Physiological reports2024; 12(11); e16051; doi: 10.14814/phy2.16051

Effects of astaxanthin on gut microbiota of polo ponies during deconditioning and reconditioning periods.

Abstract: To determine the effects of astaxanthin (ASTX) supplementation on the equine gut microbiota during a deconditioning-reconditioning cycle, 12 polo ponies were assigned to a control (CON; n = 6) or supplemented (ASTX; 75 mg ASTX daily orally; n = 6) group. All horses underwent a 16-week deconditioning period, with no forced exercise, followed by a 16-week reconditioning program where physical activity gradually increased. Fecal samples were obtained at the beginning of the study (Baseline), after deconditioning (PostDecon), after reconditioning (PostRecon), and 16 weeks after the cessation of ASTX supplementation (Washout). Following DNA extraction from fecal samples, v4 of 16S was amplified and sequenced to determine operational taxonomic unit tables and α-diversity and β-diversity indices. The total number of observed species was greater at Baseline than PostDecon, PostRecon, and Washout (p ≤ 0.02). A main effect of ASTX (p = 0.01) and timepoint (p = 0.01) was observed on β-diversity, yet the variability of timepoint was greater (13%) than ASTX (6%), indicating a greater effect of timepoint than ASTX. Deconditioning and reconditioning periods affected the abundance of the Bacteroidetes and Fibrobacteres phyla. Physical activity and ASTX supplementation affect the equine gut microbiome, yet conditioning status may have a greater impact.
Publication Date: 2024-05-30 PubMed ID: 38811348PubMed Central: PMC11136553DOI: 10.14814/phy2.16051Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

The research study concerns the role of astaxanthin (ASTX) supplementation in affecting the gut microbiota of polo ponies during periods of deconditioning and reconditioning. It was found that physical activity and ASTX do affect the equine gut microbiota, but the conditioning status of the ponies had a larger influence.

Experimental Design

  • The study involved 12 polo ponies, split into two groups: a control group (CON; n = 6) and a group that was given a supplement of 75 mg of ASTX daily (ASTX; n = 6).
  • Both groups underwent a deconditioning period of 16-weeks during which they had no exercise, and this was followed by a 16-week reconditioning program where their physical activity was gradually increased.
  • Fecal samples were collected from the ponies at various points: at the beginning of the study (Baseline), after the deconditioning period (PostDecon), after the reconditioning period (PostRecon), and 16 weeks after ASTX supplementation was stopped (Washout).

Methodology and Results

  • To analyze the gut microbiota, DNA was extracted from the fecal samples, followed by amplification and sequencing to determine operational taxonomic unit tables. These allowed researchers to track changes in the diversity of microbial species in the gut over time.
  • The team found that the total number of observed species was higher at the beginning of the study compared to PostDecon, PostRecon, and Washout stages, indicating a decline in gut flora diversity over time.
  • Changes over timepoint had a greater effect (13%) on the β-diversity (a measure of variation in species diversity across habitats) compared to ASTX supplementation (6%), suggesting that the deconditioning and reconditioning periods significantly affected the gut microbiota diversity.
  • The abundance of specific phyla Bacteroidetes and Fibrobacteres was also found to be affected by the deconditioning and reconditioning periods.

Conclusion

  • The research suggests that, while ASTX supplementation and physical activity do have an effect on the gut microbiome of polo ponies, the conditioning status (i.e., whether the ponies are in a period of deconditioning or reconditioning) seems to have a more substantial impact.

Cite This Article

APA
Kawaida MY, Maas KR, Moore TE, Reiter AS, Tillquist NM, Reed SA. (2024). Effects of astaxanthin on gut microbiota of polo ponies during deconditioning and reconditioning periods. Physiol Rep, 12(11), e16051. https://doi.org/10.14814/phy2.16051

Publication

ISSN: 2051-817X
NlmUniqueID: 101607800
Country: United States
Language: English
Volume: 12
Issue: 11
Pages: e16051
PII: e16051

Researcher Affiliations

Kawaida, Mia Y
  • Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA.
Maas, Kendra R
  • Microbial Analysis, Resources, and Services, University of Connecticut, Storrs, Connecticut, USA.
Moore, Timothy E
  • Statistical Consulting Services, Center for Open Research Resources and Equipment, University of Connecticut, Storrs, Connecticut, USA.
Reiter, Amanda S
  • Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA.
Tillquist, Nicole M
  • Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA.
Reed, Sarah A
  • Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA.

MeSH Terms

  • Animals
  • Horses / microbiology
  • Gastrointestinal Microbiome / drug effects
  • Xanthophylls / pharmacology
  • Physical Conditioning, Animal
  • Dietary Supplements
  • Male
  • Feces / microbiology
  • Female

Grant Funding

  • University of Connecticut Research Excellence Program

Conflict of Interest Statement

No conflicts of interests, financial or otherwise, are declared by the authors.

References

This article includes 59 references
  1. Akduman, H. , Tayman, C. , Korkmaz, V. , Akduman, F. , Fettah, N. D. , Gu00fcrsoy, B. K. , Turkmenoglu, T. T. , & u00c7au011flayan, M. (2022). Astaxanthin reduces the severity of intestinal damage in a neonatal rat model of necrotizing Enterocolitis. American Journal of Perinatology, 39, 1820u20131827. 10.1055/s-0041-1727156
    doi: 10.1055/s-0041-1727156pubmed: 33853144google scholar: lookup
  2. Allen, J. M. , Berg Miller, M. E. , Pence, B. D. , Whitlock, K. , Nehra, V. , Gaskins, H. R. , White, B. A. , Fryer, J. D. , & Woods, J. A. (2015). Voluntary and forced exercise differentially alters the gut microbiome in C57BL/6J mice. Journal of Applied Physiology, 118, 1059u20131066. 10.1152/japplphysiol.01077.2014.-We
  3. Allen, J. M. , Mailing, L. J. , Niemiro, G. M. , Moore, R. , Cook, M. D. , White, B. A. , Holscher, H. D. , & Woods, J. A. (2018). Exercise alters gut microbiota composition and function in lean and obese humans. Medicine and Science in Sports and Exercise, 50, 747u2013757. 10.1249/MSS.0000000000001495
    doi: 10.1249/MSS.0000000000001495pubmed: 29166320google scholar: lookup
  4. Apprill, A. , McNally, S. , Parsons, R. , & Weber, L. (2015). Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquatic Microbial Ecology, 75, 129u2013137. 10.3354/ame01753
    doi: 10.3354/ame01753google scholar: lookup
  5. Baralic, I. , Djordjevic, B. , Dikic, N. , Koturu2010Stevuljevic, J. , Spasic, S. , Jelicu2010Ivanovic, Z. , Radivojevic, N. , Andjelkovic, M. , & Pejic, S. (2013). Effect of astaxanthin supplementation on paraoxonase 1 activities and oxidative stress status in young soccer players. Phytotherapy Research, 27, 1536u20131542. 10.1002/ptr.4898
    doi: 10.1002/ptr.4898pubmed: 23192897google scholar: lookup
  6. Barton, W. , Penney, N. C. , Cronin, O. , Garciau2010Perez, I. , Molloy, M. G. , Holmes, E. , Shanahan, F. , Cotter, P. D. , & O'Sullivan, O. (2018). The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut, 67, 625u2013633. 10.1136/gutjnl-2016-313627
    doi: 10.1136/gutjnl-2016-313627pubmed: 28360096google scholar: lookup
  7. Besten, D. G. , Eunen, V. K. , Groen, A. K. , Venema, K. , Reijngoud, D. J. , & Bakker, B. M. (2013). The role of shortu2010chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research, 54, 2325u20132340. 10.1194/jlr.R036012
    doi: 10.1194/jlr.R036012pmc: PMC3735932pubmed: 23821742google scholar: lookup
  8. Bressa, C. , Bailu00e9nu2010Andrino, M. , Pu00e9rezu2010Santiago, J. , Gonzu00e1lezu2010Soltero, R. , Pu00e9rez, M. , Montalvou2010Lominchar, M. G. , Matu00e9u2010Muu00f1oz, J. L. , Domu00ednguez, R. , Moreno, D. , & Larrosa, M. (2017). Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS One, 12, e0171352. 10.1371/journal.pone.0171352
  9. Chen, J. , Li, H. , Hird, S. M. , Chen, M.u2010H. , Xu, W. , Maas, K. , & Cong, X. (2021). Sex differences in gut microbial development of preterm infant twins in early life: A longitudinal analysis. Frontiers in Cellular and Infection Microbiology, 11. 10.3389/fcimb.2021.671074
    doi: 10.3389/fcimb.2021.671074pmc: PMC8387566pubmed: 34458157google scholar: lookup
  10. Costa, M. C. , Arroyo, L. G. , Allenu2010Vercoe, E. , Stu00e4mpfli, H. R. , Kim, P. T. , Sturgeon, A. , & Weese, J. S. (2012). Comparison of the fecal microbiota of healthy horses and horses with colitis by high throughput sequencing of the V3u2013V5 region of the 16s rRNA gene. PLoS One, 7, e41484. 10.1371/journal.pone.0041484
  11. Costa, M. C. , Stu00e4mpfli, H. R. , Allenu2010Vercoe, E. , & Weese, J. S. (2016). Development of the faecal microbiota in foals. Equine Veterinary Journal, 48, 681u2013688. 10.1111/evj.12532
    doi: 10.1111/evj.12532pubmed: 26518456google scholar: lookup
  12. Costa, M. C. , & Weese, J. S. (2012). The equine intestinal microbiome. Animal Health Research Reviews, 13, 121u2013128. 10.1017/S1466252312000035
    doi: 10.1017/S1466252312000035pubmed: 22626511google scholar: lookup
  13. de Almeida, M. L. M. , Feringer, W. H. , Carvalho, J. R. G. , Rodrigues, I. M. , Jordu00e3o, L. R. , Fonseca, M. G. , de Rezende, A. S. C. , de Queiroz, N. A. , Weese, J. S. , da Costa, M. C. , de Macedo Lemos, E. G. , & Ferraz, G. D. C. (2016). Intense exercise and aerobic conditioning associated with chromium or Lu2010carnitine supplementation modified the fecal microbiota of fillies. PLoS One, 11, e0167108. 10.1371/journal.pone.0167108
  14. Dempsey, E. , & Corr, S. C. (2022). Lactobacillus spp. for gastrointestinal health: Current and future perspectives. Frontiers in Immunology, 13. 10.3389/fimmu.2022.840245
    doi: 10.3389/fimmu.2022.840245pmc: PMC9019120pubmed: 35464397google scholar: lookup
  15. Dougal, K. , de la Fuente, G. , Harris, P. A. , Girdwood, S. E. , Pinloche, E. , & Newbold, C. J. (2013). Identification of a core bacterial community within the large intestine of the horse. PLoS One, 8, e77660. 10.1371/journal.pone.0077660
  16. Engevik, M. A. , Luk, B. , Changu2010Graham, A. L. , Hall, A. , Herrmann, B. , Ruan, W. , Endres, B. T. , Shi, Z. , Garey, K. W. , Hyser, J. M. , & Versalovic, J. (2019). Bifidobacterium dentium fortifies the intestinal mucus layer via autophagy and calcium signaling pathways. MBio, 10. 10.1128/mBio.01087-19
    doi: 10.1128/mBio.01087-19pmc: PMC6581858pubmed: 31213556google scholar: lookup
  17. Evans, C. C. , LePard, K. J. , Kwak, J. W. , Stancukas, M. C. , Laskowski, S. , Dougherty, J. , Moulton, L. , Glawe, A. , Wang, Y. , Leone, V. , Antonopoulos, D. A. , Smith, D. , Chang, E. B. , & Ciancio, M. J. (2014). Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat dietu2010induced obesity. PLoS One, 9, e92193. 10.1371/journal.pone.0092193
  18. Fatouros, I. G. , Jamurtas, A. Z. , Villiotou, V. , Pouliopoulou, S. , Fotinakis, P. , Taxildaris, K. , & Deliconstantinos, G. (2004). Oxidative stress responses in older men during endurance training and detraining. Medicine and Science in Sports and Exercise, 36, 2065u20132072. 10.1249/01.MSS.0000147632.17450.FF
  19. Fatouros, I. G. , Kambas, A. , Katrabasas, I. , Nikolaidis, K. , Chatzinikolaou, A. , Leontsini, D. , & Taxildaris, K. (2005). Strength training and detraining effects on muscular strength, anaerobic power, and mobility of inactive older men are intensity dependent. British Journal of Sports Medicine, 39, 776u2013780. 10.1136/bjsm.2005.019117
    doi: 10.1136/bjsm.2005.019117pmc: PMC1725040pubmed: 16183776google scholar: lookup
  20. Fernandes, K. A. , Kittelmann, S. , Rogers, C. W. , Gee, E. K. , Bolwell, C. F. , Bermingham, E. N. , & Thomas, D. G. (2014). Faecal microbiota of forageu2010fed horses in New Zealand and the population dynamics of microbial communities following dietary change. PLoS One, 9, e112846. 10.1371/journal.pone.0112846
  21. Garber, A. , Hastie, P. , & Murray, J. A. (2020). Factors influencing equine gut microbiota:Current knowledge. Journal of Equine Veterinary Science, 88. 10.1016/j.jevs.2020.102943
    doi: 10.1016/j.jevs.2020.102943pubmed: 32303307google scholar: lookup
  22. Gram, M. , Vigelsu00f8, A. , Yokota, T. , Helge, J. W. , Dela, F. , & Heyu2010Mogensen, M. (2015). Skeletal muscle mitochondrial H2O2 emission increases with immobilization and decreases after aerobic training in young and older men. Journal of Physiology, 593, 4011u20134027. 10.1113/JP270211
    doi: 10.1113/JP270211pmc: PMC4575583pubmed: 26096818google scholar: lookup
  23. Hadfield, J. D. (2010). MCMC Methods for multiu2010response generalized linear mixed models: The MCMCglmm R package. Journal of Statistical Software, 33. 10.18637/jss.v033.i02
    doi: 10.18637/jss.v033.i02google scholar: lookup
  24. He, J. , Zhang, P. , Shen, L. , Niu, L. , Tan, Y. , Chen, L. , Zhao, Y. , Bai, L. , Hao, X. , Li, X. , Zhang, S. , & Zhu, L. (2020). Shortu2010chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. International Journal of Molecular Sciences, 21, 1u201316.
    pmc: PMC7503625pubmed: 32887215
  25. Janabi, A. H. D. , Biddle, A. S. , Klein, D. , & McKeever, K. H. (2016). Exercise trainingu2010induced changes in the gut microbiota of Standardbred racehorses. Comparative Exercise Physiology, 12, 119u2013130. 10.3920/CEP160015
    doi: 10.3920/CEP160015google scholar: lookup
  26. Joo, C. H. (2016). The effects of shortu2010term detraining on exercise performance in soccer players. Journal of exercise rehabilitation, 12, 54u201359. 10.12965/jer.160280
    doi: 10.12965/jer.160280pmc: PMC4771154pubmed: 26933661google scholar: lookup
  27. Kauter, A. , Epping, L. , Semmler, T. , Antao, E.u2010M. , Kannapin, D. , Stoeckle, S. D. , Gehlen, H. , Lu00fcbkeu2010Becker, A. , Gu00fcnther, S. , Wieler, L. H. , & Walther, B. (2019). The gut microbiome of horses: Current research on equine enteral microbiota and future perspectives. Animal Microbiome, 1, 14. 10.1186/s42523-019-0013-3
    doi: 10.1186/s42523-019-0013-3pmc: PMC7807895pubmed: 33499951google scholar: lookup
  28. Kim, J.u2010H. , Choi, S.u2010K. , Choi, S.u2010Y. , Kim, H.u2010K. , & Chang, H.u2010I. (2005). Suppressive effect of Astaxanthin isolated from the Xanthophyllomyces dendrorhous mutant on ethanolu2010induced gastric mucosal injury in rats. Bioscience, Biotechnology, and Biochemistry, 69, 1300u20131305. 10.1271/bbb.69.1300
    doi: 10.1271/bbb.69.1300pubmed: 16041134google scholar: lookup
  29. Koundourakis, N. E. , Androulakis, N. E. , Malliaraki, N. , Tsatsanis, C. , Venihaki, M. , & Margioris, A. N. (2014). Discrepancy between exercise performance, body composition, and sex steroid response after a sixu2010week detraining period in professional soccer players. PLoS One, 9, e87803. 10.1371/journal.pone.0087803
  30. Lara, F. , Castro, R. , & Thomson, P. (2022). Changes in the gut microbiome and colic in horses: Are they causes or consequences? Open Veterinary Journal, 12, 242u2013249. 10.5455/OVJ.2022.v12.i2.12
    doi: 10.5455/OVJ.2022.v12.i2.12pmc: PMC9109837pubmed: 35603065google scholar: lookup
  31. Lawler, J. , Song, W. , & Demaree, S. (2003). Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle. Free Radical Biology & Medicine, 35, 9u201316. 10.1016/S0891-5849(03)00186-2
    doi: 10.1016/S0891-5849(03)00186-2pubmed: 12826251google scholar: lookup
  32. Lin, X. , Bo, H. , Gu, J. , Yi, X. , Zhang, P. , Liu, R. , Li, H. , Sun, G. , & Lin, C. H. (2022). Astaxanthin, a carotenoid antioxidant, pretreatment alleviates cognitive deficits in aircraft noised mice by attenuating inflammatory and oxidative damage to the gut, heart and hippocampus. Biomedicine and Pharmacotherapy, 148, 112777. 10.1016/j.biopha.2022.112777
    doi: 10.1016/j.biopha.2022.112777pubmed: 35255410google scholar: lookup
  33. Liu, H. , Liu, M. , Fu, X. , Zhang, Z. , Zhu, L. , Zheng, X. , & Liu, J. (2018). Astaxanthin prevents alcoholic fatty liver disease by modulating mouse gut microbiota. Nutrients, 10. 10.3390/nu10091298
    doi: 10.3390/nu10091298pmc: PMC6164583pubmed: 30217037google scholar: lookup
  34. Liu, Z. , Liu, H. Y. , Zhou, H. , Zhan, Q. , Lai, W. , Zeng, Q. , Ren, H. , & Xu, D. (2017). Moderateu2010intensity exercise affects gut microbiome composition and influences cardiac function in myocardial infarction mice. Frontiers in Microbiology, 8. 10.3389/fmicb.2017.01687
    doi: 10.3389/fmicb.2017.01687pmc: PMC5585143pubmed: 28919891google scholar: lookup
  35. Madsen, K. , Pedersen, P. K. , Djurhuus, S. , & Klitgaard, N. A. (1993). Effects of detraining on endurance capacity and metabolic changes during prolonged exhaustive exercise. Journal of Applied Physiology (1985), 75, 1444u20131451. 10.1152/jappl.1993.75.4.1444
    doi: 10.1152/jappl.1993.75.4.1444pubmed: 8282588google scholar: lookup
  36. Mailing, L. J. , Allen, J. M. , Buford, T. W. , Fields, C. J. , & Woods, J. A. (2019). Exercise and the gut microbiome: A review of the evidence, potential mechanisms, and implications for human health. Exercise and Sport Sciences Reviews, 47, 75u201385. 10.1249/JES.0000000000000183
    doi: 10.1249/JES.0000000000000183pubmed: 30883471google scholar: lookup
  37. Matsumoto, M. , Inoue, R. , Tsukahara, T. , Ushida, K. , Chiji, H. , Matsubara, N. , & Hara, H. (2008). Voluntary running exercise alters microbiota composition and increases nu2010butyrate concentration in the rat cecum. Bioscience, Biotechnology, and Biochemistry, 72, 572u2013576. 10.1271/bbb.70474
    doi: 10.1271/bbb.70474pubmed: 18256465google scholar: lookup
  38. Meor Mohd Affandi, M. M. R. , Julianto, T. , & Majeed, A. B. A. (2012). Enhanced oral bioavailability of astaxanthin with droplet size reduction. Food Science and Technology Research, 18, 549u2013554. 10.3136/fstr.18.549
    doi: 10.3136/fstr.18.549google scholar: lookup
  39. Mika, A. , van Treuren, W. , Gonzu00e1lez, A. , Herrera, J. J. , Knight, R. , & Fleshner, M. (2015). Exercise is more effective at altering gut microbial composition and producing stable changes in lean mass in juvenile versus adult male F344 rats. PLoS One, 10, e0125889. 10.1371/journal.pone.0125889
  40. Mols, K. L. , Boeu2010Hansen, G. B. , Mikkelsen, D. , Bryden, W. L. , & Cawdellu2010Smith, A. J. (2020). Prenatal establishment of the foal gut microbiota: A critique of the in utero colonisation hypothesis. Animal Production Science, 60, 2080u20132092. 10.1071/AN20010
    doi: 10.1071/AN20010google scholar: lookup
  41. Morita, H. , Kano, C. , Ishii, C. , Kagata, N. , Ishikawa, T. , Hirayama, A. , Uchiyama, Y. , Hara, S. , Nakamura, T. , & Fukuda, S. (2023). Bacteroides uniformis and its preferred substrate, u03b1u2010cyclodextrin, enhance endurance exercise performance in mice and human males. Science Advances, 9, eadd2120. 10.1126/sciadv.add2120
    doi: 10.1126/sciadv.add2120pmc: PMC9876546pubmed: 36696509google scholar: lookup
  42. Motiani, K. K. , Collado, M. C. , Eskelinen, J.u2010J. , Virtanen, K. A. , Lu00f6yttymoe, O. E. , Salminen, S. , Nuutila, P. , Kalliokoski, K. K. , & Hannukainen, J. C. (2020). Exercise training modulates gut microbiota profile and improves endotoxemia. Medicine and Science in Sports and Exercise, 52, 94u2013104. 10.1249/MSS.0000000000002112
  43. Mujika, I. , & Padilla, S. (2000). Detraining: Loss of trainingu2010induced physiological and performance adaptations. Part I: short term insufficient training stimulus. Sports Medicine, 30, 79u201387. 10.2165/00007256-200030020-00002
  44. Nakagawa, S. , & Schielzeth, H. (2013). A general and simple method for obtaining R 2 from generalized linear mixedu2010effects models. Methods in Ecology and Evolution, 4, 133u2013142. 10.1111/j.2041-210x.2012.00261.x
  45. Okamoto, T. , Morino, K. , Ugi, S. , Nakagawa, F. , Lemecha, M. , Ida, S. , Ohashi, N. , Sato, D. , Fujita, Y. , & Maegawa, H. (2019). Microbiome potentiates endurance exercise through intestinal acetate production. American Journal of Physiology. Endocrinology and Metabolism, 316, 956u2013966. 10.1152/ajpendo.00510.2018
    doi: 10.1152/ajpendo.00510.2018pubmed: 30860879google scholar: lookup
  46. Ottman, N. , Smidt, H. , de Vos, W. M. , & Belzer, C. (2012). The function of our microbiota: Who is out there and what do they do? Frontiers in Cellular and Infection Microbiology, 2, 104.
    pmc: PMC3417542pubmed: 22919693
  47. Park, J. S. , Chyun, J. H. , Kim, Y. K. , Line, L. L. , & Chew, B. P. (2010). Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutrition & Metabolism (London), 7. 10.1186/1743-7075-7-18
    doi: 10.1186/1743-7075-7-18pmc: PMC2845588pubmed: 20205737google scholar: lookup
  48. Pratap, K. , Majzoub, M. E. , Taki, A. C. , Miranda Hernandez, S. , Magnusson, M. , Glasson, C. R. K. , de Nys, R. , Thomas, T. , Lopata, A. L. , & Kamath, S. D. (2022). The algal polysaccharide Ulvan and carotenoid Astaxanthin both positively modulate gut microbiota in mice. Food, 11. 10.3390/foods11040565
    doi: 10.3390/foods11040565pmc: PMC8871025pubmed: 35206042google scholar: lookup
  49. Quiroga, R. , Nistal, E. , Estu00e9banez, B. , Porras, D. , Juu00e1rezu2010Fernu00e1ndez, M. , Martu00ednezu2010Flu00f3rez, S. , Garcu00edau2010Mediavilla, M. V. , de Paz, J. A. , Gonzu00e1lezu2010Gallego, J. , Su00e1nchezu2010Campos, S. , & Cuevas, M. J. (2020). Exercise training modulates the gut microbiota profile and impairs inflammatory signaling pathways in obese children. Experimental & Molecular Medicine, 52, 1048u20131061. 10.1038/s12276-020-0459-0
    doi: 10.1038/s12276-020-0459-0pmc: PMC8080668pubmed: 32624568google scholar: lookup
  50. Salem, S. E. , Maddox, T. W. , Berg, A. , Antczak, P. , Ketley, J. M. , Williams, N. J. , & Archer, D. C. (2018). Variation in faecal microbiota in a group of horses managed at pasture over a 12u2010month period. Scientific Reports, 8, 8510. 10.1038/s41598-018-26930-3
    doi: 10.1038/s41598-018-26930-3pmc: PMC5981443pubmed: 29855517google scholar: lookup
  51. Sales, K. M. , & Reimer, R. A. (2023). Unlocking a novel determinant of athletic performance: The role of the gut microbiota, shortu2010chain fatty acids, and u201cbioticsu201d in exercise. Journal of Sport and Health Science, 12, 36u201344.
    pmc: PMC9923434pubmed: 36089243
  52. Schoster, A. , Mosing, M. , Jalali, M. , Staempfli, H. R. , & Weese, J. S. (2016). Effects of transport, fasting and anaesthesia on the faecal microbiota of healthy adult horses. Equine Veterinary Journal, 48, 595u2013602. 10.1111/evj.12479
    doi: 10.1111/evj.12479pubmed: 26122549google scholar: lookup
  53. Sweeny, A. R. , Lemon, H. , Ibrahim, A. , Watt, K. A. , Wilson, K. , Childs, D. Z. , Nussey, D. H. , Free, A. , & McNally, L. (2023). A Mixedu2010Model Approach for Estimating Drivers of Microbiota Community Composition and Differential Taxonomic Abundance. mSystems, 8. 10.1128/msystems.00040-23
    doi: 10.1128/msystems.00040-23pmc: PMC10469806pubmed: 37489890google scholar: lookup
  54. Tavenner, M. K. , McDonnell, S. M. , & Biddle, A. S. (2020). Development of the equine hindgut microbiome in semiu2010feral and domestic conventionallyu2010managed foals. Animal Microbiome, 2, 43. 10.1186/s42523-020-00060-6
    doi: 10.1186/s42523-020-00060-6pmc: PMC7807438pubmed: 33499959google scholar: lookup
  55. Venable, E. B. , Bland, S. D. , McPherson, J. L. , & Francis, J. (2016). Role of the gut microbiota in equine health and disease. Animal Frontiers, 6, 43u201349. 10.2527/af.2016-0033
    doi: 10.2527/af.2016-0033google scholar: lookup
  56. Wang, J. , Liu, S. , Wang, H. , Xiao, S. , Li, C. , Li, Y. , & Liu, B. (2019). Xanthophyllomyces dendrorhousu2010derived astaxanthin regulates lipid metabolism and gut microbiota in obese mice induced by a highu2010fat diet. Marine Drugs, 17, 337.
    pmc: PMC6627754pubmed: 31195737
  57. Yang, W. , Liu, Y. , Yang, G. , Meng, B. , Yi, Z. , Yang, G. , Chen, M. , Hou, P. , Wang, H. , & Xu, X. (2021). Moderateu2010intensity physical exercise affects the exercise performance and gut microbiota of mice. Frontiers in Cellular and Infection Microbiology, 11. 10.3389/fcimb.2021.712381
    doi: 10.3389/fcimb.2021.712381pmc: PMC8498591pubmed: 34631598google scholar: lookup
  58. u017baku2010Bochenek, A. , Bajzert, J. , Sambor, D. , Siwiu0144ska, N. , Szponar, B. , u0141aczmau0144ski, u0141. , u017bebrowska, P. , Czajkowska, A. , Karczewski, M. , & Cheu0142mou0144skau2010Soyta, A. (2022). Homeostasis of the intestinal mucosa in healthy horsesu2014Correlation between the fecal microbiome, secretory immunoglobulin a and fecal egg count. Animals, 12. 10.3390/ani12223094
    doi: 10.3390/ani12223094pmc: PMC9687066pubmed: 36428322google scholar: lookup
  59. Zhang, L. , Cao, W. , Gao, Y. , Yang, R. , Zhang, X. , Xu, J. , & Tang, Q. (2020). Astaxanthin (ATX) enhances the intestinal mucosal functions in immunodeficient mice. Food & Function, 11, 3371u20133381. 10.1039/c9fo02555c
    doi: 10.1039/c9fo02555cpubmed: 32232254google scholar: lookup

Citations

This article has been cited 0 times.