BMC veterinary research2015; 11; 63; doi: 10.1186/s12917-015-0361-5

Feasibility and safety of intrathecal transplantation of autologous bone marrow mesenchymal stem cells in horses.

Abstract: Recent studies have demonstrated numerous biological properties of mesenchymal stem cells and their potential application in treating complex diseases or injuries to tissues that have difficulty regenerating, such as those affecting the central and peripheral nervous system. Thus, therapies that use mesenchymal stem cells are promising because of their high capacity for self-regeneration, their low immunogenicity, and their paracrine, anti-inflammatory, immunomodulatory, anti-apoptotic and neuroprotective effects. In this context, the purpose of this study was to evaluate the feasibility and safety of intrathecal transplantation of bone marrow-derived mesenchymal stem cells in horses, for future application in the treatment of neurological diseases. Results: During the neurological evaluations, no clinical signs were observed that were related to brain and/or spinal cord injury of the animals from the control group or the treated group. The hematological and cerebrospinal fluid results from day 1 and day 6 showed no significant differences (P > 0.05) between the treated group and the control group. Additionally, analysis of the expression of matrix metalloproteinase (MMP) -2 and -9 in the cerebrospinal fluid revealed only the presence of pro-MMP-2 (latent), with no significant difference (P > 0.05) between the studied groups. Conclusions: The results of the present study support the hypothesis of the feasibility and safety of intrathecal transplantation of autologous bone marrow-derived mesenchymal stem cells, indicating that it is a promising pathway for cell delivery for the treatment of neurological disorders in horses.
Publication Date: 2015-03-15 PubMed ID: 25879519PubMed Central: PMC4369105DOI: 10.1186/s12917-015-0361-5Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article
  • Research Support
  • Non-U.S. Gov't

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

This research evaluates the possibility and safety of using a horse’s own bone marrow mesenchymal stem cells and transplanting them intrathecally (into the spinal canal or subarachnoid space) for the treatment of neurological diseases. The study concludes that this method of transplantation is both possible and safe, and offers promise for treating neurological disorders in horses.

Objective of the Research

  • The primary aim of this study was to assess the feasibility and safety of introducing autologous (originating from the same individual) bone marrow mesenchymal stem cells intrathecally in horses.
  • The researchers aim to explore its potential application in treating complex neurological diseases in the future.

Background of the Research

  • Past research has indicated the multiple biological properties of mesenchymal stem cells, and their potential in treating diseases or injuries to areas where tissue regeneration is difficult, including the central and peripheral nervous system.
  • These stem cells are compelling in therapeutic use due to their high self-regeneration abilities, their limited immunogenicity (ability to provoke an immune response), and their array of effects such as paracrine, anti-inflammatory, immunomodulatory, anti-apoptotic, and neuroprotective behaviors.

Research Methodology and Results

  • A cohort of horses underwent intrathecal transplantation of mesenchymal stem cells and were closely monitored to evaluate neurological indications and any signs related to brain or spinal cord injury.
  • These observations were compared to a control group of untreated horses.
  • The hematological and cerebrospinal fluid results collected on day 1 and day 6 after the procedure showed no significant variations between the untreated and treated group of horses.
  • The expression of matrix metalloproteinase (MMP)-2 and -9, a group of enzymes important in tissue remodeling, in the cerebrospinal fluid was also analyzed. Only the latent form of MMP-2 was found, with no significant variations between the groups.

Research Conclusion

  • The research concludes that the feasibility and safety of transplanting autologous bone marrow-derived mesenchymal stem cells intrathecally in horses is confirmed.
  • Indicating it as a promising methodology for cell delivery in the treatment of neurological disorders in horses.

Cite This Article

APA
Maia L, da Cruz Landim-Alvarenga F, Taffarel MO, de Moraes CN, Machado GF, Melo GD, Amorim RM. (2015). Feasibility and safety of intrathecal transplantation of autologous bone marrow mesenchymal stem cells in horses. BMC Vet Res, 11, 63. https://doi.org/10.1186/s12917-015-0361-5

Publication

ISSN: 1746-6148
NlmUniqueID: 101249759
Country: England
Language: English
Volume: 11
Pages: 63
PII: 63

Researcher Affiliations

Maia, Leandro
  • Department of Animal Reproduction, Su00e3o Paulo State University, District of Rubiu00e3o Ju00fanior, n/n, CEP: 18618970, Botucatu, Su00e3o Paulo, Brazil. leandromvet@hotmail.com.
da Cruz Landim-Alvarenga, Fernanda
  • Department of Animal Reproduction, Su00e3o Paulo State University, District of Rubiu00e3o Ju00fanior, n/n, CEP: 18618970, Botucatu, Su00e3o Paulo, Brazil. fernanda@fmvz.unesp.br.
Taffarel, Marilda Onghero
  • Department of Veterinary Medicine, Maringu00e1 State University, Av. Colombo, 5.790, CEP: 87020-900, Maringu00e1, Paranu00e1, Brazil. mtafarel@yahoo.com.br.
de Moraes, Carolina Nogueira
  • Department of Animal Reproduction, Su00e3o Paulo State University, District of Rubiu00e3o Ju00fanior, n/n, CEP: 18618970, Botucatu, Su00e3o Paulo, Brazil. carolnmoraes@hotmail.com.
Machado, Gisele Fabrino
  • Department of Clinic, Surgery and Animal Reproduction, Su00e3o Paulo State University, Clu00f3vis Pestano, 793, CEP: 16050-680, Arau00e7atuba, Su00e3o Paulo, Brazil. giselem@fmva.unesp.br.
Melo, Guilherme Dias
  • Department of Clinic, Surgery and Animal Reproduction, Su00e3o Paulo State University, Clu00f3vis Pestano, 793, CEP: 16050-680, Arau00e7atuba, Su00e3o Paulo, Brazil. di.melo@uol.com.br.
Amorim, Rogu00e9rio Martins
  • Department of Veterinary Clinics, Su00e3o Paulo State University, District of Rubiu00e3o Ju00fanior, n/n, CEP: 18618970, Botucatu, Su00e3o Paulo, Brazil. rmamorim@fmvz.unesp.br.

MeSH Terms

  • Animals
  • Bone Marrow Transplantation / adverse effects
  • Bone Marrow Transplantation / methods
  • Bone Marrow Transplantation / veterinary
  • Feasibility Studies
  • Female
  • Horse Diseases / surgery
  • Horses
  • Injections, Spinal / veterinary
  • Male
  • Mesenchymal Stem Cell Transplantation / adverse effects
  • Mesenchymal Stem Cell Transplantation / methods
  • Mesenchymal Stem Cell Transplantation / veterinary
  • Nervous System Diseases / surgery
  • Nervous System Diseases / veterinary

References

This article includes 44 references
  1. Wright KT, El Masri W, Osman A, Chowdhury J, Johnson WE. Concise review: Bone marrow for the treatment of spinal cord injury: mechanisms and clinical applications.. Stem Cells 2011 Feb;29(2):169-78.
    doi: 10.1002/stem.570pmc: PMC3083520pubmed: 21732476google scholar: lookup
  2. Baraniak PR, McDevitt TC. Stem cell paracrine actions and tissue regeneration.. Regen Med 2010 Jan;5(1):121-43.
    doi: 10.2217/rme.09.74pmc: PMC2833273pubmed: 20017699google scholar: lookup
  3. Vidal MA, Robinson SO, Lopez MJ, Paulsen DB, Borkhsenious O, Johnson JR, Moore RM, Gimble JM. Comparison of chondrogenic potential in equine mesenchymal stromal cells derived from adipose tissue and bone marrow.. Vet Surg 2008 Dec;37(8):713-24.
  4. Crovace A, Lacitignola L, De Siena R, Rossi G, Francioso E. Cell therapy for tendon repair in horses: an experimental study.. Vet Res Commun 2007 Aug;31 Suppl 1:281-3.
    doi: 10.1007/s11259-007-0047-ypubmed: 17682895google scholar: lookup
  5. Pacini S, Spinabella S, Trombi L, Fazzi R, Galimberti S, Dini F, Carlucci F, Petrini M. Suspension of bone marrow-derived undifferentiated mesenchymal stromal cells for repair of superficial digital flexor tendon in race horses.. Tissue Eng 2007 Dec;13(12):2949-55.
    doi: 10.1089/ten.2007.0108pubmed: 17919069google scholar: lookup
  6. Wilke MM, Nydam DV, Nixon AJ. Enhanced early chondrogenesis in articular defects following arthroscopic mesenchymal stem cell implantation in an equine model.. J Orthop Res 2007 Jul;25(7):913-25.
    doi: 10.1002/jor.20382pubmed: 17405160google scholar: lookup
  7. Nixon AJ, Dahlgren LA, Haupt JL, Yeager AE, Ward DL. Effect of adipose-derived nucleated cell fractions on tendon repair in horses with collagenase-induced tendinitis.. Am J Vet Res 2008 Jul;69(7):928-37.
    doi: 10.2460/ajvr.69.7.928pubmed: 18593247google scholar: lookup
  8. Carvalho AM, Alves ALG, Oliveira PGG, Alvarez LEC, Laufer-Amorim R, Hussni CA, et al. Use of adipose tissue-derived mesenchymal stem cells for experimental tendinitis therapy in equines. J Equine Vet Sci. 2011;31:26u201334. doi: 10.1016/j.jevs.2010.11.014.
  9. McIlwraith CW, Frisbie DD, Rodkey WG, Kisiday JD, Werpy NM, Kawcak CE, Steadman JR. Evaluation of intra-articular mesenchymal stem cells to augment healing of microfractured chondral defects.. Arthroscopy 2011 Nov;27(11):1552-61.
    doi: 10.1016/j.arthro.2011.06.002pubmed: 21862278google scholar: lookup
  10. Zhang J, Li Y, Chen J, Cui Y, Lu M, Elias SB, Mitchell JB, Hammill L, Vanguri P, Chopp M. Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice.. Exp Neurol 2005 Sep;195(1):16-26.
  11. Mayhew IG, deLahunta A, Whitlock RH, Krook L, Tasker JB. Spinal cord disease in the horse.. Cornell Vet 1978 Jan;68 Suppl 6:1-207.
    pubmed: 618720
  12. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement.. Cytotherapy 2006;8(4):315-7.
    doi: 10.1080/14653240600855905pubmed: 16923606google scholar: lookup
  13. de Mattos Carvalho A, Alves AL, Golim MA, Moroz A, Hussni CA, de Oliveira PG, Deffune E. Isolation and immunophenotypic characterization of mesenchymal stem cells derived from equine species adipose tissue.. Vet Immunol Immunopathol 2009 Dec 15;132(2-4):303-6.
    doi: 10.1016/j.vetimm.2009.06.014pubmed: 19647331google scholar: lookup
  14. Arnhold SJ, Goletz I, Klein H, Stumpf G, Beluche LA, Rohde C, Addicks K, Litzke LF. Isolation and characterization of bone marrow-derived equine mesenchymal stem cells.. Am J Vet Res 2007 Oct;68(10):1095-105.
    doi: 10.2460/ajvr.68.10.1095pubmed: 17916017google scholar: lookup
  15. Guest DJ, Ousey JC, Smith MR. Defining the expression of marker genes in equine mesenchymal stromal cells.. Stem Cells Cloning 2008;1:1-9.
    pmc: PMC3781685pubmed: 24198500doi: 10.2147/sccaa.s3824google scholar: lookup
  16. Radcliffe CH, Flaminio MJ, Fortier LA. Temporal analysis of equine bone marrow aspirate during establishment of putative mesenchymal progenitor cell populations.. Stem Cells Dev 2010 Feb;19(2):269-82.
    doi: 10.1089/scd.2009.0091pmc: PMC3138180pubmed: 19604071google scholar: lookup
  17. Martinello T, Bronzini I, Maccatrozzo L, Iacopetti I, Sampaolesi M, Mascarello F, Patruno M. Cryopreservation does not affect the stem characteristics of multipotent cells isolated from equine peripheral blood.. Tissue Eng Part C Methods 2010 Aug;16(4):771-81.
    doi: 10.1089/ten.tec.2009.0512pubmed: 19839741google scholar: lookup
  18. Hoynowski SM, Fry MM, Gardner BM, Leming MT, Tucker JR, Black L, Sand T, Mitchell KE. Characterization and differentiation of equine umbilical cord-derived matrix cells.. Biochem Biophys Res Commun 2007 Oct 19;362(2):347-53.
    doi: 10.1016/j.bbrc.2007.07.182pubmed: 17719011google scholar: lookup
  19. Iacono E, Brunori L, Pirrone A, Pagliaro PP, Ricci F, Tazzari PL, Merlo B. Isolation, characterization and differentiation of mesenchymal stem cells from amniotic fluid, umbilical cord blood and Wharton's jelly in the horse.. Reproduction 2012 Apr;143(4):455-68.
    doi: 10.1530/REP-10-0408pubmed: 22274885google scholar: lookup
  20. Mensing N, Gasse H, Hambruch N, Haeger JD, Pfarrer C, Staszyk C. Isolation and characterization of multipotent mesenchymal stromal cells from the gingiva and the periodontal ligament of the horse.. BMC Vet Res 2011 Aug 2;7:42.
    doi: 10.1186/1746-6148-7-42pmc: PMC3161857pubmed: 21810270google scholar: lookup
  21. Dimarakis I, Levicar N. Cell culture medium composition and translational adult bone marrow-derived stem cell research.. Stem Cells 2006 May;24(5):1407-8.
    doi: 10.1634/stemcells.2005-0577pubmed: 16456132google scholar: lookup
  22. Sotiropoulou PA, Perez SA, Salagianni M, Baxevanis CN, Papamichail M. Cell culture medium composition and translational adult bone marrow-derived stem cell research.. Stem Cells 2006 May;24(5):1409-10.
    doi: 10.1634/stemcells.2005-0654pubmed: 16439613google scholar: lookup
  23. Toupadakis CA, Wong A, Genetos DC, Cheung WK, Borjesson DL, Ferraro GL, Galuppo LD, Leach JK, Owens SD, Yellowley CE. Comparison of the osteogenic potential of equine mesenchymal stem cells from bone marrow, adipose tissue, umbilical cord blood, and umbilical cord tissue.. Am J Vet Res 2010 Oct;71(10):1237-45.
    doi: 10.2460/ajvr.71.10.1237pubmed: 20919913google scholar: lookup
  24. Lim JY, Jeong CH, Jun JA, Kim SM, Ryu CH, Hou Y, Oh W, Chang JW, Jeun SS. Therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells after intrathecal administration by lumbar puncture in a rat model of cerebral ischemia.. Stem Cell Res Ther 2011 Sep 22;2(5):38.
    doi: 10.1186/scrt79pmc: PMC3308035pubmed: 21939558google scholar: lookup
  25. Yang WZ, Zhang Y, Wu F, Min WP, Minev B, Zhang M, Luo XL, Ramos F, Ichim TE, Riordan NH, Hu X. Safety evaluation of allogeneic umbilical cord blood mononuclear cell therapy for degenerative conditions.. J Transl Med 2010 Aug 3;8:75.
    doi: 10.1186/1479-5876-8-75pmc: PMC2922090pubmed: 20682053google scholar: lookup
  26. Kaneko JJ, Harvey JW, Bruss ML. Clinical biochemistry of domestic animals. Burlington: Elsevier; 2008.
  27. Green E, Constantinescu G, Kroll R. Equine cerebrospinal fluid: Analysis. Compend Contin Educ Pract Vet. 1993;15:288u2013301.
  28. Mayhew IG, Whitlock RH, Tasker JB. Equine cerebrospinal fluid: reference values of normal horses.. Am J Vet Res 1977 Aug;38(8):1271-4.
    pubmed: 911095
  29. Melo GD, Marcondes M, Machado GF. Canine cerebral leishmaniasis: potential role of matrix metalloproteinase-2 in the development of neurological disease.. Vet Immunol Immunopathol 2012 Aug 15;148(3-4):260-6.
    doi: 10.1016/j.vetimm.2012.05.007pubmed: 22673195google scholar: lookup
  30. Verma RP, Hansch C. Matrix metalloproteinases (MMPs): chemical-biological functions and (Q)SARs.. Bioorg Med Chem 2007 Mar 15;15(6):2223-68.
    doi: 10.1016/j.bmc.2007.01.011pubmed: 17275314google scholar: lookup
  31. Rosenberg GA. Matrix metalloproteinases in neuroinflammation.. Glia 2002 Sep;39(3):279-91.
    doi: 10.1002/glia.10108pubmed: 12203394google scholar: lookup
  32. Bergman RL, Inzana KD, Inzana TJ. Characterization of matrix metalloproteinase-2 and -9 in cerebrospinal fluid of clinically normal dogs.. Am J Vet Res 2002 Oct;63(10):1359-62.
    doi: 10.2460/ajvr.2002.63.1359pubmed: 12371760google scholar: lookup
  33. Grossete M, Phelps J, Arko L, Yonas H, Rosemberg GA. Elevation of MMP-3 and MMP-9 in CSF and blood in patients with severe traumatic brain injury. Neurosurgery. 2009;65:702u20134. doi: 10.1227/01.NEU.0000351768.11363.48.
    doi: 10.1227/01.NEU.0000351768.11363.48pubmed: 0google scholar: lookup
  34. Leppert D, Leib SL, Grygar C, Miller KM, Schaad UB, Hollu00e4nder GA. Matrix metalloproteinase (MMP)-8 and MMP-9 in cerebrospinal fluid during bacterial meningitis: association with blood-brain barrier damage and neurological sequelae.. Clin Infect Dis 2000 Jul;31(1):80-4.
    doi: 10.1086/313922pubmed: 10913401google scholar: lookup
  35. Williams PL, Leib SL, Kamberi P, Leppert D, Sobel RA, Bifrare YD, Clemons KV, Stevens DA. Levels of matrix metalloproteinase-9 within cerebrospinal fluid in a rabbit model of coccidioidal meningitis and vasculitis.. J Infect Dis 2002 Dec 1;186(11):1692-5.
    doi: 10.1086/345365pubmed: 12447750google scholar: lookup
  36. Leppert D, Ford J, Stabler G, Grygar C, Lienert C, Huber S, Miller KM, Hauser SL, Kappos L. Matrix metalloproteinase-9 (gelatinase B) is selectively elevated in CSF during relapses and stable phases of multiple sclerosis.. Brain 1998 Dec;121 ( Pt 12):2327-34.
    doi: 10.1093/brain/121.12.2327pubmed: 9874483google scholar: lookup
  37. Barreira APB, Bacellar DTL, Kiffer RG, Alves ALG. Punu00e7u00e3o aspirativa de medula u00f3ssea em equinos adultos para obtenu00e7u00e3o de cu00e9lulas-tronco. Rev Bras Ciu00eanc. 2008;15:56u20139.
  38. Maia L, Landim-Alvarenga FC, Golim MA, Sudano MJ, Taffarel MO, De Vita B, et al. Potential of neural transdifferentiation of mesenchymal stem cells from equine bone marrow. Pesq Vet Bras. 2012;32:444u201352. doi: 10.1590/S0100-736X2012000500013.
  39. Maia L, Landim-Alvarenga FC, Da Mota LS, De Assis Golim M, Laufer-Amorim R, De Vita B, Barberini DJ, Listoni AJ, De Moraes CN, Heckler MC, Amorim RM. Immunophenotypic, immunocytochemistry, ultrastructural, and cytogenetic characterization of mesenchymal stem cells from equine bone marrow.. Microsc Res Tech 2013 Jun;76(6):618-24.
    doi: 10.1002/jemt.22208pubmed: 23533133google scholar: lookup
  40. Mayhew IG. Collection of cerebrospinal fluid from the horse.. Cornell Vet 1975 Oct;65(4):500-11.
    pubmed: 1192748
  41. Malikides N, Hodgson DR, Rose RJ. Neurology. In: Rose RJ, Hodgson DR, editors. Manual Equine Practice. 2. Philadelphia: Saunders; 2000. pp. 503u201375.
  42. Mayhew IGJ. Neurologic Evaluation. In: Mayhew IGJ, editor. Large Animal Neurology. 2. West Sussex: Wiley-Blackwell Publishing; 2009. pp. 11u201346.
  43. Marangoni NR, Melo GD, Moraes OC, Souza MS, Perri SH, Machado GF. Levels of matrix metalloproteinase-2 and metalloproteinase-9 in the cerebrospinal fluid of dogs with visceral leishmaniasis.. Parasite Immunol 2011 Jun;33(6):330-4.
  44. SAS Institute Inc . SAS/IML 9.3 Useru2019s Guide. Cary, NC: SAS Institute Inc; 2011.

Citations

This article has been cited 4 times.
  1. Ran Y, Dong Y, Li Y, Xie J, Zeng S, Liang C, Dai W, Tang W, Wu Y, Yu S. Mesenchymal stem cell aggregation mediated by integrin u03b14/VCAM-1 after intrathecal transplantation in MCAO rats.. Stem Cell Res Ther 2022 Oct 22;13(1):507.
    doi: 10.1186/s13287-022-03189-0pubmed: 36273220google scholar: lookup
  2. Cequier A, Sanz C, Rodellar C, Barrachina L. The Usefulness of Mesenchymal Stem Cells beyond the Musculoskeletal System in Horses.. Animals (Basel) 2021 Mar 25;11(4).
    doi: 10.3390/ani11040931pubmed: 33805967google scholar: lookup
  3. Barberini DJ, Aleman M, Aristizabal F, Spriet M, Clark KC, Walker NJ, Galuppo LD, Amorim RM, Woolard KD, Borjesson DL. Safety and tracking of intrathecal allogeneic mesenchymal stem cell transplantation in healthy and diseased horses.. Stem Cell Res Ther 2018 Apr 10;9(1):96.
    doi: 10.1186/s13287-018-0849-6pubmed: 29631634google scholar: lookup
  4. Dias MC, Landim-Alvarenga FD, de Moraes CN, da Costa LD, Geraldini CM, de Vasconcelos Machado VM, Maia L. Intramuscular Transplantation of Allogeneic Mesenchymal Stromal Cells Derived from Equine Umbilical Cord.. Int J Stem Cells 2016 Nov 30;9(2):239-249.
    doi: 10.15283/ijsc16011pubmed: 27572709google scholar: lookup