Frontiers in veterinary science2023; 10; 1109473; doi: 10.3389/fvets.2023.1109473

Distinct differences in immunological properties of equine orthobiologics revealed by functional and transcriptomic analysis using an activated macrophage readout system.

Abstract: Multiple biological therapies for orthopedic injuries are marketed to veterinarians, despite a lack of rigorous comparative biological activity data to guide informed decisions in selecting a most effective compound. Therefore, the goal of this study was to use relevant bioassay systems to directly compare the anti-inflammatory and immunomodulatory activity of three commonly used orthobiological therapies (OTs): mesenchymal stromal cells (MSC), autologous conditioned serum (ACS), and platelet rich plasma (PRP). Unassigned: Equine monocyte-derived macrophages were used as the readout system to compare therapies, including cytokine production and transcriptomic responses. Macrophages were stimulated with IL-1ß and treated 24 h with OTs, washed and cultured an additional 24 h to generate supernatants. Secreted cytokines were measured by multiplex immunoassay and ELISA. To assess global transcriptomic responses to treatments, RNA was extracted from macrophages and subjected to full RNA sequencing, using an Illumina-based platform. Data analysis included comparison of differentially expressed genes and pathway analysis in treated vs. untreated macrophages. Unassigned: All treatments reduced production of IL-1ß by macrophages. Secretion of IL-10 was highest in MSC-CM treated macrophages, while PRP lysate and ACS resulted in greater downregulation of IL-6 and IP-10. Transcriptomic analysis revealed that ACS triggered multiple inflammatory response pathways in macrophages based on GSEA, while MSC generated significant downregulation of inflammatory pathways, and PRP lysate induced a mixed immune response profile. Key downregulated genes in MSC-treated cultures included type 1 and type 2 interferon response, TNF-α and IL-6. PRP lysate cultures demonstrated downregulation of inflammation-related genes IL-1RA, SLAMF9, ENSECAG00000022247 but concurrent upregulation of TNF-α, IL-2 signaling, and Myc targets. ACS induced upregulation of inflammatory IL-2 signaling, TNFα and KRAS signaling and hypoxia, but downregulation of MTOR signaling and type 1 interferon signaling. Unassigned: These findings, representing the first comprehensive look at immune response pathways for popular equine OTs, reveal distinct differences between therapies. These studies address a critical gap in our understanding of the relative immunomodulatory properties of regenerative therapies commonly used in equine practice to treat musculoskeletal disease and will serve as a platform from which further comparisons may build.
Publication Date: 2023-02-16 PubMed ID: 36876001PubMed Central: PMC9978772DOI: 10.3389/fvets.2023.1109473Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

This research studies and compares the immunomodulatory and anti-inflammatory effects of three biological therapies commonly used in treating orthopedic injuries in horses. The three therapies are mesenchymal stromal cells (MSC), autologous conditioned serum (ACS), and platelet rich plasma (PRP). The study’s findings show distinct differences in the immunomodulatory properties among these therapies.

Research Methodology

  • The study used equine monocyte-derived macrophages as the readout system to compare the effects of the therapies in terms of cytokine production and transcriptomic responses.
  • The macrophages were stimulated with IL-1ß and treated with the therapies for 24 hours, washed and cultured for an additional 24 hours to generate supernatants.
  • The secreted cytokines were measured by multiplex immunoassay and ELISA.
  • Global transcriptomic responses to the treatments were assessed by extracting RNA from the macrophages and subjecting it to full RNA sequencing using an Illumina-based platform.

Differences Between Therapies

  • All three therapies reduced the production of IL-1ß by macrophages, however their effects varied on other components of the immune response.
  • Secretion of IL-10 was highest in MSC-treated macrophages, while PRP lysate and ACS resulted in greater downregulation of IL-6 and IP-10.
  • The transcriptomic analysis revealed that ACS triggered multiple inflammatory response pathways in macrophages based on GSEA, while MSC led to significant downregulation of inflammatory pathways, and PRP lysate induced a mixed immune response profile.

Significant Findings

  • MSC-treated cultures showed downregulation of inflammation-related genes including type 1 and type 2 interferon response, TNF-α, and IL-6.
  • PRP lysate cultures demonstrated downregulation of inflammation-related genes IL-1RA, SLAMF9, ENSECAG00000022247 but concurrent upregulation of TNF-α, IL-2 signaling, and Myc targets.
  • ACS induced upregulation of inflammatory IL-2 signaling, TNFα and KRAS signaling and hypoxia, but downregulation of MTOR signaling and type 1 interferon signaling.

Reuse and Future Studies

The study has addressed an important gap in understanding of the relative immunomodulatory properties of regenerative therapies used in equine practice. The findings may act as a platform for further comparisons and development of optimized treatments for musculoskeletal disease in horses.

Cite This Article

APA
Pezzanite LM, Chow L, Griffenhagen GM, Bass L, Goodrich LR, Impastato R, Dow S. (2023). Distinct differences in immunological properties of equine orthobiologics revealed by functional and transcriptomic analysis using an activated macrophage readout system. Front Vet Sci, 10, 1109473. https://doi.org/10.3389/fvets.2023.1109473

Publication

ISSN: 2297-1769
NlmUniqueID: 101666658
Country: Switzerland
Language: English
Volume: 10
Pages: 1109473
PII: 1109473

Researcher Affiliations

Pezzanite, Lynn M
  • Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States.
Chow, Lyndah
  • Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States.
Griffenhagen, Gregg M
  • Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States.
Bass, Luke
  • Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States.
Goodrich, Laurie R
  • Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States.
Impastato, Renata
  • Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States.
Dow, Steven
  • Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States.
  • Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States.

Conflict of Interest Statement

LP, LG, LC, and SD acknowledge that they hold stock options in eQCell Inc. (LP, LG, and SD), Validus (SD), and ART Advanced Regenerative Therapies (LG), and have filed provisional patents covering immune activated MSC technology for treatment of musculoskeletal disease (SD, LP, LC, and LG). The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

This article includes 70 references
  1. Neundorf RH, Lowerison MB, Cruz AM, Thomason JJ, McEwen BJ, Hurtig MB. Determination of the prevalence and severity of metacarpophalangeal joint osteoarthritis in Thoroughbred racehorses via quantitative macroscopic evaluation.. Am J Vet Res 2010 Nov;71(11):1284-93.
    doi: 10.2460/ajvr.71.11.1284pubmed: 21034319google scholar: lookup
  2. Ireland JL, Clegg PD, McGowan CM, McKane SA, Chandler KJ, Pinchbeck GL. Disease prevalence in geriatric horses in the United Kingdom: veterinary clinical assessment of 200 cases.. Equine Vet J 2012 Jan;44(1):101-6.
  3. Bogers SH. Cell-Based Therapies for Joint Disease in Veterinary Medicine: What We Have Learned and What We Need to Know.. Front Vet Sci 2018;5:70.
    doi: 10.3389/fvets.2018.00070pmc: PMC5911772pubmed: 29713634google scholar: lookup
  4. Manferdini C, Paolella F, Gabusi E, Silvestri Y, Gambari L, Cattini L, Filardo G, Fleury-Cappellesso S, Lisignoli G. From osteoarthritic synovium to synovial-derived cells characterization: synovial macrophages are key effector cells.. Arthritis Res Ther 2016 Apr 4;18:83.
    doi: 10.1186/s13075-016-0983-4pmc: PMC4820904pubmed: 27044395google scholar: lookup
  5. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization.. Trends Immunol 2004 Dec;25(12):677-86.
    doi: 10.1016/j.it.2004.09.015pubmed: 15530839google scholar: lookup
  6. Herrmann I, Gotovina J, Fazekas-Singer J, Fischer MB, Hufnagl K, Bianchini R, Jensen-Jarolim E. Canine macrophages can like human macrophages be inu00a0vitro activated toward the M2a subtype relevant in allergy.. Dev Comp Immunol 2018 May;82:118-127.
    doi: 10.1016/j.dci.2018.01.005pubmed: 29329953google scholar: lookup
  7. Liu B, Zhang M, Zhao J, Zheng M, Yang H. Imbalance of M1/M2 macrophages is linked to severity level of knee osteoarthritis.. Exp Ther Med 2018 Dec;16(6):5009-5014.
    doi: 10.3892/etm.2018.6852pmc: PMC6256852pubmed: 30546406google scholar: lookup
  8. Bondeson J, Wainwright SD, Lauder S, Amos N, Hughes CE. The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and inflammatory responses in osteoarthritis.. Arthritis Res Ther 2006;8(6):R187.
    doi: 10.1186/ar2099pmc: PMC1794533pubmed: 17177994google scholar: lookup
  9. Barrera P, Blom A, van Lent PL, van Bloois L, Beijnen JH, van Rooijen N, de Waal Malefijt MC, van de Putte LB, Storm G, van den Berg WB. Synovial macrophage depletion with clodronate-containing liposomes in rheumatoid arthritis.. Arthritis Rheum 2000 Sep;43(9):1951-9.
  10. Fichadiya A, Bertram KL, Ren G, Yates RM, Krawetz RJ. Characterizing heterogeneity in the response of synovial mesenchymal progenitor cells to synovial macrophages in normal individuals and patients with osteoarthritis.. J Inflamm (Lond) 2016;13:12.
    doi: 10.1186/s12950-016-0120-9pmc: PMC4823907pubmed: 27057150google scholar: lookup
  11. Fahy N, de Vries-van Melle ML, Lehmann J, Wei W, Grotenhuis N, Farrell E, van der Kraan PM, Murphy JM, Bastiaansen-Jenniskens YM, van Osch GJ. Human osteoarthritic synovium impacts chondrogenic differentiation of mesenchymal stem cells via macrophage polarisation state.. Osteoarthritis Cartilage 2014 Aug;22(8):1167-75.
    doi: 10.1016/j.joca.2014.05.021pubmed: 24911520google scholar: lookup
  12. Van Lent PL, Van den Hoek AE, Van den Bersselaar LA, Spanjaards MF, Van Rooijen N, Dijkstra CD, Van de Putte LB, Van den Berg WB. In vivo role of phagocytic synovial lining cells in onset of experimental arthritis.. Am J Pathol 1993 Oct;143(4):1226-37.
    pmc: PMC1887048pubmed: 8214013
  13. Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis.. Nat Rev Rheumatol 2010 Nov;6(11):625-35.
    doi: 10.1038/nrrheum.2010.159pubmed: 20924410google scholar: lookup
  14. Goldring MB, Otero M. Inflammation in osteoarthritis.. Curr Opin Rheumatol 2011 Sep;23(5):471-8.
  15. Frisbie DD, Kawcak CE, Werpy NM, Park RD, McIlwraith CW. Clinical, biochemical, and histologic effects of intra-articular administration of autologous conditioned serum in horses with experimentally induced osteoarthritis.. Am J Vet Res 2007 Mar;68(3):290-6.
    doi: 10.2460/ajvr.68.3.290pubmed: 17331019google scholar: lookup
  16. Lasarzik J, Bondzio A, Rettig M, Estrada R, Klaus C, Ehrle A, et al. . Evaluation of two protocols using autologous conditioned serum for intra-articular therapy of equine osteoarthritisu2014a pilot study monitoring cytokines and cartilage- specific biomarkers. J Equine Vet Sci. (2016) 60:35.eu221242.e. 10.1016/j.jevs.2016.09.014
  17. Carmona JU, Argu00fcelles D, Climent F, Prades M. Autologous platelet concentrates as a treatment of horses with osteoarthritis: a preliminary pilot clinical study. J Equine Vet Sci. (2007) 27:167u201370. 10.1016/j.jevs.2007.02.007
  18. Mirza MH, Bommala P, Richbourg HA, Rademacher N, Kearney MT, Lopez MJ. Gait Changes Vary among Horses with Naturally Occurring Osteoarthritis Following Intra-articular Administration of Autologous Platelet-Rich Plasma.. Front Vet Sci 2016;3:29.
    doi: 10.3389/fvets.2016.00029pmc: PMC4829588pubmed: 27148544google scholar: lookup
  19. Tyrnenopoulou P, Diakakis N, Karayannopoulou M, Savvas I, Koliakos G. Evaluation of intra-articular injection of autologous platelet lysate (PL) in horses with osteoarthritis of the distal interphalangeal joint.. Vet Q 2016 Jun;36(2):56-62.
    doi: 10.1080/01652176.2016.1141257pubmed: 26828234google scholar: lookup
  20. Fahie MA, Ortolano GA, Guercio V, Schaffer JA, Johnston G, Au J, Hettlich BA, Phillips T, Allen MJ, Bertone AL. A randomized controlled trial of the efficacy of autologous platelet therapy for the treatment of osteoarthritis in dogs.. J Am Vet Med Assoc 2013 Nov 1;243(9):1291-7.
    doi: 10.2460/javma.243.9.1291pubmed: 24134578google scholar: lookup
  21. Franklin SP, Cook JL. Prospective trial of autologous conditioned plasma versus hyaluronan plus corticosteroid for elbow osteoarthritis in dogs.. Can Vet J 2013 Sep;54(9):881-4.
    pmc: PMC3743576pubmed: 24155495
  22. Ferris DJ, Frisbie DD, Kisiday JD, McIlwraith CW, Hague BA, Major MD, Schneider RK, Zubrod CJ, Kawcak CE, Goodrich LR. Clinical outcome after intra-articular administration of bone marrow derived mesenchymal stem cells in 33 horses with stifle injury.. Vet Surg 2014 Mar;43(3):255-65.
  23. Vilar JM, Morales M, Santana A, Spinella G, Rubio M, Cuervo B, Cugat R, Carrillo JM. Controlled, blinded force platform analysis of the effect of intraarticular injection of autologous adipose-derived mesenchymal stem cells associated to PRGF-Endoret in osteoarthritic dogs.. BMC Vet Res 2013 Jul 2;9:131.
    doi: 10.1186/1746-6148-9-131pmc: PMC3716942pubmed: 23819757google scholar: lookup
  24. Frisbie DD, Kisiday JD, Kawcak CE, Werpy NM, McIlwraith CW. Evaluation of adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis.. J Orthop Res 2009 Dec;27(12):1675-80.
    doi: 10.1002/jor.20933pubmed: 19544397google scholar: lookup
  25. Pigott JH, Ishihara A, Wellman ML, Russell DS, Bertone AL. Inflammatory effects of autologous, genetically modified autologous, allogeneic, and xenogeneic mesenchymal stem cells after intra-articular injection in horses.. Vet Comp Orthop Traumatol 2013;26(6):453-60.
    doi: 10.3415/VCOT-13-01-0008pubmed: 24080668google scholar: lookup
  26. Cuervo B, Rubio M, Sopena J, Dominguez JM, Vilar J, Morales M, Cugat R, Carrillo JM. Hip osteoarthritis in dogs: a randomized study using mesenchymal stem cells from adipose tissue and plasma rich in growth factors.. Int J Mol Sci 2014 Jul 31;15(8):13437-60.
    doi: 10.3390/ijms150813437pmc: PMC4159804pubmed: 25089877google scholar: lookup
  27. Broeckx S, Zimmerman M, Crocetti S, Suls M, Mariu00ebn T, Ferguson SJ, Chiers K, Duchateau L, Franco-Obregu00f3n A, Wuertz K, Spaas JH. Regenerative therapies for equine degenerative joint disease: a preliminary study.. PLoS One 2014;9(1):e85917.
  28. Bronzini I, Patruno M, Iacopetti I, Martinello T. Influence of temperature, time and different media on mesenchymal stromal cells shipped for clinical application.. Vet J 2012 Oct;194(1):121-3.
    doi: 10.1016/j.tvjl.2012.03.010pubmed: 22503718google scholar: lookup
  29. Mercati F, Pascucci L, Curina G, Scocco P, Tardella FM, Dall'aglio C, Marini C, Ceccarelli P. Evaluation of storage conditions on equine adipose tissue-derived multipotent mesenchymal stromal cells.. Vet J 2014 May;200(2):339-42.
    doi: 10.1016/j.tvjl.2014.02.018pubmed: 24656629google scholar: lookup
  30. Caron JP, Gandy JC, Brown JL, Sordillo LM. Omega-3 fatty acids and docosahexaenoic acid oxymetabolites modulate the inflammatory response of equine recombinant interleukin1u03b2-stimulated equine synoviocytes.. Prostaglandins Other Lipid Mediat 2019 Jun;142:1-8.
  31. Radcliffe CH, Flaminio MJ, Fortier LA. Temporal analysis of equine bone marrow aspirate during establishment of putative mesenchymal progenitor cell populations.. Stem Cells Dev 2010 Feb;19(2):269-82.
    doi: 10.1089/scd.2009.0091pmc: PMC3138180pubmed: 19604071google scholar: lookup
  32. Schnabel LV, Pezzanite LM, Antczak DF, Felippe MJ, Fortier LA. Equine bone marrow-derived mesenchymal stromal cells are heterogeneous in MHC class II expression and capable of inciting an immune response in vitro.. Stem Cell Res Ther 2014 Jan 24;5(1):13.
    doi: 10.1186/scrt402pmc: PMC4055004pubmed: 24461709google scholar: lookup
  33. Ma J, Wang SS, Lin YZ, Liu HF, Liu Q, Wei HM, Wang XF, Wang YH, Du C, Kong XG, Zhou JH, Wang X. Infection of equine monocyte-derived macrophages with an attenuated equine infectious anemia virus (EIAV) strain induces a strong resistance to the infection by a virulent EIAV strain.. Vet Res 2014 Aug 9;45(1):82.
    doi: 10.1186/s13567-014-0082-ypmc: PMC4283155pubmed: 25106750google scholar: lookup
  34. Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. (2015) 67:1u201348. 10.18637/jss.vo67.i01
    doi: 10.18637/jss.vo67.i01google scholar: lookup
  35. Kuznetsova A, Brockhoff PB, Christensen RHB. ImerTest package: tests in linear mixed effects models. J. Stat. Softw. (2017) 82:1u201326. 10.18637/jss.v082.i13
    doi: 10.18637/jss.v082.i13google scholar: lookup
  36. Lenth RV. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.7.1-1. (2021). Available online at: https://CRAN.R-project.org/package=emmeans
  37. Dunnett CW, A. multiple comparison procedure for comparing several treatments with a control. J Am Stat Assoc. (1955) 50:1096u2013121.
    pubmed: 0
  38. R Core Team . R: A Language Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2021). Available online at: https://www.R-project.org/
  39. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. (2011) 17:1u201312. 10.14806/ej.17.11.200
    doi: 10.14806/ej.17.11.200google scholar: lookup
  40. Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data.. Bioinformatics 2015 Jan 15;31(2):166-9.
    doi: 10.1101/002824pmc: PMC4287950pubmed: 25260700google scholar: lookup
  41. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.. Genome Biol 2014;15(12):550.
    doi: 10.1186/s13059-014-0550-8pmc: PMC4302049pubmed: 25516281google scholar: lookup
  42. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.. Proc Natl Acad Sci U S A 2005 Oct 25;102(43):15545-50.
    doi: 10.1073/pnas.0506580102pmc: PMC1239896pubmed: 16199517google scholar: lookup
  43. Molnar V, Matiu0161iu0107 V, Kodvanj I, Bjelica R, Jeleu010d u017d, Hudetz D, Rod E, u010cukelj F, Vrdoljak T, Vidoviu0107 D, Stareu0161iniu0107 M, Sabaliu0107 S, Dobriu010diu0107 B, Petroviu0107 T, Antiu010deviu0107 D, Boriu0107 I, Kou0161ir R, Zmrzljak UP, Primorac D. Cytokines and Chemokines Involved in Osteoarthritis Pathogenesis.. Int J Mol Sci 2021 Aug 26;22(17).
    doi: 10.3390/ijms22179208pmc: PMC8431625pubmed: 34502117google scholar: lookup
  44. Sun K, Luo J, Guo J, Yao X, Jing X, Guo F. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: a narrative review.. Osteoarthritis Cartilage 2020 Apr;28(4):400-409.
    doi: 10.1016/j.joca.2020.02.027pubmed: 32081707google scholar: lookup
  45. Oates TCL, Moura PL, Cross SJ, Roberts K, Baum HE, Haydn-Smith KL, et al. . Characterizing the polarization continuum of macrophage subtypes M1, M2a and M2c. BioRxiv. (2022). 10.1101/2022.06.13.1495868
  46. Wang LX, Zhang SX, Wu HJ, Rong XL, Guo J. M2b macrophage polarization and its roles in diseases.. J Leukoc Biol 2019 Aug;106(2):345-358.
    doi: 10.1002/JLB.3RU1018-378RRpmc: PMC7379745pubmed: 30576000google scholar: lookup
  47. Wang X, Li F, Fan C, Wang C, Ruan H. Effects and relationship of ERK1 and ERK2 in interleukin-1u03b2-induced alterations in MMP3, MMP13, type II collagen and aggrecan expression in human chondrocytes.. Int J Mol Med 2011 Apr;27(4):583-9.
    doi: 10.3892/ijmm.2011.611pubmed: 21305249google scholar: lookup
  48. Hwang SG, Yu SS, Poo H, Chun JS. c-Jun/activator protein-1 mediates interleukin-1beta-induced dedifferentiation but not cyclooxygenase-2 expression in articular chondrocytes.. J Biol Chem 2005 Aug 19;280(33):29780-7.
    doi: 10.1074/jbc.M411793200pubmed: 15961395google scholar: lookup
  49. Kirker-Head CA, Chandna VK, Agarwal RK, Morris EA, Tidwell A, O'Callaghan MW, Rand W, Kumar MS. Concentrations of substance P and prostaglandin E2 in synovial fluid of normal and abnormal joints of horses.. Am J Vet Res 2000 Jun;61(6):714-8.
    doi: 10.2460/ajvr.2000.61.714pubmed: 10850851google scholar: lookup
  50. Kawcak CE, Frisbie DD, McIlwraith CW, Werpy NM, Park RD. Evaluation of avocado and soybean unsaponifiable extracts for treatment of horses with experimentally induced osteoarthritis.. Am J Vet Res 2007 Jun;68(6):598-604.
    doi: 10.2460/ajvr.68.6.598pubmed: 17542691google scholar: lookup
  51. May SA, Hooke RE, Peremans KY, Verschooten F, Lees P. Prostaglandin-E(2) in equine joint disease. Vlaams Diergeneeskd Tijdschr. (1994) 63:187u201391.
  52. Abul K, Abbas M, Lichtman AH, Shiv Pillai M. Cellular and Molecular Immunology. Philadelphia, PA: Elsevier; (2021).
  53. Murphy KM, Weaver C. Janeway's Immunobiology: Ninth International Student Edition. Garland Science, Taylor and Francis Group, LLC: New York, NY; (2017).
  54. Kaneko S, Satoh T, Chiba J, Ju C, Inoue K, Kagawa J. Interleukin-6 and interleukin-8 levels in serum and synovial fluid of patients with osteoarthritis.. Cytokines Cell Mol Ther 2000 Jun;6(2):71-9.
    doi: 10.1080/13684730050515796pubmed: 11108572google scholar: lookup
  55. Bertuglia A, Pagliara E, Grego E, Ricci A, Brkljaca-Bottegaro N. Pro-inflammatory cytokines and structural biomarkers are effective to categorize osteoarthritis phenotype and progression in Standardbred racehorses over five years of racing career.. BMC Vet Res 2016 Nov 8;12(1):246.
    doi: 10.1186/s12917-016-0873-7pmc: PMC5100096pubmed: 27821120google scholar: lookup
  56. Svala E, Thorfve AI, Ley C, Henriksson HK, Synnergren JM, Lindahl AH, Ekman S, Skiu00f6ldebrand ES. Effects of interleukin-6 and interleukin-1u03b2 on expression of growth differentiation factor-5 and Wnt signaling pathway genes in equine chondrocytes.. Am J Vet Res 2014 Feb;75(2):132-40.
    doi: 10.2460/ajvr.75.2.132pubmed: 24471749google scholar: lookup
  57. Ley C, Svala E, Nilton A, Lindahl A, Eloranta ML, Ekman S, Skiu00f6ldebrand E. Effects of high mobility group box protein-1, interleukin-1u03b2, and interleukin-6 on cartilage matrix metabolism in three-dimensional equine chondrocyte cultures.. Connect Tissue Res 2011;52(4):290-300.
    doi: 10.3109/03008207.2010.523803pubmed: 21117899google scholar: lookup
  58. Linardi RL, Dodson ME, Moss KL, King WJ, Ortved KF. The Effect of Autologous Protein Solution on the Inflammatory Cascade in Stimulated Equine Chondrocytes.. Front Vet Sci 2019;6:64.
    doi: 10.3389/fvets.2019.00064pmc: PMC6414419pubmed: 30895181google scholar: lookup
  59. Cuu00e9llar VG, Cuu00e9llar JM, Kirsch T, Strauss EJ. Correlation of Synovial Fluid Biomarkers With Cartilage Pathology and Associated Outcomes in Knee Arthroscopy.. Arthroscopy 2016 Mar;32(3):475-85.
    doi: 10.1016/j.arthro.2015.08.033pubmed: 26524935google scholar: lookup
  60. Ren G, Lutz I, Railton P, Wiley JP, McAllister J, Powell J, Krawetz RJ. Serum and synovial fluid cytokine profiling in hip osteoarthritis: distinct from knee osteoarthritis and correlated with pain.. BMC Musculoskelet Disord 2018 Feb 5;19(1):39.
    doi: 10.1186/s12891-018-1955-4pmc: PMC5800026pubmed: 29402254google scholar: lookup
  61. Schulze-Tanzil G, Zreiqat H, Sabat R, Kohl B, Halder A, Mu00fcller RD, John T. Interleukin-10 and articular cartilage: experimental therapeutical approaches in cartilage disorders.. Curr Gene Ther 2009 Aug;9(4):306-15.
    doi: 10.2174/156652309788921044pubmed: 19534651google scholar: lookup
  62. Lu D, Xu Y, Liu Q, Zhang Q. Mesenchymal Stem Cell-Macrophage Crosstalk and Maintenance of Inflammatory Microenvironment Homeostasis.. Front Cell Dev Biol 2021;9:681171.
    doi: 10.3389/fcell.2021.681171pmc: PMC8267370pubmed: 34249933google scholar: lookup
  63. Katagiri W, Takeuchi R, Saito N, Suda D, Kobayashi T. Migration and phenotype switching of macrophages at early-phase of bone-formation by secretomes from bone marrow derived mesenchymal stem cells using rat calvaria bone defect model.. J Dent Sci 2022 Jan;17(1):421-429.
    doi: 10.1016/j.jds.2021.08.012pmc: PMC8739749pubmed: 35028066google scholar: lookup
  64. Sun Y, Zuo Z, Kuang Y. An Emerging Target in the Battle against Osteoarthritis: Macrophage Polarization.. Int J Mol Sci 2020 Nov 12;21(22).
    doi: 10.3390/ijms21228513pmc: PMC7697192pubmed: 33198196google scholar: lookup
  65. Martinez FO, Gordon S, Locati M, Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression.. J Immunol 2006 Nov 15;177(10):7303-11.
    doi: 10.4049/jimmunol.177.10.7303pubmed: 17082649google scholar: lookup
  66. Severn CE, Oates TCL, Moura PL, Cross SJ, Roberts K, Baum HE, et al. . Characterizing the polarization continuum of macrophage subtypes M1, M2a and M2c. BioRxiv. (2022). 10.1101/2022.06.13.495868
    doi: 10.1101/2022.06.13.495868google scholar: lookup
  67. Ru0151szer T. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms.. Mediators Inflamm 2015;2015:816460.
    doi: 10.1155/2015/816460pmc: PMC4452191pubmed: 26089604google scholar: lookup
  68. Boorman S, Hanson RR, Velloso Alvarez A, Zhong K, Hofmeister E, Boone LH. Concurrent versus delayed exposure to corticosteroids in equine articular tissues cultured with local anesthetic.. Vet Surg 2023 Apr;52(3):361-369.
    doi: 10.1111/vsu.13924.pubmed: 36571324google scholar: lookup
  69. Marques-Smith P, Kallerud AS, Johansen GM, Boysen P, Jacobsen AM, Reitan KM, Henriksen MM, Lu00f6fgren M, Fjordbakk CT. Is clinical effect of autologous conditioned serum in spontaneously occurring equine articular lameness related to ACS cytokine profile?. BMC Vet Res 2020 Jun 8;16(1):181.
    doi: 10.1186/s12917-020-02391-7pmc: PMC7278142pubmed: 32513154google scholar: lookup
  70. Cassano JM, Kennedy JG, Ross KA, Fraser EJ, Goodale MB, Fortier LA. Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration.. Knee Surg Sports Traumatol Arthrosc 2018 Jan;26(1):333-342.
    doi: 10.1007/s00167-016-3981-9pubmed: 26831858google scholar: lookup

Citations

This article has been cited 0 times.