i12.1511pubmed: 33505598google scholar: lookup
        5. Salcedo-Jimu00e9nez R, Koenig JB, Lee OJ, Gibson TWG, Madan P, Koch TG. Extracorporeal Shock Wave Therapy Enhances the In Vitro Metabolic Activity and Differentiation of Equine Umbilical Cord Blood Mesenchymal Stromal Cells.. Front Vet Sci 2020;7:554306.
          doi: 10.3389/fvets.2020.554306pubmed: 33344521google scholar: lookup
        6. Voga M, Adamic N, Vengust M, Majdic G. Stem Cells in Veterinary Medicine-Current State and Treatment Options.. Front Vet Sci 2020;7:278.
          doi: 10.3389/fvets.2020.00278pubmed: 32656249google scholar: lookup
        7. Al Naem M, Bourebaba L, Kucharczyk K, Ru00f6cken M, Marycz K. Therapeutic mesenchymal stromal stem cells: Isolation, characterization and role in equine regenerative medicine and metabolic disorders.. Stem Cell Rev Rep 2020 Apr;16(2):301-322.
          doi: 10.1007/s12015-019-09932-0pubmed: 31797146google scholar: lookup
        8. Magri C, Schramme M, Febre M, Cauvin E, Labadie F, Saulnier N, Franu00e7ois I, Lechartier A, Aebischer D, Moncelet AS, Maddens S. Comparison of efficacy and safety of single versus repeated intra-articular injection of allogeneic neonatal mesenchymal stem cells for treatment of osteoarthritis of the metacarpophalangeal/metatarsophalangeal joint in horses: A clinical pilot study.. PLoS One 2019;14(8):e0221317.
          doi: 10.1371/journal.pone.0221317pubmed: 31465445google scholar: lookup
        9. Shojaee A, Parham A. Strategies of tenogenic differentiation of equine stem cells for tendon repair: current status and challenges.. Stem Cell Res Ther 2019 Jun 18;10(1):181.
          doi: 10.1186/s13287-019-1291-0pubmed: 31215490google scholar: lookup
        10. Roberts EL, Dang T, Lepage SIM, Alizadeh AH, Walsh T, Koch TG, Kallos MS. Improved expansion of equine cord blood derived mesenchymal stromal cells by using microcarriers in stirred suspension bioreactors.. J Biol Eng 2019;13:25.
          doi: 10.1186/s13036-019-0153-8pubmed: 30949237google scholar: lookup
        11. Rakic R, Bourdon B, Demoor M, Maddens S, Saulnier N, Galu00e9ra P. Differences in the intrinsic chondrogenic potential of equine umbilical cord matrix and cord blood mesenchymal stromal/stem cells for cartilage regeneration.. Sci Rep 2018 Sep 14;8(1):13799.
          doi: 10.1038/s41598-018-28164-9pubmed: 30217993google scholar: lookup
        12. Sultana T, Lee S, Yoon HY, Lee JI. Current Status of Canine Umbilical Cord Blood-Derived Mesenchymal Stem Cells in Veterinary Medicine.. Stem Cells Int 2018;2018:8329174.
          doi: 10.1155/2018/8329174pubmed: 30123294google scholar: lookup
        13. Ayala-Cuellar AP, Kang JH, Jeung EB, Choi KC. Roles of Mesenchymal Stem Cells in Tissue Regeneration and Immunomodulation.. Biomol Ther (Seoul) 2019 Jan 1;27(1):25-33.
          doi: 10.4062/biomolther.2017.260pubmed: 29902862google scholar: lookup
        14. Olivera R, Moro LN, Jordan R, Pallarols N, Guglielminetti A, Luzzani C, Miriuka SG, Vichera G. Bone marrow mesenchymal stem cells as nuclear donors improve viability and health of cloned horses.. Stem Cells Cloning 2018;11:13-22.
          doi: 10.2147/SCCAA.S151763pubmed: 29497320google scholar: lookup
        15. Rashnonejad A, Ercan G, Gunduz C, Akdemir A, Tiftikcioglu YO. Comparative analysis of human UCB and adipose tissue derived mesenchymal stem cells for their differentiation potential into brown and white adipocytes.. Mol Biol Rep 2018 Jun;45(3):233-244.
          doi: 10.1007/s11033-018-4156-1pubmed: 29453764google scholar: lookup
        16. Desancu00e9 M, Contentin R, Bertoni L, Gomez-Leduc T, Branly T, Jacquet S, Betsch JM, Batho A, Legendre F, Audigiu00e9 F, Galu00e9ra P, Demoor M. Chondrogenic Differentiation of Defined Equine Mesenchymal Stem Cells Derived from Umbilical Cord Blood for Use in Cartilage Repair Therapy.. Int J Mol Sci 2018 Feb 10;19(2).
          doi: 10.3390/ijms19020537pubmed: 29439436google scholar: lookup
        17. Zahedi M, Parham A, Dehghani H, Mehrjerdi HK. Stemness Signature of Equine Marrow-derived Mesenchymal Stem Cells.. Int J Stem Cells 2017 May 30;10(1):93-102.
          doi: 10.15283/ijsc16036pubmed: 28222255google scholar: lookup
        18. Olivera R, Moro LN, Jordan R, Luzzani C, Miriuka S, Radrizzani M, Donadeu FX, Vichera G. In Vitro and In Vivo Development of Horse Cloned Embryos Generated with iPSCs, Mesenchymal Stromal Cells and Fetal or Adult Fibroblasts as Nuclear Donors.. PLoS One 2016;11(10):e0164049.
          doi: 10.1371/journal.pone.0164049pubmed: 27732616google scholar: lookup
        19. Williams LB, Co C, Koenig JB, Tse C, Lindsay E, Koch TG. Response to Intravenous Allogeneic Equine Cord Blood-Derived Mesenchymal Stromal Cells Administered from Chilled or Frozen State in Serum and Protein-Free Media.. Front Vet Sci 2016;3:56.
          doi: 10.3389/fvets.2016.00056pubmed: 27500136google scholar: lookup
        20. Li X, Duan L, Liang Y, Zhu W, Xiong J, Wang D. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Contribute to Chondrogenesis in Coculture with Chondrocytes.. Biomed Res Int 2016;2016:3827057.
          doi: 10.1155/2016/3827057pubmed: 27446948google scholar: lookup
        21. Somal A, Bhat IA, B I, Pandey S, Panda BS, Thakur N, Sarkar M, Chandra V, Saikumar G, Sharma GT. A Comparative Study of Growth Kinetics, In Vitro Differentiation Potential and Molecular Characterization of Fetal Adnexa Derived Caprine Mesenchymal Stem Cells.. PLoS One 2016;11(6):e0156821.
          doi: 10.1371/journal.pone.0156821pubmed: 27257959google scholar: lookup
        22. Fu00fclber J, Maria DA, da Silva LC, Massoco CO, Agreste F, Baccarin RY. Comparative study of equine mesenchymal stem cells from healthy and injured synovial tissues: an in vitro assessment.. Stem Cell Res Ther 2016 Mar 5;7:35.
          doi: 10.1186/s13287-016-0294-3pubmed: 26944403google scholar: lookup
        23. Abdel-Kawi SH, Hashem KS. Possible Therapeutic Effect of Stem Cell in Atherosclerosis in Albino Rats. A Histological and Immunohistochemical Study.. Int J Stem Cells 2015 Nov;8(2):200-8.
          doi: 10.15283/ijsc.2015.8.2.200pubmed: 26634068google scholar: lookup
        24. Bassiony HS, Zickri MB, Metwally HG, Elsherif HA, Alghandour SM, Sakr W. Comparative Histological Study on the Therapeutic Effect of Green Tea and Stem Cells in Alzheimer's Disease Complicating Experimentally Induced Diabetes.. Int J Stem Cells 2015 Nov;8(2):181-90.
          doi: 10.15283/ijsc.2015.8.2.181pubmed: 26634066google scholar: lookup
        25. Aboul-Fotouh GI, Zickri MB, Metwally HG, Ibrahim IR, Kamar SS, Sakr W. Therapeutic Effect of Adipose Derived Stem Cells versus Atorvastatin on Amiodarone Induced Lung Injury in Male Rat.. Int J Stem Cells 2015 Nov;8(2):170-80.
          doi: 10.15283/ijsc.2015.8.2.170pubmed: 26634065google scholar: lookup
        26. Mitchell A, Rivas KA, Smith R 3rd, Watts AE. Cryopreservation of equine mesenchymal stem cells in 95% autologous serum and 5% DMSO does not alter post-thaw growth or morphology in vitro compared to fetal bovine serum or allogeneic serum at 20 or 95% and DMSO at 10 or 5.. Stem Cell Res Ther 2015 Nov 26;6:231.
          doi: 10.1186/s13287-015-0230-ypubmed: 26611913google scholar: lookup
        27. Russell KA, Gibson TW, Chong A, Co C, Koch TG. Canine Platelet Lysate Is Inferior to Fetal Bovine Serum for the Isolation and Propagation of Canine Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stromal Cells.. PLoS One 2015;10(9):e0136621.
          doi: 10.1371/journal.pone.0136621pubmed: 26353112google scholar: lookup
        28. Nelson L, McCarthy HE, Fairclough J, Williams R, Archer CW. Evidence of a Viable Pool of Stem Cells within Human Osteoarthritic Cartilage.. Cartilage 2014 Oct;5(4):203-14.
          doi: 10.1177/1947603514544953pubmed: 26069699google scholar: lookup
        29. Tessier L, Bienzle D, Williams LB, Koch TG. Phenotypic and immunomodulatory properties of equine cord blood-derived mesenchymal stromal cells.. PLoS One 2015;10(4):e0122954.
          doi: 10.1371/journal.pone.0122954pubmed: 25902064google scholar: lookup
        30. Alipour F, Parham A, Kazemi Mehrjerdi H, Dehghani H. Equine adipose-derived mesenchymal stem cells: phenotype and growth characteristics, gene expression profile and differentiation potentials.. Cell J 2015 Winter;16(4):456-65.
          doi: 10.22074/cellj.2015.491pubmed: 25685736google scholar: lookup
        31. Ardeshirylajimi A, Mossahebi-Mohammadi M, Vakilian S, Langroudi L, Seyedjafari E, Atashi A, Soleimani M. Comparison of osteogenic differentiation potential of human adult stem cells loaded on bioceramic-coated electrospun poly (L-lactide) nanofibres.. Cell Prolif 2015 Feb;48(1):47-58.
          doi: 10.1111/cpr.12156pubmed: 25495212google scholar: lookup
        32. Mohanty N, Gulati BR, Kumar R, Gera S, Kumar S, Kumar P, Yadav PS. Phenotypical and functional characteristics of mesenchymal stem cells derived from equine umbilical cord blood.. Cytotechnology 2016 Aug;68(4):795-807.
          doi: 10.1007/s10616-014-9831-zpubmed: 25487085google scholar: lookup
        33. Williams LB, Tessier L, Koenig JB, Koch TG. Post-thaw non-cultured and post-thaw cultured equine cord blood mesenchymal stromal cells equally suppress lymphocyte proliferation in vitro.. PLoS One 2014;9(12):e113615.
          doi: 10.1371/journal.pone.0113615pubmed: 25438145google scholar: lookup
        34. Corradetti B, Correani A, Romaldini A, Marini MG, Bizzaro D, Perrini C, Cremonesi F, Lange-Consiglio A. Amniotic membrane-derived mesenchymal cells and their conditioned media: potential candidates for uterine regenerative therapy in the horse.. PLoS One 2014;9(10):e111324.
          doi: 10.1371/journal.pone.0111324pubmed: 25360561google scholar: lookup
        35. Zickri MB, Fadl SG, Metwally HG. Comparative Study between Intravenous and Intraperitoneal Stem Cell Therapy in Amiodarone Induced Lung Injury in Rat.. Int J Stem Cells 2014 May;7(1):1-11.
          doi: 10.15283/ijsc.2014.7.1.1pubmed: 24921022google scholar: lookup
        36. De Schauwer C, Goossens K, Piepers S, Hoogewijs MK, Govaere JL, Smits K, Meyer E, Van Soom A, Van de Walle GR. Characterization and profiling of immunomodulatory genes of equine mesenchymal stromal cells from non-invasive sources.. Stem Cell Res Ther 2014 Jan 13;5(1):6.
          doi: 10.1186/scrt395pubmed: 24418262google scholar: lookup
        37. Mohanty N, Gulati BR, Kumar R, Gera S, Kumar P, Somasundaram RK, Kumar S. Immunophenotypic characterization and tenogenic differentiation of mesenchymal stromal cells isolated from equine umbilical cord blood.. In Vitro Cell Dev Biol Anim 2014 Jun;50(6):538-48.
          doi: 10.1007/s11626-013-9729-7pubmed: 24414976google scholar: lookup
        38. Zickri MB, Embaby A, Metwally HG. Experimental study on the effect of intravenous stem cell therapy on intestinal ischemia reperfusion induced myocardial injury.. Int J Stem Cells 2013 Nov;6(2):121-8.
          doi: 10.15283/ijsc.2013.6.2.121pubmed: 24386556google scholar: lookup
        39. Zickri MB, El Aziz DH, Metwally HG. Histological experimental study on the effect of stem cell therapy on adriamycin induced chemobrain.. Int J Stem Cells 2013 Nov;6(2):104-12.
          doi: 10.15283/ijsc.2013.6.2.104pubmed: 24386554google scholar: lookup
        40. Zickri MB, Zaghloul S, Farouk M, Fattah MM. Effect of stem cell therapy on adriamycin induced tubulointerstitial injury.. Int J Stem Cells 2012 Nov;5(2):130-9.
          doi: 10.15283/ijsc.2012.5.2.130pubmed: 24298366google scholar: lookup
        41. Zickri MB, Fattah MM, Metwally HG. Tissue regeneration and stem cell distribution in adriamycin induced glomerulopathy.. Int J Stem Cells 2012 Nov;5(2):115-24.
          doi: 10.15283/ijsc.2012.5.2.115pubmed: 24298364google scholar: lookup
        42. Zickri MB, Ahmad NA, Maadawi ZM, Mohamady YK, Metwally HG. Effect of stem cell therapy on induced diabetic keratopathy in albino rat.. Int J Stem Cells 2012 May;5(1):57-64.
          doi: 10.15283/ijsc.2012.5.1.57pubmed: 24298355google scholar: lookup
        43. Zaglool SS, Zickri MB, Abd El Aziz DH, Mabrouk D, Metwally HG. Effect of stem cell therapy on amiodarone induced fibrosing interstitial lung disease in albino rat.. Int J Stem Cells 2011 Nov;4(2):133-42.
          doi: 10.15283/ijsc.2011.4.2.133pubmed: 24298346google scholar: lookup
        44. Guest DJ, Ousey JC, Smith MR. Defining the expression of marker genes in equine mesenchymal stromal cells.. Stem Cells Cloning 2008;1:1-9.
          doi: 10.2147/sccaa.s3824pubmed: 24198500google scholar: lookup
        45. Zeng Y, Rong M, Liu Y, Liu J, Lu M, Tao X, Li Z, Chen X, Yang K, Li C, Liu Z. Electrophysiological characterisation of human umbilical cord blood-derived mesenchymal stem cells induced by olfactory ensheathing cell-conditioned medium.. Neurochem Res 2013 Dec;38(12):2483-9.
          doi: 10.1007/s11064-013-1186-xpubmed: 24185490google scholar: lookup
        46. Kang JG, Park SB, Seo MS, Kim HS, Chae JS, Kang KS. Characterization and clinical application of mesenchymal stem cells from equine umbilical cord blood.. J Vet Sci 2013;14(3):367-71.
          doi: 10.4142/jvs.2013.14.3.367pubmed: 23820166google scholar: lookup
        47. Carrade DD, Borjesson DL. Immunomodulation by mesenchymal stem cells in veterinary species.. Comp Med 2013 Jun;63(3):207-17.
          pubmed: 23759523
        48. Seo MS, Park SB, Kim HS, Kang JG, Chae JS, Kang KS. Isolation and characterization of equine amniotic membrane-derived mesenchymal stem cells.. J Vet Sci 2013;14(2):151-9.
          doi: 10.4142/jvs.2013.14.2.151pubmed: 23388430google scholar: lookup
        49. Carrade DD, Lame MW, Kent MS, Clark KC, Walker NJ, Borjesson DL. Comparative Analysis of the Immunomodulatory Properties of Equine Adult-Derived Mesenchymal Stem Cells().. Cell Med 2012;4(1):1-11.
          doi: 10.3727/215517912X647217pubmed: 23152950google scholar: lookup
        50. Coli A, Nocchi F, Lamanna R, Iorio M, Lapi S, Urciuoli P, Scatena F, Giannessi E, Stornelli MR, Passeri S. Isolation and characterization of equine amnion mesenchymal stem cells.. Cell Biol Int Rep (2010) 2011 Sep 13;18(1):e00011.
          doi: 10.1042/CBR20110004pubmed: 23124164google scholar: lookup
        51. Kim YJ, Park YJ, Lee YM, Rhyu IC, Ku Y. The biological effects of fibrin-binding synthetic oligopeptides derived from fibronectin on osteoblast-like cells.. J Periodontal Implant Sci 2012 Aug;42(4):113-8.
          doi: 10.5051/jpis.2012.42.4.113pubmed: 22977740google scholar: lookup
        52. Spaas JH, Guest DJ, Van de Walle GR. Tendon regeneration in human and equine athletes: Ubi Sumus-Quo Vadimus (where are we and where are we going to)?. Sports Med 2012 Oct 1;42(10):871-90.
          doi: 10.1007/BF03262300pubmed: 22963225google scholar: lookup
        53. Cardoso TC, Ferrari HF, Garcia AF, Novais JB, Silva-Frade C, Ferrarezi MC, Andrade AL, Gameiro R. Isolation and characterization of Wharton's jelly-derived multipotent mesenchymal stromal cells obtained from bovine umbilical cord and maintained in a defined serum-free three-dimensional system.. BMC Biotechnol 2012 May 4;12:18.
          doi: 10.1186/1472-6750-12-18pubmed: 22559872google scholar: lookup
        54. Arufe MC, De la Fuente A, Fuentes I, Toro FJ, Blanco FJ. Umbilical cord as a mesenchymal stem cell source for treating joint pathologies.. World J Orthop 2011 Jun 18;2(6):43-50.
          doi: 10.5312/wjo.v2.i6.43pubmed: 22474635google scholar: lookup
        55. Deyle DR, Khan IF, Ren G, Wang PR, Kho J, Schwarze U, Russell DW. Normal collagen and bone production by gene-targeted human osteogenesis imperfecta iPSCs.. Mol Ther 2012 Jan;20(1):204-13.
          doi: 10.1038/mt.2011.209pubmed: 22031238google scholar: lookup
        56. Violini S, Gorni C, Pisani LF, Ramelli P, Caniatti M, Mariani P. Isolation and differentiation potential of an equine amnion-derived stromal cell line.. Cytotechnology 2012 Jan;64(1):1-7.
          doi: 10.1007/s10616-011-9398-xpubmed: 21994048google scholar: lookup
        57. Corradetti B, Lange-Consiglio A, Barucca M, Cremonesi F, Bizzaro D. Size-sieved subpopulations of mesenchymal stem cells from intervascular and perivascular equine umbilical cord matrix.. Cell Prolif 2011 Aug;44(4):330-42.
        58. Martino NA, Lange-Consiglio A, Cremonesi F, Valentini L, Caira M, Guaricci AC, Ambruosi B, Sciorsci RL, Lacalandra GM, Reshkin SJ, Dell'Aquila ME. Functional expression of the extracellular calcium sensing receptor (CaSR) in equine umbilical cord matrix size-sieved stem cells.. PLoS One 2011 Mar 17;6(3):e17714.
          doi: 10.1371/journal.pone.0017714pubmed: 21437284google scholar: lookup
        59. Lovati AB, Corradetti B, Lange Consiglio A, Recordati C, Bonacina E, Bizzaro D, Cremonesi F. Comparison of equine bone marrow-, umbilical cord matrix and amniotic fluid-derived progenitor cells.. Vet Res Commun 2011 Feb;35(2):103-21.
          doi: 10.1007/s11259-010-9457-3pubmed: 21193959google scholar: lookup
        60. Ju00e4ger M, Zilkens C, Bittersohl B, Krauspe R. Cord blood--an alternative source for bone regeneration.. Stem Cell Rev Rep 2009 Sep;5(3):266-77.
          doi: 10.1007/s12015-009-9083-zpubmed: 19652969google scholar: lookup
        61. Koch TG, Berg LC, Betts DH. Current and future regenerative medicine - principles, concepts, and therapeutic use of stem cell therapy and tissue engineering in equine medicine.. Can Vet J 2009 Feb;50(2):155-65.
          pubmed: 19412395
        62. Koch TG, Berg LC, Betts DH. Concepts for the clinical use of stem cells in equine medicine.. Can Vet J 2008 Oct;49(10):1009-17.
          pubmed: 19119371
        63. Handschel J, Berr K, Depprich RA, Ku00fcbler NR, Naujoks C, Wiesmann HP, Ommerborn MA, Meyer U. Induction of osteogenic markers in differentially treated cultures of embryonic stem cells.. Head Face Med 2008 Jun 10;4:10.
          doi: 10.1186/1746-160X-4-10pubmed: 18544155google scholar: lookup