Methods and protocols2022; 5(3); 51; doi: 10.3390/mps5030051

Equine Oviductal Organoid Generation and Cryopreservation.

Abstract: Organoids are a type of three-dimensional (3D) cell culture that more closely mimic the in vivo environment and can be maintained in the long term. To date, oviductal organoids have only been reported in laboratory mice, women, and cattle. Equine oviductal organoids were generated and cultured for 42 days (including 3 passages and freeze-thawing at passage 1). Consistent with the reports in mouse and human oviductal organoids, the equine oviductal organoids revealed round cell clusters with a central lumen. Developing a 3D model of the mare oviduct may allow for an increased understanding of their normal physiology, including hormonal regulation. These organoids may provide an environment that mimics the in vivo equine oviduct and facilitate improved in vitro embryo production in equids.
Publication Date: 2022-06-15 PubMed ID: 35736552PubMed Central: PMC9230449DOI: 10.3390/mps5030051Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

The research is about the successful creation and cultivation of three-dimensional cell structures, called organoids, from the oviducts of horses. This development provides a model to better understand the normal physiology of horse oviducts and could improve in-vitro embryo production in horse breeds.

Creating Oviductal Organoids in Horses

  • This research involved generating and cultivating organoids from the oviducts of horses, which are miniature, self-organizing versions of organs. Organoids are 3D structures grown from stem cells that mimic the behaviors and functions of the organ they are derived from.
  • In the past, such organoids have been successfully generated from laboratory mice, women, and cattle, making this the first time they have been developed from horses. This allows researchers to study in detail the cell behaviors within the horse’s oviduct within a controlled lab environment.

Growth and Preservation of the Organoids

  • The horse oviduct organoids were cultured for 42 days, during which they were passaged three times and freeze-thawed at one passage. The term “passaging” refers to the process of transferring cells from the original culture into a new one to allow for further growth or study.
  • During this period, the organoids developed into round cell clusters with a central lumen, similar to what has been reported in mice and human oviductal organoids. This consistency suggests the successful growth and preservation of the organoids over the 42-day period.

Potential Applications of the Study

  • Developing these organoids can lead to a better understanding of the physiology of mares, including how they are impacted by hormonal regulation. Knowing this information is crucial in the study of equine reproduction and health.
  • Furthermore, providing an environment that simulates the horse’s oviduct can improve the successful production of embryos in-vitro. This can promote better breeding methods for horses and potentially increase the sustainable production of specific horse breeds.

Cite This Article

APA
Thompson RE, Meyers MA, Veeramachaneni DNR, Pukazhenthi BS, Hollinshead FK. (2022). Equine Oviductal Organoid Generation and Cryopreservation. Methods Protoc, 5(3), 51. https://doi.org/10.3390/mps5030051

Publication

ISSN: 2409-9279
NlmUniqueID: 101720073
Country: Switzerland
Language: English
Volume: 5
Issue: 3
PII: 51

Researcher Affiliations

Thompson, Riley E
  • Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
Meyers, Mindy A
  • Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
Veeramachaneni, D N Rao
  • Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
Pukazhenthi, Budhan S
  • Center for Species Survival, Smithsonian National Zoo and Conservation Biology Institute, Front Royal, VA 22630, USA.
Hollinshead, Fiona K
  • Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA.

Grant Funding

  • N/A / Colorado State University Research Council of the College of Veterinary Medicine and Biomedi-cal Sciences

Conflict of Interest Statement

The authors declare no conflict of interest.

References

This article includes 39 references
  1. Lamy J, Labas V, Harichaux G, Tsikis G, Mermillod P, Saint-Dizier M. Regulation of the bovine oviductal fluid proteome.. Reproduction 2016 Dec;152(6):629-644.
    doi: 10.1530/REP-16-0397pubmed: 27601716google scholar: lookup
  2. Barton BE, Herrera GG, Anamthathmakula P, Rock JK, Willie A, Harris EA, Takemaru KI, Winuthayanon W. Roles of steroid hormones in oviductal function.. Reproduction 2020 Mar 1;159(3):R125-R137.
    doi: 10.1530/REP-19-0189pmc: PMC7083054pubmed: 32040278google scholar: lookup
  3. Leemans B, Gadella BM, Stout TA, De Schauwer C, Nelis H, Hoogewijs M, Van Soom A. Why doesn't conventional IVF work in the horse? The equine oviduct as a microenvironment for capacitation/fertilization.. Reproduction 2016 Dec;152(6):R233-R245.
    doi: 10.1530/REP-16-0420pubmed: 27651517google scholar: lookup
  4. Gu ZY, Jia SZ, Liu S, Leng JH. Endometrial Organoids: A New Model for the Research of Endometrial-Related Diseasesu2020.. Biol Reprod 2020 Oct 29;103(5):918-926.
    doi: 10.1093/biolre/ioaa124pmc: PMC7609820pubmed: 32697306google scholar: lookup
  5. Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies.. Science 2014 Jul 18;345(6194):1247125.
    doi: 10.1126/science.1247125pubmed: 25035496google scholar: lookup
  6. Ali A, Syed SM, Jamaluddin MFB, Colino-Sanguino Y, Gallego-Ortega D, Tanwar PS. Cell Lineage Tracing Identifies Hormone-Regulated and Wnt-Responsive Vaginal Epithelial Stem Cells.. Cell Rep 2020 Feb 4;30(5):1463-1477.e7.
    doi: 10.1016/j.celrep.2020.01.003pubmed: 32023462google scholar: lookup
  7. Chumduri C, Gurumurthy RK, Berger H, Dietrich O, Kumar N, Koster S, Brinkmann V, Hoffmann K, Drabkina M, Arampatzi P, Son D, Klemm U, Mollenkopf HJ, Herbst H, Mangler M, Vogel J, Saliba AE, Meyer TF. Opposing Wnt signals regulate cervical squamocolumnar homeostasis and emergence of metaplasia.. Nat Cell Biol 2021 Feb;23(2):184-197.
    doi: 10.1038/s41556-020-00619-0pmc: PMC7878191pubmed: 33462395google scholar: lookup
  8. Maru Y, Kawata A, Taguchi A, Ishii Y, Baba S, Mori M, Nagamatsu T, Oda K, Kukimoto I, Osuga Y, Fujii T, Hippo Y. Establishment and Molecular Phenotyping of Organoids from the Squamocolumnar Junction Region of the Uterine Cervix.. Cancers (Basel) 2020 Mar 15;12(3).
    doi: 10.3390/cancers12030694pmc: PMC7140077pubmed: 32183493google scholar: lookup
  9. Turco MY, Gardner L, Kay RG, Hamilton RS, Prater M, Hollinshead MS, McWhinnie A, Esposito L, Fernando R, Skelton H, Reimann F, Gribble FM, Sharkey A, Marsh SGE, O'Rahilly S, Hemberger M, Burton GJ, Moffett A. Trophoblast organoids as a model for maternal-fetal interactions during human placentation.. Nature 2018 Dec;564(7735):263-267.
    doi: 10.1038/s41586-018-0753-3pmc: PMC7220805pubmed: 30487605google scholar: lookup
  10. Turco MY, Gardner L, Hughes J, Cindrova-Davies T, Gomez MJ, Farrell L, Hollinshead M, Marsh SGE, Brosens JJ, Critchley HO, Simons BD, Hemberger M, Koo BK, Moffett A, Burton GJ. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium.. Nat Cell Biol 2017 May;19(5):568-577.
    doi: 10.1038/ncb3516pmc: PMC5410172pubmed: 28394884google scholar: lookup
  11. Boretto M, Cox B, Noben M, Hendriks N, Fassbender A, Roose H, Amant F, Timmerman D, Tomassetti C, Vanhie A, Meuleman C, Ferrante M, Vankelecom H. Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability.. Development 2017 May 15;144(10):1775-1786.
    doi: 10.1242/dev.148478pubmed: 28442471google scholar: lookup
  12. Thompson RE, Johnson AK, Dini P, Turco MY, Prado TM, Premanandan C, Burton GJ, Ball BA, Whitlock BK, Pukazhenthi BS. Hormone-responsive organoids from domestic mare and endangered Przewalski's horse endometrium.. Reproduction 2020 Dec;160(6):819-831.
    doi: 10.1530/REP-20-0266pubmed: 33112764google scholar: lookup
  13. Xie Y, Park ES, Xiang D, Li Z. Long-term organoid culture reveals enrichment of organoid-forming epithelial cells in the fimbrial portion of mouse fallopian tube.. Stem Cell Res 2018 Oct;32:51-60.
    doi: 10.1016/j.scr.2018.08.021pubmed: 30176443google scholar: lookup
  14. Kessler M, Hoffmann K, Brinkmann V, Thieck O, Jackisch S, Toelle B, Berger H, Mollenkopf HJ, Mangler M, Sehouli J, Fotopoulou C, Meyer TF. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids.. Nat Commun 2015 Dec 8;6:8989.
    doi: 10.1038/ncomms9989pmc: PMC4686873pubmed: 26643275google scholar: lookup
  15. Kopper O, de Witte CJ, Lu00f5hmussaar K, Valle-Inclan JE, Hami N, Kester L, Balgobind AV, Korving J, Proost N, Begthel H, van Wijk LM, Revilla SA, Theeuwsen R, van de Ven M, van Roosmalen MJ, Ponsioen B, Ho VWH, Neel BG, Bosse T, Gaarenstroom KN, Vrieling H, Vreeswijk MPG, van Diest PJ, Witteveen PO, Jonges T, Bos JL, van Oudenaarden A, Zweemer RP, Snippert HJG, Kloosterman WP, Clevers H. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity.. Nat Med 2019 May;25(5):838-849.
    doi: 10.1038/s41591-019-0422-6pubmed: 31011202google scholar: lookup
  16. Hoffmann K, Berger H, Kulbe H, Thillainadarasan S, Mollenkopf HJ, Zemojtel T, Taube E, Darb-Esfahani S, Mangler M, Sehouli J, Chekerov R, Braicu EI, Meyer TF, Kessler M. Stable expansion of high-grade serous ovarian cancer organoids requires a low-Wnt environment.. EMBO J 2020 Mar 16;39(6):e104013.
    doi: 10.15252/embj.2019104013pmc: PMC7073464pubmed: 32009247google scholar: lookup
  17. Zhang S, Dolgalev I, Zhang T, Ran H, Levine DA, Neel BG. Both fallopian tube and ovarian surface epithelium are cells-of-origin for high-grade serous ovarian carcinoma.. Nat Commun 2019 Nov 26;10(1):5367.
    doi: 10.1038/s41467-019-13116-2pmc: PMC6879755pubmed: 31772167google scholar: lookup
  18. Chang YH, Chu TY, Ding DC. Human fallopian tube epithelial cells exhibit stemness features, self-renewal capacity, and Wnt-related organoid formation.. J Biomed Sci 2020 Feb 8;27(1):32.
    doi: 10.1186/s12929-019-0602-1pmc: PMC7007656pubmed: 32035490google scholar: lookup
  19. Bourdon G, Cadoret V, Charpigny G, Couturier-Tarrade A, Dalbies-Tran R, Flores MJ, Froment P, Raliou M, Reynaud K, Saint-Dizier M, Jouneau A. Progress and challenges in developing organoids in farm animal species for the study of reproduction and their applications to reproductive biotechnologies.. Vet Res 2021 Mar 10;52(1):42.
    doi: 10.1186/s13567-020-00891-wpmc: PMC7944619pubmed: 33691745google scholar: lookup
  20. Thompson RE, Bouma GJ, Hollinshead FK. The Roles of Extracellular Vesicles and Organoid Models in Female Reproductive Physiology.. Int J Mol Sci 2022 Mar 16;23(6).
    doi: 10.3390/ijms23063186pmc: PMC8954697pubmed: 35328607google scholar: lookup
  21. Maenhoudt N, Defraye C, Boretto M, Jan Z, Heremans R, Boeckx B, Hermans F, Arijs I, Cox B, Van Nieuwenhuysen E, Vergote I, Van Rompuy AS, Lambrechts D, Timmerman D, Vankelecom H. Developing Organoids from Ovarian Cancer as Experimental and Preclinical Models.. Stem Cell Reports 2020 Apr 14;14(4):717-729.
  22. Nanki Y, Chiyoda T, Hirasawa A, Ookubo A, Itoh M, Ueno M, Akahane T, Kameyama K, Yamagami W, Kataoka F, Aoki D. Patient-derived ovarian cancer organoids capture the genomic profiles of primary tumours applicable for drug sensitivity and resistance testing.. Sci Rep 2020 Jul 28;10(1):12581.
    doi: 10.1038/s41598-020-69488-9pmc: PMC7387538pubmed: 32724113google scholar: lookup
  23. Thompson RE, Johnson AK, Prado TM, Premanandan C, Brown ME, Whitlock BK, Pukazhenthi BS. Dimethyl sulfoxide maintains structure and function of cryopreserved equine endometrial explants.. Cryobiology 2019 Dec;91:90-96.
  24. Thompson RE, Meyers MA, Pukazhenthi BS, Hollinshead FK. Evaluation of growth, viability, and structural integrity of equine endometrial organoids following cryopreservation.. Cryobiology 2022 Feb;104:56-62.
  25. Lange-Consiglio A, Perrini C, Albini G, Modina S, Lodde V, Orsini E, Esposti P, Cremonesi F. Oviductal microvesicles and their effect on in vitro maturation of canine oocytes.. Reproduction 2017 Aug;154(2):167-180.
    doi: 10.1530/REP-17-0117pubmed: 28652254google scholar: lookup
  26. Corning Life Sciences Organoid vs. Spheroid: Whatu2019s the Difference? [(accessed on 2 July 2021)]. Available online: https://www.corning.com/worldwide/en/products/life-sciences/resources/stories/at-the-bench/organoid-vs-spheroid-what-is-the-difference.html.
  27. Abdollahi S. Extracellular vesicles from organoids and 3D culture systems.. Biotechnol Bioeng 2021 Mar;118(3):1029-1049.
    doi: 10.1002/bit.27606pubmed: 33085083google scholar: lookup
  28. Simintiras CA, Dhakal P, Ranjit C, Fitzgerald HC, Balboula AZ, Spencer TE. Capture and metabolomic analysis of the human endometrial epithelial organoid secretome.. Proc Natl Acad Sci U S A 2021 Apr 13;118(15).
    doi: 10.1073/pnas.2026804118pmc: PMC8053979pubmed: 33876774google scholar: lookup
  29. Thu00e9ry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Baldacchino S, Bauer NN, Baxter AA, Bebawy M, Beckham C, Bedina Zavec A, Benmoussa A, Berardi AC, Bergese P, Bielska E, Blenkiron C, Bobis-Wozowicz S, Boilard E, Boireau W, Bongiovanni A, Borru00e0s FE, Bosch S, Boulanger CM, Breakefield X, Breglio AM, Brennan Mu00c1, Brigstock DR, Brisson A, Broekman ML, Bromberg JF, Bryl-Gu00f3recka P, Buch S, Buck AH, Burger D, Busatto S, Buschmann D, Bussolati B, Buzu00e1s EI, Byrd JB, Camussi G, Carter DR, Caruso S, Chamley LW, Chang YT, Chen C, Chen S, Cheng L, Chin AR, Clayton A, Clerici SP, Cocks A, Cocucci E, Coffey RJ, Cordeiro-da-Silva A, Couch Y, Coumans FA, Coyle B, Crescitelli R, Criado MF, D'Souza-Schorey C, Das S, Datta Chaudhuri A, de Candia P, De Santana EF, De Wever O, Del Portillo HA, Demaret T, Deville S, Devitt A, Dhondt B, Di Vizio D, Dieterich LC, Dolo V, Dominguez Rubio AP, Dominici M, Dourado MR, Driedonks TA, Duarte FV, Duncan HM, Eichenberger RM, Ekstru00f6m K, El Andaloussi S, Elie-Caille C, Erdbru00fcgger U, Falcu00f3n-Pu00e9rez JM, Fatima F, Fish JE, Flores-Bellver M, Fu00f6rsu00f6nits A, Frelet-Barrand A, Fricke F, Fuhrmann G, Gabrielsson S, Gu00e1mez-Valero A, Gardiner C, Gu00e4rtner K, Gaudin R, Gho YS, Giebel B, Gilbert C, Gimona M, Giusti I, Goberdhan DC, Gu00f6rgens A, Gorski SM, Greening DW, Gross JC, Gualerzi A, Gupta GN, Gustafson D, Handberg A, Haraszti RA, Harrison P, Hegyesi H, Hendrix A, Hill AF, Hochberg FH, Hoffmann KF, Holder B, Holthofer H, Hosseinkhani B, Hu G, Huang Y, Huber V, Hunt S, Ibrahim AG, Ikezu T, Inal JM, Isin M, Ivanova A, Jackson HK, Jacobsen S, Jay SM, Jayachandran M, Jenster G, Jiang L, Johnson SM, Jones JC, Jong A, Jovanovic-Talisman T, Jung S, Kalluri R, Kano SI, Kaur S, Kawamura Y, Keller ET, Khamari D, Khomyakova E, Khvorova A, Kierulf P, Kim KP, Kislinger T, Klingeborn M, Klinke DJ 2nd, Kornek M, Kosanoviu0107 MM, Kovu00e1cs u00c1F, Kru00e4mer-Albers EM, Krasemann S, Krause M, Kurochkin IV, Kusuma GD, Kuypers S, Laitinen S, Langevin SM, Languino LR, Lannigan J, Lu00e4sser C, Laurent LC, Lavieu G, Lu00e1zaro-Ibu00e1u00f1ez E, Le Lay S, Lee MS, Lee YXF, Lemos DS, Lenassi M, Leszczynska A, Li IT, Liao K, Libregts SF, Ligeti E, Lim R, Lim SK, Linu0113 A, Linnemannstu00f6ns K, Llorente A, Lombard CA, Lorenowicz MJ, Lu00f6rincz u00c1M, Lu00f6tvall J, Lovett J, Lowry MC, Loyer X, Lu Q, Lukomska B, Lunavat TR, Maas SL, Malhi H, Marcilla A, Mariani J, Mariscal J, Martens-Uzunova ES, Martin-Jaular L, Martinez MC, Martins VR, Mathieu M, Mathivanan S, Maugeri M, McGinnis LK, McVey MJ, Meckes DG Jr, Meehan KL, Mertens I, Minciacchi VR, Mu00f6ller A, Mu00f8ller Ju00f8rgensen M, Morales-Kastresana A, Morhayim J, Mullier F, Muraca M, Musante L, Mussack V, Muth DC, Myburgh KH, Najrana T, Nawaz M, Nazarenko I, Nejsum P, Neri C, Neri T, Nieuwland R, Nimrichter L, Nolan JP, Nolte-'t Hoen EN, Noren Hooten N, O'Driscoll L, O'Grady T, O'Loghlen A, Ochiya T, Olivier M, Ortiz A, Ortiz LA, Osteikoetxea X, u00d8stergaard O, Ostrowski M, Park J, Pegtel DM, Peinado H, Perut F, Pfaffl MW, Phinney DG, Pieters BC, Pink RC, Pisetsky DS, Pogge von Strandmann E, Polakovicova I, Poon IK, Powell BH, Prada I, Pulliam L, Quesenberry P, Radeghieri A, Raffai RL, Raimondo S, Rak J, Ramirez MI, Raposo G, Rayyan MS, Regev-Rudzki N, Ricklefs FL, Robbins PD, Roberts DD, Rodrigues SC, Rohde E, Rome S, Rouschop KM, Rughetti A, Russell AE, Sau00e1 P, Sahoo S, Salas-Huenuleo E, Su00e1nchez C, Saugstad JA, Saul MJ, Schiffelers RM, Schneider R, Schu00f8yen TH, Scott A, Shahaj E, Sharma S, Shatnyeva O, Shekari F, Shelke GV, Shetty AK, Shiba K, Siljander PR, Silva AM, Skowronek A, Snyder OL 2nd, Soares RP, Su00f3dar BW, Soekmadji C, Sotillo J, Stahl PD, Stoorvogel W, Stott SL, Strasser EF, Swift S, Tahara H, Tewari M, Timms K, Tiwari S, Tixeira R, Tkach M, Toh WS, Tomasini R, Torrecilhas AC, Tosar JP, Toxavidis V, Urbanelli L, Vader P, van Balkom BW, van der Grein SG, Van Deun J, van Herwijnen MJ, Van Keuren-Jensen K, van Niel G, van Royen ME, van Wijnen AJ, Vasconcelos MH, Vechetti IJ Jr, Veit TD, Vella LJ, Velot u00c9, Verweij FJ, Vestad B, Viu00f1as JL, Visnovitz T, Vukman KV, Wahlgren J, Watson DC, Wauben MH, Weaver A, Webber JP, Weber V, Wehman AM, Weiss DJ, Welsh JA, Wendt S, Wheelock AM, Wiener Z, Witte L, Wolfram J, Xagorari A, Xander P, Xu J, Yan X, Yu00e1u00f1ez-Mu00f3 M, Yin H, Yuana Y, Zappulli V, Zarubova J, u017du0117kas V, Zhang JY, Zhao Z, Zheng L, Zheutlin AR, Zickler AM, Zimmermann P, Zivkovic AM, Zocco D, Zuba-Surma EK. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines.. J Extracell Vesicles 2018;7(1):1535750.
  30. Pioltine EM, Machado MF, da Silveira JC, Fontes PK, Botigelli RC, Quaglio AEV, Costa CB, Nogueira MFG. Can extracellular vesicles from bovine ovarian follicular fluid modulate the in-vitro oocyte meiosis progression similarly to the CNP-NPR2 system?. Theriogenology 2020 Nov;157:210-217.
  31. de Almeida Monteiro Melo Ferraz M, Fujihara M, Nagashima JB, Noonan MJ, Inoue-Murayama M, Songsasen N. Follicular extracellular vesicles enhance meiotic resumption of domestic cat vitrified oocytes.. Sci Rep 2020 May 25;10(1):8619.
    doi: 10.1038/s41598-020-65497-wpmc: PMC7248092pubmed: 32451384google scholar: lookup
  32. Almiu00f1ana C, Corbin E, Tsikis G, Alcu00e2ntara-Neto AS, Labas V, Reynaud K, Galio L, Uzbekov R, Garanina AS, Druart X, Mermillod P. Oviduct extracellular vesicles protein content and their role during oviduct-embryo cross-talk.. Reproduction 2017 Sep;154(3):153-168.
    doi: 10.1530/REP-17-0054pubmed: 28630101google scholar: lookup
  33. Lopera-Vasquez R, Hamdi M, Maillo V, Gutierrez-Adan A, Bermejo-Alvarez P, Ramu00edrez Mu00c1, Yu00e1u00f1ez-Mu00f3 M, Rizos D. Effect of bovine oviductal extracellular vesicles on embryo development and quality in vitro.. Reproduction 2017 Apr;153(4):461-470.
    doi: 10.1530/REP-16-0384pubmed: 28104825google scholar: lookup
  34. Banliat C, Le Bourhis D, Bernardi O, Tomas D, Labas V, Salvetti P, Guyonnet B, Mermillod P, Saint-Dizier M. Oviduct Fluid Extracellular Vesicles Change the Phospholipid Composition of Bovine Embryos Developed In Vitro.. Int J Mol Sci 2020 Jul 27;21(15).
    doi: 10.3390/ijms21155326pmc: PMC7432015pubmed: 32727074google scholar: lookup
  35. Alcu00e2ntara-Neto AS, Schmaltz L, Caldas E, Blache MC, Mermillod P, Almiu00f1ana C. Porcine oviductal extracellular vesicles interact with gametes and regulate sperm motility and survival.. Theriogenology 2020 Oct 1;155:240-255.
  36. Bathala P, Fereshteh Z, Li K, Al-Dossary AA, Galileo DS, Martin-DeLeon PA. Oviductal extracellular vesicles (oviductosomes, OVS) are conserved in humans: murine OVS play a pivotal role in sperm capacitation and fertility.. Mol Hum Reprod 2018 Mar 1;24(3):143-157.
    doi: 10.1093/molehr/gay003pmc: PMC6454811pubmed: 29370405google scholar: lookup
  37. de Almeida Monteiro Melo Ferraz M, Nagashima JB, Noonan MJ, Crosier AE, Songsasen N. Oviductal Extracellular Vesicles Improve Post-Thaw Sperm Function in Red Wolves and Cheetahs.. Int J Mol Sci 2020 May 25;21(10).
    doi: 10.3390/ijms21103733pmc: PMC7279450pubmed: 32466321google scholar: lookup
  38. Lee SH, Oh HJ, Kim MJ, Lee BC. Canine oviductal exosomes improve oocyte development via EGFR/MAPK signaling pathway.. Reproduction 2020 Oct;160(4):613-625.
    doi: 10.1530/REP-19-0600pubmed: 32698140google scholar: lookup
  39. Qiao F, Ge H, Ma X, Zhang Y, Zuo Z, Wang M, Zhang Y, Wang Y. Bovine uterus-derived exosomes improve developmental competence of somatic cell nuclear transfer embryos.. Theriogenology 2018 Jul 1;114:199-205.

Citations

This article has been cited 1 times.
  1. Penning LC, van den Boom R. Companion animal organoid technology to advance veterinary regenerative medicine.. Front Vet Sci 2023;10:1032835.
    doi: 10.3389/fvets.2023.1032835pubmed: 37008367google scholar: lookup