American journal of veterinary research2008; 69(7); 928-937; doi: 10.2460/ajvr.69.7.928

Effect of adipose-derived nucleated cell fractions on tendon repair in horses with collagenase-induced tendinitis.

Abstract: To assess the potential of adipose-derived nucleated cell (ADNC) fractions to improve tendon repair in horses with collagenase-induced tendinitis. Methods: 8 horses. Methods: Collagenase was used to induce tendinitis in the superficial digital flexor tendon of 1 forelimb in each horse. Four horses were treated by injection of autogenous ADNC fractions, and 4 control horses were injected with PBS solution. Healing was compared by weekly ultrasonographic evaluation. Horses were euthanatized at 6 weeks. Gross and histologic evaluation of tendon structure, fiber alignment, and collagen typing were used to define tendon architecture. Biochemical and molecular analyses of collagen, DNA, and proteoglycan and gene expression of collagen type I and type III, decorin, cartilage oligomeric matrix protein (COMP), and insulin-like growth factor-I were performed. Results: Ultrasonography revealed no difference in rate or quality of repair between groups. Histologic evaluation revealed a significant improvement in tendon fiber architecture; reductions in vascularity, inflammatory cell infiltrate, and collagen type III formation; and improvements in tendon fiber density and alignment in ADNC-treated tendons. Repair sites did not differ in DNA, proteoglycan, or total collagen content. Gene expression of collagen type I and type III in treated and control tendons were similar. Gene expression of COMP was significantly increased in ADNC-injected tendons. Conclusions: ADNC injection improved tendon organization in treated tendons. Although biochemical and molecular differences were less profound, tendons appeared architecturally improved after ADNC injection, which was corroborated by improved tendon COMP expression. Use of ADNC in horses with tendinitis appears warranted.
Publication Date: 2008-07-03 PubMed ID: 18593247DOI: 10.2460/ajvr.69.7.928Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article
  • Research Support
  • Non-U.S. Gov't

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

The study conducted research on the impact of using adipose-derived nucleated cell (ADNC) fractions on the healing process in horses with collagenase-induced tendinitis. It concludes that injecting ADNC can lead to improved tendon organization and increased expression of a key protein called COMP, which might make the use of ADNC a useful treatment for tendinitis in horses.

Research Background

  • The study aimed to assess the effectiveness of using adipose-derived nucleated cell (ADNC) fractions in treating tendinitis in horses. Tendinitis was induced by injecting a collagenase solution into the superficial digital flexor tendon of a horse’s forelimb.

Methodology

  • The research was conducted using 8 horses. Four had ADNC injected into their tendons, while the remaining four were injected with a PBS solution as a control.
  • The study then observed healing progress in each group based on weekly ultrasonographical evaluations. After six weeks, the horses were euthanized for further examination.
  • The tendon’s structure and fiber alignment were assessed using gross and histologic evaluations. Additional testing was done using molecular analyses and biochemical tests for collagen, DNA and proteoglycan content, along with the expression of various genes associated with tendinitis.

Results

  • The study discovered that there were no differences identified through ultrasonography in the rate or quality of tendon repair between the groups.
  • However, significantly improved tendon fiber architecture was observed in horses treated with the ADNC injections. This manifested as a reduction in vascularity, inflammatory cell infiltrate, and the formation of type III collagen. The tendon fiber’s density and alignment were also improved in the treated group.
  • At a molecular level, the study found no significant difference between the treated and control groups in terms of DNA, proteoglycan or total collagen content. Similarly, the expressions of types I and III collagen were found to be almost identical in the two groups.
  • However, the expression of COMP, a protein involved in tendon structure and health, were found to be significantly increased in the tendons treated with ADNC.

Conclusion

  • Although there were no significant biochemical or molecular differences between the two groups, the study concludes on the basis of the observed architectural improvements in treated tendons and the increase in COMP expression that the treatment of tendinitis in horses with ADNC is warranted.

Cite This Article

APA
Nixon AJ, Dahlgren LA, Haupt JL, Yeager AE, Ward DL. (2008). Effect of adipose-derived nucleated cell fractions on tendon repair in horses with collagenase-induced tendinitis. Am J Vet Res, 69(7), 928-937. https://doi.org/10.2460/ajvr.69.7.928

Publication

ISSN: 0002-9645
NlmUniqueID: 0375011
Country: United States
Language: English
Volume: 69
Issue: 7
Pages: 928-937

Researcher Affiliations

Nixon, Alan J
  • Comparative Orthopaedics Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-6401, USA.
Dahlgren, Linda A
    Haupt, Jennifer L
      Yeager, Amy E
        Ward, Daniel L

          MeSH Terms

          • Adipose Tissue / cytology
          • Animals
          • Cell Transplantation / methods
          • Cell Transplantation / veterinary
          • Collagen Type I / biosynthesis
          • Collagen Type I / genetics
          • Collagen Type I / immunology
          • Collagen Type III / biosynthesis
          • Collagen Type III / genetics
          • Collagen Type III / immunology
          • Decorin
          • Extracellular Matrix Proteins / biosynthesis
          • Extracellular Matrix Proteins / genetics
          • Extracellular Matrix Proteins / immunology
          • Glycoproteins / biosynthesis
          • Glycoproteins / genetics
          • Glycoproteins / immunology
          • Horse Diseases / diagnostic imaging
          • Horse Diseases / immunology
          • Horse Diseases / therapy
          • Horses
          • Immunohistochemistry / veterinary
          • Insulin-Like Growth Factor I / biosynthesis
          • Insulin-Like Growth Factor I / genetics
          • Insulin-Like Growth Factor I / immunology
          • Matrilin Proteins
          • Proteoglycans / biosynthesis
          • Proteoglycans / genetics
          • Proteoglycans / immunology
          • RNA, Messenger / biosynthesis
          • RNA, Messenger / genetics
          • Random Allocation
          • Reverse Transcriptase Polymerase Chain Reaction / veterinary
          • Tendinopathy / diagnostic imaging
          • Tendinopathy / immunology
          • Tendinopathy / therapy
          • Tendinopathy / veterinary
          • Ultrasonography

          Citations

          This article has been cited 71 times.
          1. Miescher I, Rieber J, Calcagni M, Buschmann J. In Vitro and In Vivo Effects of IGF-1 Delivery Strategies on Tendon Healing: A Review.. Int J Mol Sci 2023 Jan 25;24(3).
            doi: 10.3390/ijms24032370pubmed: 36768692google scholar: lookup
          2. Duddy HR, Schoonover MJ, Hague BA. Outcome following local injection of a liquid amnion allograft for treatment of equine tendonitis or desmitis - 100 cases.. BMC Vet Res 2022 Nov 7;18(1):391.
            doi: 10.1186/s12917-022-03480-5pubmed: 36345002google scholar: lookup
          3. Supokawej A, Korchunjit W, Wongtawan T. The combination of BMP12 and KY02111 enhances tendon differentiation in bone marrow-derived equine mesenchymal stromal cells (BM-eMSCs).. J Equine Sci 2022 Jul;33(2):19-26.
            doi: 10.1294/jes.33.19pubmed: 35847484google scholar: lookup
          4. Sharun K, Jambagi K, Kumar R, Gugjoo MB, Pawde AM, Tuli HS, Dhama K, Amarpal. Clinical applications of adipose-derived stromal vascular fraction in veterinary practice.. Vet Q 2022 Dec;42(1):151-166.
            doi: 10.1080/01652176.2022.2102688pubmed: 35841195google scholar: lookup
          5. Song K, Yang GM, Han J, Gil M, Dayem AA, Kim K, Lim KM, Kang GH, Kim S, Jang SB, Vellingiri B, Cho SG. Modulation of Osteogenic Differentiation of Adipose-Derived Stromal Cells by Co-Treatment with 3, 4'-Dihydroxyflavone, U0126, and N-Acetyl Cysteine.. Int J Stem Cells 2022 Aug 30;15(3):334-345.
            doi: 10.15283/ijsc22044pubmed: 35769058google scholar: lookup
          6. Guo X, Lv H, Fan Z, Duan K, Liang J, Zou L, Xue H, Huang D, Wang Y, Tan M. Effects of hypoxia on Achilles tendon repair using adipose tissue-derived mesenchymal stem cells seeded small intestinal submucosa.. J Orthop Surg Res 2021 Sep 24;16(1):570.
            doi: 10.1186/s13018-021-02713-xpubmed: 34579755google scholar: lookup
          7. Przu0105dka P, Buczak K, Frejlich E, Gu0105sior L, Suliga K, Kieu0142bowicz Z. The Role of Mesenchymal Stem Cells (MSCs) in Veterinary Medicine and Their Use in Musculoskeletal Disorders.. Biomolecules 2021 Aug 2;11(8).
            doi: 10.3390/biom11081141pubmed: 34439807google scholar: lookup
          8. Dar ER, Gugjoo MB, Javaid M, Hussain S, Fazili MR, Dhama K, Alqahtani T, Alqahtani AM, Shah RA, Emran TB. Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stem Cells from Sheep: Culture Characteristics.. Animals (Basel) 2021 Jul 21;11(8).
            doi: 10.3390/ani11082153pubmed: 34438611google scholar: lookup
          9. Gaesser AM, Underwood C, Linardi RL, Even KM, Reef VB, Shetye SS, Mauck RL, King WJ, Engiles JB, Ortved KF. Evaluation of Autologous Protein Solution Injection for Treatment of Superficial Digital Flexor Tendonitis in an Equine Model.. Front Vet Sci 2021;8:697551.
            doi: 10.3389/fvets.2021.697551pubmed: 34291103google scholar: lookup
          10. Younesi Soltani F, Javanshir S, Dowlati G, Parham A, Naderi-Meshkin H. Differentiation of human adipose-derived mesenchymal stem cells toward tenocyte by platelet-derived growth factor-BB and growth differentiation factor-6.. Cell Tissue Bank 2022 Jun;23(2):237-246.
            doi: 10.1007/s10561-021-09935-7pubmed: 34013429google scholar: lookup
          11. Meeremans M, Van de Walle GR, Van Vlierberghe S, De Schauwer C. The Lack of a Representative Tendinopathy Model Hampers Fundamental Mesenchymal Stem Cell Research.. Front Cell Dev Biol 2021;9:651164.
            doi: 10.3389/fcell.2021.651164pubmed: 34012963google scholar: lookup
          12. Montano C, Auletta L, Greco A, Costanza D, Coluccia P, Del Prete C, Meomartino L, Pasolini MP. The Use of Platelet-Rich Plasma for Treatment of Tenodesmic Lesions in Horses: A Systematic Review and Meta-Analysis of Clinical and Experimental Data.. Animals (Basel) 2021 Mar 12;11(3).
            doi: 10.3390/ani11030793pubmed: 33809227google scholar: lookup
          13. Jifcovici A, Solano MA, Fitzpatrick N, Findji L, Blunn G, Sanghani-Kerai A. Comparison of Fat Harvested from Flank and Falciform Regions for Stem Cell Therapy in Dogs.. Vet Sci 2021 Jan 25;8(2).
            doi: 10.3390/vetsci8020019pubmed: 33503997google scholar: lookup
          14. Zamboulis DE, Thorpe CT, Ashraf Kharaz Y, Birch HL, Screen HR, Clegg PD. Postnatal mechanical loading drives adaptation of tissues primarily through modulation of the non-collagenous matrix.. Elife 2020 Oct 16;9.
            doi: 10.7554/eLife.58075pubmed: 33063662google scholar: lookup
          15. Ribitsch I, Baptista PM, Lange-Consiglio A, Melotti L, Patruno M, Jenner F, Schnabl-Feichter E, Dutton LC, Connolly DJ, van Steenbeek FG, Dudhia J, Penning LC. Large Animal Models in Regenerative Medicine and Tissue Engineering: To Do or Not to Do.. Front Bioeng Biotechnol 2020;8:972.
            doi: 10.3389/fbioe.2020.00972pubmed: 32903631google scholar: lookup
          16. Rogers CJ, Harman RJ, Bunnell BA, Schreiber MA, Xiang C, Wang FS, Santidrian AF, Minev BR. Rationale for the clinical use of adipose-derived mesenchymal stem cells for COVID-19 patients.. J Transl Med 2020 May 18;18(1):203.
            doi: 10.1186/s12967-020-02380-2pubmed: 32423449google scholar: lookup
          17. Wong CC, Huang YM, Chen CH, Lin FH, Yeh YY, Bai MY. Cytokine and Growth Factor Delivery from Implanted Platelet-Rich Fibrin Enhances Rabbit Achilles Tendon Healing.. Int J Mol Sci 2020 May 2;21(9).
            doi: 10.3390/ijms21093221pubmed: 32370144google scholar: lookup
          18. Fedato RA, Francisco JC, Sliva G, de Noronha L, Olandoski M, Faria Neto JR, Ferreira PE, Simeoni RB, Abdelwahid E, de Carvalho KAT, Guarita-Souza LC. Stem Cells and Platelet-Rich Plasma Enhance the Healing Process of Tendinitis in Mice.. Stem Cells Int 2019;2019:1497898.
            doi: 10.1155/2019/1497898pubmed: 31662764google scholar: lookup
          19. Shojaee A, Parham A. Strategies of tenogenic differentiation of equine stem cells for tendon repair: current status and challenges.. Stem Cell Res Ther 2019 Jun 18;10(1):181.
            doi: 10.1186/s13287-019-1291-0pubmed: 31215490google scholar: lookup
          20. Tsang AS, Dart AJ, Biasutti SA, Jeffcott LB, Smith MM, Little CB. Effects of tendon injury on uninjured regional tendons in the distal limb: An in-vivo study using an ovine tendinopathy model.. PLoS One 2019;14(4):e0215830.
            doi: 10.1371/journal.pone.0215830pubmed: 31013317google scholar: lookup
          21. Roth SP, Schubert S, Scheibe P, Grou00df C, Brehm W, Burk J. Growth Factor-Mediated Tenogenic Induction of Multipotent Mesenchymal Stromal Cells Is Altered by the Microenvironment of Tendon Matrix.. Cell Transplant 2018 Oct;27(10):1434-1450.
            doi: 10.1177/0963689718792203pubmed: 30251565google scholar: lookup
          22. Ahrberg AB, Horstmeier C, Berner D, Brehm W, Gittel C, Hillmann A, Josten C, Rossi G, Schubert S, Winter K, Burk J. Effects of mesenchymal stromal cells versus serum on tendon healing in a controlled experimental trial in an equine model.. BMC Musculoskelet Disord 2018 Jul 18;19(1):230.
            doi: 10.1186/s12891-018-2163-ypubmed: 30021608google scholar: lookup
          23. Barboni B, Russo V, Berardinelli P, Mauro A, Valbonetti L, Sanyal H, Canciello A, Greco L, Muttini A, Gatta V, Stuppia L, Mattioli M. Placental Stem Cells from Domestic Animals: Translational Potential and Clinical Relevance.. Cell Transplant 2018 Jan;27(1):93-116.
            doi: 10.1177/0963689717724797pubmed: 29562773google scholar: lookup
          24. Jacquet-Guibon S, Dupays AG, Coudry V, Crevier-Denoix N, Leroy S, Siu00f1eriz F, Chiappini F, Barritault D, Denoix JM. Randomized controlled trial demonstrates the benefit of RGTAu00ae based matrix therapy to treat tendinopathies in racing horses.. PLoS One 2018;13(3):e0191796.
            doi: 10.1371/journal.pone.0191796pubmed: 29522564google scholar: lookup
          25. Watts AE, Millar NL, Platt J, Kitson SM, Akbar M, Rech R, Griffin J, Pool R, Hughes T, McInnes IB, Gilchrist DS. MicroRNA29a Treatment Improves Early Tendon Injury.. Mol Ther 2017 Oct 4;25(10):2415-2426.
            doi: 10.1016/j.ymthe.2017.07.015pubmed: 28822690google scholar: lookup
          26. Berebichez-Fridman R, Gu00f3mez-Garcu00eda R, Granados-Montiel J, Berebichez-Fastlicht E, Olivos-Meza A, Granados J, Velasquillo C, Ibarra C. The Holy Grail of Orthopedic Surgery: Mesenchymal Stem Cells-Their Current Uses and Potential Applications.. Stem Cells Int 2017;2017:2638305.
            doi: 10.1155/2017/2638305pubmed: 28698718google scholar: lookup
          27. Geburek F, Roggel F, van Schie HTM, Beineke A, Estrada R, Weber K, Hellige M, Rohn K, Jagodzinski M, Welke B, Hurschler C, Conrad S, Skutella T, van de Lest C, van Weeren R, Stadler PM. Effect of single intralesional treatment of surgically induced equine superficial digital flexor tendon core lesions with adipose-derived mesenchymal stromal cells: a controlled experimental trial.. Stem Cell Res Ther 2017 Jun 5;8(1):129.
            doi: 10.1186/s13287-017-0564-8pubmed: 28583184google scholar: lookup
          28. Kang KK, Lee EJ, Kim YD, Chung MJ, Kim JY, Kim SY, Hwang SK, Jeong KS. Vitamin C Improves Therapeutic Effects of Adipose-derived Stem Cell Transplantation in Mouse Tendonitis Model.. In Vivo 2017 May-Jun;31(3):343-348.
            doi: 10.21873/invivo.11065pubmed: 28438861google scholar: lookup
          29. Usuelli FG, Grassi M, Maccario C, Vigano' M, Lanfranchi L, Alfieri Montrasio U, de Girolamo L. Intratendinous adipose-derived stromal vascular fraction (SVF) injection provides a safe, efficacious treatment for Achilles tendinopathy: results of a randomized controlled clinical trial at a 6-month follow-up.. Knee Surg Sports Traumatol Arthrosc 2018 Jul;26(7):2000-2010.
            doi: 10.1007/s00167-017-4479-9pubmed: 28251260google scholar: lookup
          30. Gibson MA, Brown SG, Brown NO. Semitendinosus myopathy and treatment with adipose-derived stem cells in working German shepherd police dogs.. Can Vet J 2017 Mar;58(3):241-246.
            pubmed: 28246410
          31. Muto T, Kokubu T, Mifune Y, Inui A, Sakata R, Harada Y, Takase F, Kurosaka M. Effects of platelet-rich plasma and triamcinolone acetonide on interleukin-1u00df-stimulated human rotator cuff-derived cells.. Bone Joint Res 2016 Dec;5(12):602-609.
            doi: 10.1302/2046-3758.512.2000582pubmed: 27965219google scholar: lookup
          32. Harman R, Carlson K, Gaynor J, Gustafson S, Dhupa S, Clement K, Hoelzler M, McCarthy T, Schwartz P, Adams C. A Prospective, Randomized, Masked, and Placebo-Controlled Efficacy Study of Intraarticular Allogeneic Adipose Stem Cells for the Treatment of Osteoarthritis in Dogs.. Front Vet Sci 2016;3:81.
            doi: 10.3389/fvets.2016.00081pubmed: 27695698google scholar: lookup
          33. Williams LB, Co C, Koenig JB, Tse C, Lindsay E, Koch TG. Response to Intravenous Allogeneic Equine Cord Blood-Derived Mesenchymal Stromal Cells Administered from Chilled or Frozen State in Serum and Protein-Free Media.. Front Vet Sci 2016;3:56.
            doi: 10.3389/fvets.2016.00056pubmed: 27500136google scholar: lookup
          34. Griffon DJ, Cho J, Wagner JR, Charavaryamath C, Wei J, Wagoner Johnson A. Effects of Hypoxia and Chitosan on Equine Umbilical Cord-Derived Mesenchymal Stem Cells.. Stem Cells Int 2016;2016:2987140.
            doi: 10.1155/2016/2987140pubmed: 27379167google scholar: lookup
          35. Randelli P, Menon A, Ragone V, Creo P, Bergante S, Randelli F, De Girolamo L, Alfieri Montrasio U, Banfi G, Cabitza P, Tettamanti G, Anastasia L. Lipogems Product Treatment Increases the Proliferation Rate of Human Tendon Stem Cells without Affecting Their Stemness and Differentiation Capability.. Stem Cells Int 2016;2016:4373410.
            doi: 10.1155/2016/4373410pubmed: 27057170google scholar: lookup
          36. Berner D, Brehm W, Gerlach K, Gittel C, Offhaus J, Paebst F, Scharner D, Burk J. Longitudinal Cell Tracking and Simultaneous Monitoring of Tissue Regeneration after Cell Treatment of Natural Tendon Disease by Low-Field Magnetic Resonance Imaging.. Stem Cells Int 2016;2016:1207190.
            doi: 10.1155/2016/1207190pubmed: 26880932google scholar: lookup
          37. Geburek F, Mundle K, Conrad S, Hellige M, Walliser U, van Schie HT, van Weeren R, Skutella T, Stadler PM. Tracking of autologous adipose tissue-derived mesenchymal stromal cells with in vivo magnetic resonance imaging and histology after intralesional treatment of artificial equine tendon lesions--a pilot study.. Stem Cell Res Ther 2016 Feb 1;7:21.
            doi: 10.1186/s13287-016-0281-8pubmed: 26830812google scholar: lookup
          38. Dudhia J, Becerra P, Valdu00e9s MA, Neves F, Hartman NG, Smith RK. In Vivo Imaging and Tracking of Technetium-99m Labeled Bone Marrow Mesenchymal Stem Cells in Equine Tendinopathy.. J Vis Exp 2015 Dec 9;(106):e52748.
            doi: 10.3791/52748pubmed: 26709915google scholar: lookup
          39. Nazari F, Parham A, Maleki AF. GAPDH, u03b2-actin and u03b22-microglobulin, as three common reference genes, are not reliable for gene expression studies in equine adipose- and marrow-derived mesenchymal stem cells.. J Anim Sci Technol 2015;57:18.
            doi: 10.1186/s40781-015-0050-8pubmed: 26290738google scholar: lookup
          40. Arnhold S, Wenisch S. Adipose tissue derived mesenchymal stem cells for musculoskeletal repair in veterinary medicine.. Am J Stem Cells 2015;4(1):1-12.
            pubmed: 25973326
          41. Maia L, da Cruz Landim-Alvarenga F, Taffarel MO, de Moraes CN, Machado GF, Melo GD, Amorim RM. Feasibility and safety of intrathecal transplantation of autologous bone marrow mesenchymal stem cells in horses.. BMC Vet Res 2015 Mar 15;11:63.
            doi: 10.1186/s12917-015-0361-5pubmed: 25879519google scholar: lookup
          42. Stanco D, Viganu00f2 M, Orfei CP, DI Giancamillo A, Thiebat G, Peretti G, DE Girolamo L. In vitro characterization of stem/progenitor cells from semitendinosus and gracilis tendons as a possible new tool for cell-based therapy for tendon disorders.. Joints 2014 Oct-Dec;2(4):159-68.
            pubmed: 25750904
          43. Alipour F, Parham A, Kazemi Mehrjerdi H, Dehghani H. Equine adipose-derived mesenchymal stem cells: phenotype and growth characteristics, gene expression profile and differentiation potentials.. Cell J 2015 Winter;16(4):456-65.
            doi: 10.22074/cellj.2015.491pubmed: 25685736google scholar: lookup
          44. Williams PN, Moran G, Bradley JP, S ElAttrache N, Dines JS. Platelet-rich plasma and other cellular strategies in orthopedic surgery.. Curr Rev Musculoskelet Med 2015 Mar;8(1):32-39.
            doi: 10.1007/s12178-014-9246-7pubmed: 25576070google scholar: lookup
          45. Docheva D, Mu00fcller SA, Majewski M, Evans CH. Biologics for tendon repair.. Adv Drug Deliv Rev 2015 Apr;84:222-39.
            doi: 10.1016/j.addr.2014.11.015pubmed: 25446135google scholar: lookup
          46. Ho JO, Sawadkar P, Mudera V. A review on the use of cell therapy in the treatment of tendon disease and injuries.. J Tissue Eng 2014;5:2041731414549678.
            doi: 10.1177/2041731414549678pubmed: 25383170google scholar: lookup
          47. de Mattos LH, u00c1lvarez LE, Yamada AL, Hussni CA, Rodrigues CA, Watanabe MJ, Alves AL. Effect of phototherapy with light-emitting diodes (890 nm) on tendon repair: an experimental model in sheep.. Lasers Med Sci 2015 Jan;30(1):193-201.
            doi: 10.1007/s10103-014-1641-1pubmed: 25150020google scholar: lookup
          48. Vilar JM, Batista M, Morales M, Santana A, Cuervo B, Rubio M, Cugat R, Sopena J, Carrillo JM. Assessment of the effect of intraarticular injection of autologous adipose-derived mesenchymal stem cells in osteoarthritic dogs using a double blinded force platform analysis.. BMC Vet Res 2014 Jul 1;10:143.
            doi: 10.1186/1746-6148-10-143pubmed: 24984756google scholar: lookup
          49. Demange MK, de Almeida AM, Rodeo SA. Updates in biological therapies for knee injuries: tendons.. Curr Rev Musculoskelet Med 2014 Sep;7(3):239-46.
            doi: 10.1007/s12178-014-9230-2pubmed: 24957507google scholar: lookup
          50. Machova Urdzikova L, Sedlacek R, Suchy T, Amemori T, Ruzicka J, Lesny P, Havlas V, Sykova E, Jendelova P. Human multipotent mesenchymal stem cells improve healing after collagenase tendon injury in the rat.. Biomed Eng Online 2014 Apr 9;13:42.
            doi: 10.1186/1475-925X-13-42pubmed: 24712305google scholar: lookup
          51. Behfar M, Javanmardi S, Sarrafzadeh-Rezaei F. Comparative study on functional effects of allotransplantation of bone marrow stromal cells and adipose derived stromal vascular fraction on tendon repair: a biomechanical study in rabbits.. Cell J 2014 Fall;16(3):263-70.
            pubmed: 24611149
          52. Barberini DJ, Freitas NP, Magnoni MS, Maia L, Listoni AJ, Heckler MC, Sudano MJ, Golim MA, da Cruz Landim-Alvarenga F, Amorim RM. Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: immunophenotypic characterization and differentiation potential.. Stem Cell Res Ther 2014 Feb 21;5(1):25.
            doi: 10.1186/scrt414pubmed: 24559797google scholar: lookup
          53. Mu00fcller SA, Todorov A, Heisterbach PE, Martin I, Majewski M. Tendon healing: an overview of physiology, biology, and pathology of tendon healing and systematic review of state of the art in tendon bioengineering.. Knee Surg Sports Traumatol Arthrosc 2015 Jul;23(7):2097-105.
            doi: 10.1007/s00167-013-2680-zpubmed: 24057354google scholar: lookup
          54. Carvalho Ade M, Badial PR, u00c1lvarez LE, Yamada AL, Borges AS, Deffune E, Hussni CA, Garcia Alves AL. Equine tendonitis therapy using mesenchymal stem cells and platelet concentrates: a randomized controlled trial.. Stem Cell Res Ther 2013 Jul 22;4(4):85.
            doi: 10.1186/scrt236pubmed: 23876512google scholar: lookup
          55. Kang JG, Park SB, Seo MS, Kim HS, Chae JS, Kang KS. Characterization and clinical application of mesenchymal stem cells from equine umbilical cord blood.. J Vet Sci 2013;14(3):367-71.
            doi: 10.4142/jvs.2013.14.3.367pubmed: 23820166google scholar: lookup
          56. Vilar JM, Morales M, Santana A, Spinella G, Rubio M, Cuervo B, Cugat R, Carrillo JM. Controlled, blinded force platform analysis of the effect of intraarticular injection of autologous adipose-derived mesenchymal stem cells associated to PRGF-Endoret in osteoarthritic dogs.. BMC Vet Res 2013 Jul 2;9:131.
            doi: 10.1186/1746-6148-9-131pubmed: 23819757google scholar: lookup
          57. Tetta C, Consiglio AL, Bruno S, Tetta E, Gatti E, Dobreva M, Cremonesi F, Camussi G. The role of microvesicles derived from mesenchymal stem cells in tissue regeneration; a dream for tendon repair?. Muscles Ligaments Tendons J 2012 Jul;2(3):212-21.
            pubmed: 23738299
          58. Muttini A, Salini V, Valbonetti L, Abate M. Stem cell therapy of tendinopathies: suggestions from veterinary medicine.. Muscles Ligaments Tendons J 2012 Jul;2(3):187-92.
            pubmed: 23738296
          59. Alexander RW, Harrell DB. Autologous fat grafting: use of closed syringe microcannula system for enhanced autologous structural grafting.. Clin Cosmet Investig Dermatol 2013;6:91-102.
            doi: 10.2147/CCID.S40575pubmed: 23630430google scholar: lookup
          60. Volk SW, Theoret C. Translating stem cell therapies: the role of companion animals in regenerative medicine.. Wound Repair Regen 2013 May-Jun;21(3):382-94.
            doi: 10.1111/wrr.12044pubmed: 23627495google scholar: lookup
          61. Seo MS, Park SB, Kim HS, Kang JG, Chae JS, Kang KS. Isolation and characterization of equine amniotic membrane-derived mesenchymal stem cells.. J Vet Sci 2013;14(2):151-9.
            doi: 10.4142/jvs.2013.14.2.151pubmed: 23388430google scholar: lookup
          62. Reed SA, Johnson SE. Expression of scleraxis and tenascin C in equine adipose and umbilical cord blood derived stem cells is dependent upon substrata and FGF supplementation.. Cytotechnology 2014 Jan;66(1):27-35.
            doi: 10.1007/s10616-012-9533-3pubmed: 23299298google scholar: lookup
          63. Su00f6dersten F, Hultenby K, Heinegu00e5rd D, Johnston C, Ekman S. Immunolocalization of collagens (I and III) and cartilage oligomeric matrix protein in the normal and injured equine superficial digital flexor tendon.. Connect Tissue Res 2013;54(1):62-9.
            doi: 10.3109/03008207.2012.734879pubmed: 23020676google scholar: lookup
          64. Spaas JH, Guest DJ, Van de Walle GR. Tendon regeneration in human and equine athletes: Ubi Sumus-Quo Vadimus (where are we and where are we going to)?. Sports Med 2012 Oct 1;42(10):871-90.
            doi: 10.1007/BF03262300pubmed: 22963225google scholar: lookup
          65. Johnson SP, Catania JM, Harman RJ, Jensen ED. Adipose-derived stem cell collection and characterization in bottlenose dolphins (Tursiops truncatus).. Stem Cells Dev 2012 Nov 1;21(16):2949-57.
            doi: 10.1089/scd.2012.0039pubmed: 22530932google scholar: lookup
          66. Reich CM, Raabe O, Wenisch S, Bridger PS, Kramer M, Arnhold S. Isolation, culture and chondrogenic differentiation of canine adipose tissue- and bone marrow-derived mesenchymal stem cells--a comparative study.. Vet Res Commun 2012 Jun;36(2):139-48.
            doi: 10.1007/s11259-012-9523-0pubmed: 22392598google scholar: lookup
          67. Raabe O, Shell K, Wu00fcrtz A, Reich CM, Wenisch S, Arnhold S. Further insights into the characterization of equine adipose tissue-derived mesenchymal stem cells.. Vet Res Commun 2011 Aug;35(6):355-65.
            doi: 10.1007/s11259-011-9480-zpubmed: 21614641google scholar: lookup
          68. Fortier LA, Travis AJ. Stem cells in veterinary medicine.. Stem Cell Res Ther 2011 Feb 23;2(1):9.
            doi: 10.1186/scrt50pubmed: 21371354google scholar: lookup
          69. Watts AE, Yeager AE, Kopyov OV, Nixon AJ. Fetal derived embryonic-like stem cells improve healing in a large animal flexor tendonitis model.. Stem Cell Res Ther 2011 Jan 27;2(1):4.
            doi: 10.1186/scrt45pubmed: 21272343google scholar: lookup
          70. Fu SC, Rolf C, Cheuk YC, Lui PP, Chan KM. Deciphering the pathogenesis of tendinopathy: a three-stages process.. Sports Med Arthrosc Rehabil Ther Technol 2010 Dec 13;2:30.
            doi: 10.1186/1758-2555-2-30pubmed: 21144004google scholar: lookup
          71. Gimble JM, Guilak F, Bunnell BA. Clinical and preclinical translation of cell-based therapies using adipose tissue-derived cells.. Stem Cell Res Ther 2010 Jun 29;1(2):19.
            doi: 10.1186/scrt19pubmed: 20587076google scholar: lookup