ISRN veterinary science2014; 2014; 409547; doi: 10.1155/2014/409547

Expression and regulation of facilitative glucose transporters in equine insulin-sensitive tissue: from physiology to pathology.

Abstract: Glucose uptake is the rate-limiting step in glucose utilization in mammalians and is tightly regulated by a family of specialized proteins, called the facilitated glucose transporters (GLUTs/SLC2). GLUT4, the major isoform in insulin-responsive tissue, translocates from an intracellular pool to the cell surface and as such determines insulin-stimulated glucose uptake. However, despite intensive research over 50 years, the insulin-dependent and -independent pathways that mediate GLUT4 translocation are not fully elucidated in any species. Insulin resistance (IR) is one of the hallmarks of equine metabolic syndrome and is the most common metabolic predisposition for laminitis in horses. IR is characterized by the impaired ability of insulin to stimulate glucose disposal into insulin-sensitive tissues. Similar to other species, the functional capability of the insulin-responsive GLUTs is impaired in muscle and adipose tissue during IR in horses. However, the molecular mechanisms of altered glucose transport remain elusive in all species, and there is still much to learn about the physiological and pathophysiological functions of the GLUT family members, especially in regard to class III. Since GLUTs are key regulators of whole-body glucose homeostasis, they have received considerable attention as potential therapeutic targets to treat metabolic disorders in human and equine patients.
Publication Date: 2014-03-04 PubMed ID: 24977043PubMed Central: PMC4060548DOI: 10.1155/2014/409547Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article
  • Review

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

The abstract discusses glucose uptake and its regulation by facilitated glucose transporters (GLUTs/SLC2) in mammals, mainly focusing on horses. It highlights the central role of GLUT4, a transporter protein, in insulin-stimulated glucose uptake, the insulin-dependent and -independent pathways that mediate its functioning, and how this process becomes impaired in conditions like insulin resistance (IR), a common issue linked to metabolic disorders in horses.

Understanding Glucose Uptake and GLUTs

  • The article puts its primary focus on glucose uptake, which is the process of taking in glucose from the bloodstream into the body tissues. This process is critical for glucose utilization and is regulated by a family of proteins known as facilitated glucose transporters (GLUTs/SLC2).
  • Among this family of transport proteins, GLUT4 is highlighted as the major version present in insulin-responsive tissues. GLUT4’s function is to move from inside the cell to the cell surface, a process responsible for insulin-stirred glucose uptake.
  • Despite extensive research over the past five decades, the article points out that the specific pathways—both those dependent on and independent of insulin—that mediate GLUT4’s function are not fully understood in any species.

Insulin Resistance & GLUTs

  • The abstract introduces insulin resistance (IR) as a primary characteristic of the equine metabolic syndrome, a disease condition affecting horses. Horses with IR are identified through their inability to efficiently use insulin to dispose of glucose into insulin-sensitive tissues.
  • Just like in other species, horses with IR exhibit a reduced ability of the insulin-responsive GLUTs to function effectively in muscle and fat tissues. Yet, the molecular underpinnings of this compromised glucose transport remain a mystery across all species.
  • The paper further suggests that there is more to be understood about the physiological and pathological functions of different kinds of GLUTs, particularly regarding class III.

GLUTs as Therapeutic Targets

  • Finally, the paper mentions that given the central role GLUTs play in maintaining glucose balance in the body, they are often considered promising therapeutic targets for treating metabolic disorders in both human and equine patients.

Cite This Article

APA
Lacombe VA. (2014). Expression and regulation of facilitative glucose transporters in equine insulin-sensitive tissue: from physiology to pathology. ISRN Vet Sci, 2014, 409547. https://doi.org/10.1155/2014/409547

Publication

ISSN: 2090-4452
NlmUniqueID: 101568322
Country: Egypt
Language: English
Volume: 2014
Pages: 409547
PII: 409547

Researcher Affiliations

Lacombe, Vu00e9ronique A
  • Department of Physiology Sciences, Center of Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.

Grant Funding

  • K01 RR023083 / NCRR NIH HHS

References

This article includes 156 references
  1. Thorens B, Mueckler M. Glucose transporters in the 21st Century.. Am J Physiol Endocrinol Metab 2010 Feb;298(2):E141-5.
    pmc: PMC2822486pubmed: 20009031doi: 10.1152/ajpendo.00712.2009google scholar: lookup
  2. van der Kolk JH, Rijnen KE, Rey F, de Graaf-Roelfsema E, Grinwis GC, Wijnberg ID. Evaluation of glucose metabolism in three horses with lower motor neuron degeneration.. Am J Vet Res 2005 Feb;66(2):271-6.
    pubmed: 15757127doi: 10.2460/ajvr.2005.66.271google scholar: lookup
  3. Grueter CE, van Rooij E, Johnson BA, DeLeon SM, Sutherland LB, Qi X, Gautron L, Elmquist JK, Bassel-Duby R, Olson EN. A cardiac microRNA governs systemic energy homeostasis by regulation of MED13.. Cell 2012 Apr 27;149(3):671-83.
    pmc: PMC3340581pubmed: 22541436doi: 10.1016/j.cell.2012.03.029google scholar: lookup
  4. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart.. Physiol Rev 2005 Jul;85(3):1093-129.
    pubmed: 15987803doi: 10.1152/physrev.00006.2004google scholar: lookup
  5. Schwenk RW, Luiken JJ, Bonen A, Glatz JF. Regulation of sarcolemmal glucose and fatty acid transporters in cardiac disease.. Cardiovasc Res 2008 Jul 15;79(2):249-58.
    pubmed: 18469026doi: 10.1093/cvr/cvn116google scholar: lookup
  6. Bogan JS. Regulation of glucose transporter translocation in health and diabetes.. Annu Rev Biochem 2012;81:507-32.
  7. Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters.. Mol Aspects Med 2013 Apr-Jun;34(2-3):121-38.
    pmc: PMC4104978pubmed: 23506862doi: 10.1016/j.mam.2012.07.001google scholar: lookup
  8. Zhao FQ, Keating AF. Expression and regulation of glucose transporters in the bovine mammary gland.. J Dairy Sci 2007 Jun;90 Suppl 1:E76-86.
    pubmed: 17517754doi: 10.3168/jds.2006-470google scholar: lookup
  9. Dyer J, Fernandez-Castau00f1o Merediz E, Salmon KS, Proudman CJ, Edwards GB, Shirazi-Beechey SP. Molecular characterisation of carbohydrate digestion and absorption in equine small intestine.. Equine Vet J 2002 Jul;34(4):349-58.
    pubmed: 12117106doi: 10.2746/042516402776249209google scholar: lookup
  10. Dyer J, Al-Rammahi M, Waterfall L, Salmon KS, Geor RJ, Bouru00e9 L, Edwards GB, Proudman CJ, Shirazi-Beechey SP. Adaptive response of equine intestinal Na+/glucose co-transporter (SGLT1) to an increase in dietary soluble carbohydrate.. Pflugers Arch 2009 Jun;458(2):419-30.
    pubmed: 19048283doi: 10.1007/s00424-008-0620-4google scholar: lookup
  11. Pao SS, Paulsen IT, Saier MH Jr. Major facilitator superfamily.. Microbiol Mol Biol Rev 1998 Mar;62(1):1-34.
    pmc: PMC98904pubmed: 9529885doi: 10.1128/MMBR.62.1.1-34.1998google scholar: lookup
  12. Schmidt S, Joost HG, Schu00fcrmann A. GLUT8, the enigmatic intracellular hexose transporter.. Am J Physiol Endocrinol Metab 2009 Apr;296(4):E614-8.
    pubmed: 19176349doi: 10.1152/ajpendo.91019.2008google scholar: lookup
  13. Douard V, Ferraris RP. Regulation of the fructose transporter GLUT5 in health and disease.. Am J Physiol Endocrinol Metab 2008 Aug;295(2):E227-37.
    pmc: PMC2652499pubmed: 18398011doi: 10.1152/ajpendo.90245.2008google scholar: lookup
  14. Joost HG, Thorens B. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review).. Mol Membr Biol 2001 Oct-Dec;18(4):247-56.
    pubmed: 11780753doi: 10.1080/09687680110090456google scholar: lookup
  15. Karnieli E, Armoni M. Transcriptional regulation of the insulin-responsive glucose transporter GLUT4 gene: from physiology to pathology.. Am J Physiol Endocrinol Metab 2008 Jul;295(1):E38-45.
    pubmed: 18492767doi: 10.1152/ajpendo.90306.2008google scholar: lookup
  16. Arai T, Washizu T, Sagara M, Sako T, Nigi H, Matsumoto H, Sasaki M, Tomoda I. D-glucose transport and glycolytic enzyme activities in erythrocytes of dogs, pigs, cats, horses, cattle and sheep.. Res Vet Sci 1995 Mar;58(2):195-6.
    pubmed: 7761703doi: 10.1016/0034-5288(95)90078-0google scholar: lookup
  17. Asplin KE, Curlewis JD, McGowan CM, Pollitt CC, Sillence MN. Glucose transport in the equine hoof.. Equine Vet J 2011 Mar;43(2):196-201.
  18. de Laat CKC MA, Pollitt CC, McGowan CM, Sillence MN, Lacombe VA. Regulation of glucose transport during equine hyperinsulinaemia. Proceeding of the American College of Veterinary Internal Medecine Forum; 2013.
  19. Mobasheri A, Vannucci SJ, Bondy CA, Carter SD, Innes JF, Arteaga MF, Trujillo E, Ferraz I, Shakibaei M, Martu00edn-Vasallo P. Glucose transport and metabolism in chondrocytes: a key to understanding chondrogenesis, skeletal development and cartilage degradation in osteoarthritis.. Histol Histopathol 2002 Oct;17(4):1239-67.
    pubmed: 12371151doi: 10.14670/HH-17.1239google scholar: lookup
  20. Phillips T, Ferraz I, Bell S, Clegg PD, Carter SD, Mobasheri A. Differential regulation of the GLUT1 and GLUT3 glucose transporters by growth factors and pro-inflammatory cytokines in equine articular chondrocytes.. Vet J 2005 Mar;169(2):216-22.
    pubmed: 15727913doi: 10.1016/j.tvjl.2004.01.026google scholar: lookup
  21. Benders NA, Dyer J, Wijnberg ID, Shirazi-Beechey SP, van der Kolk JH. Evaluation of glucose tolerance and intestinal luminal membrane glucose transporter function in horses with equine motor neuron disease.. Am J Vet Res 2005 Jan;66(1):93-9.
    pubmed: 15691042doi: 10.2460/ajvr.2005.66.93google scholar: lookup
  22. Merediz EF, Dyer J, Salmon KS, Shirazi-Beechey SP. Molecular characterisation of fructose transport in equine small intestine.. Equine Vet J 2004 Sep;36(6):532-8.
    pubmed: 15460079doi: 10.2746/0425164044877378google scholar: lookup
  23. Bryant NJ, Govers R, James DE. Regulated transport of the glucose transporter GLUT4.. Nat Rev Mol Cell Biol 2002 Apr;3(4):267-77.
    pubmed: 11994746doi: 10.1038/nrm782google scholar: lookup
  24. Zisman A, Peroni OD, Abel ED, Michael MD, Mauvais-Jarvis F, Lowell BB, Wojtaszewski JF, Hirshman MF, Virkamaki A, Goodyear LJ, Kahn CR, Kahn BB. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance.. Nat Med 2000 Aug;6(8):924-8.
    pubmed: 10932232doi: 10.1038/78693google scholar: lookup
  25. Nout YS, Hinchcliff KW, Jose-Cunilleras E, Dearth LR, Sivko GS, DeWille JW. Effect of moderate exercise immediately followed by induced hyperglycemia on gene expression and content of the glucose transporter-4 protein in skeletal muscles of horses.. Am J Vet Res 2003 Nov;64(11):1401-8.
    pubmed: 14620777doi: 10.2460/ajvr.2003.64.1401google scholar: lookup
  26. Jose-Cunilleras E, Hayes KA, Toribio RE, Mathes LE, Hinchcliff KW. Expression of equine glucose transporter type 4 in skeletal muscle after glycogen-depleting exercise.. Am J Vet Res 2005 Mar;66(3):379-85.
    pubmed: 15822579doi: 10.2460/ajvr.2005.66.379google scholar: lookup
  27. van Dam KG, van Breda E, Schaart G, van Ginneken MM, Wijnberg ID, de Graaf-Roelfsema E, van der Kolk JH, Keizer HA. Investigation of the expression and localization of glucose transporter 4 and fatty acid translocase/CD36 in equine skeletal muscle.. Am J Vet Res 2004 Jul;65(7):951-6.
    pubmed: 15281654doi: 10.2460/ajvr.2004.65.951google scholar: lookup
  28. Waller AP, Kohler K, Burns TA, Mudge MC, Belknap JK, Lacombe VA. Naturally occurring compensated insulin resistance selectively alters glucose transporters in visceral and subcutaneous adipose tissues without change in AS160 activation.. Biochim Biophys Acta 2011 Sep;1812(9):1098-103.
  29. Mobasheri A, Critchlow K, Clegg PD, Carter SD, Canessa CM. Chronic equine laminitis is characterised by loss of GLUT1, GLUT4 and ENaC positive laminar keratinocytes.. Equine Vet J 2004 Apr;36(3):248-54.
    pubmed: 15147133doi: 10.2746/0425164044877224google scholar: lookup
  30. Wattle O, Pollitt CC. Lamellar metabolism. Clinical Techniques in Equine Practice. 2004;3(1):22u201333.
  31. Katz EB, Stenbit AE, Hatton K, DePinho R, Charron MJ. Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4.. Nature 1995 Sep 14;377(6545):151-5.
    pubmed: 7675081doi: 10.1038/377151a0google scholar: lookup
  32. D'Cruz SC, Jubendradass R, Mathur PP. Bisphenol A induces oxidative stress and decreases levels of insulin receptor substrate 2 and glucose transporter 8 in rat testis.. Reprod Sci 2012 Feb;19(2):163-72.
    pubmed: 22101236doi: 10.1177/1933719111415547google scholar: lookup
  33. Dawson PA, Mychaleckyj JC, Fossey SC, Mihic SJ, Craddock AL, Bowden DW. Sequence and functional analysis of GLUT10: a glucose transporter in the Type 2 diabetes-linked region of chromosome 20q12-13.1.. Mol Genet Metab 2001 Sep-Oct;74(1-2):186-99.
    pubmed: 11592815doi: 10.1006/mgme.2001.3212google scholar: lookup
  34. Gu00f3mez O, Ballester-Lurbe B, Mesonero JE, Terrado J. Glucose transporters GLUT4 and GLUT8 are upregulated after facial nerve axotomy in adult mice.. J Anat 2011 Oct;219(4):525-30.
  35. Scheepers A, Joost HG, Schu00fcrmann A. The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function.. JPEN J Parenter Enteral Nutr 2004 Sep-Oct;28(5):364-71.
    pubmed: 15449578doi: 10.1177/0148607104028005364google scholar: lookup
  36. Purcell SH, Aerni-Flessner LB, Willcockson AR, Diggs-Andrews KA, Fisher SJ, Moley KH. Improved insulin sensitivity by GLUT12 overexpression in mice.. Diabetes 2011 May;60(5):1478-82.
    pmc: PMC3292321pubmed: 21441439doi: 10.2337/db11-0033google scholar: lookup
  37. Waller AP, George M, Kalyanasundaram A, Kang C, Periasamy M, Hu K, Lacombe VA. GLUT12 functions as a basal and insulin-independent glucose transporter in the heart.. Biochim Biophys Acta 2013 Jan;1832(1):121-7.
    pubmed: 23041416doi: 10.1016/j.bbadis.2012.09.013google scholar: lookup
  38. Aerni-Flessner L, Abi-Jaoude M, Koenig A, Payne M, Hruz PW. GLUT4, GLUT1, and GLUT8 are the dominant GLUT transcripts expressed in the murine left ventricle.. Cardiovasc Diabetol 2012 Jun 8;11:63.
    pmc: PMC3416696pubmed: 22681646doi: 10.1186/1475-2840-11-63google scholar: lookup
  39. Carayannopoulos MO, Chi MM, Cui Y, Pingsterhaus JM, McKnight RA, Mueckler M, Devaskar SU, Moley KH. GLUT8 is a glucose transporter responsible for insulin-stimulated glucose uptake in the blastocyst.. Proc Natl Acad Sci U S A 2000 Jun 20;97(13):7313-8.
    pmc: PMC16542pubmed: 10860996doi: 10.1073/pnas.97.13.7313google scholar: lookup
  40. Brozinick JT Jr, Etgen GJ Jr, Yaspelkis BB 3rd, Ivy JL. The effects of muscle contraction and insulin on glucose-transporter translocation in rat skeletal muscle.. Biochem J 1994 Feb 1;297 ( Pt 3)(Pt 3):539-45.
    pmc: PMC1137867pubmed: 8110191doi: 10.1042/bj2970539google scholar: lookup
  41. Goodyear LJ, Hirshman MF, Horton ES. Exercise-induced translocation of skeletal muscle glucose transporters.. Am J Physiol 1991 Dec;261(6 Pt 1):E795-9.
  42. Hayashi T, Wojtaszewski JF, Goodyear LJ. Exercise regulation of glucose transport in skeletal muscle.. Am J Physiol 1997 Dec;273(6):E1039-51.
  43. Kolter T, Uphues I, Wichelhaus A, Reinauer H, Eckel J. Contraction-induced translocation of the glucose transporter Glut4 in isolated ventricular cardiomyocytes.. Biochem Biophys Res Commun 1992 Dec 15;189(2):1207-14.
    pubmed: 1472028doi: 10.1016/0006-291x(92)92333-sgoogle scholar: lookup
  44. Till M, Kolter T, Eckel J. Molecular mechanisms of contraction-induced translocation of GLUT4 in isolated cardiomyocytes.. Am J Cardiol 1997 Aug 4;80(3A):85A-89A.
    pubmed: 9293959doi: 10.1016/s0002-9149(97)00461-xgoogle scholar: lookup
  45. Till M, Ouwens DM, Kessler A, Eckel J. Molecular mechanisms of contraction-regulated cardiac glucose transport.. Biochem J 2000 Mar 15;346 Pt 3(Pt 3):841-7.
    pmc: PMC1220921pubmed: 10698715
  46. Zorzano A, Sevilla L, Camps M, Becker C, Meyer J, Kammermeier H, Muu00f1oz P, Gumu00e0 A, Testar X, Palacu00edn M, Blasi J, Fischer Y. Regulation of glucose transport, and glucose transporters expression and trafficking in the heart: studies in cardiac myocytes.. Am J Cardiol 1997 Aug 4;80(3A):65A-76A.
    pubmed: 9293957doi: 10.1016/s0002-9149(97)00459-1google scholar: lookup
  47. Lacombe VA, Hinchcliff KW, Taylor LE. Interactions of substrate availability, exercise performance, and nutrition with muscle glycogen metabolism in horses.. J Am Vet Med Assoc 2003 Dec 1;223(11):1576-85.
    pubmed: 14664443doi: 10.2460/javma.2003.223.1576google scholar: lookup
  48. Klip A. The many ways to regulate glucose transporter 4.. Appl Physiol Nutr Metab 2009 Jun;34(3):481-7.
    pubmed: 19448718doi: 10.1139/H09-047google scholar: lookup
  49. Cushman SW, Wardzala LJ. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane.. J Biol Chem 1980 May 25;255(10):4758-62.
    pubmed: 6989818
  50. Lacombe VA. Glucose metabolism in insulin-sensitive tissue: from health to disease (vol 31, pg 578, 2011) Journal of Equine Veterinary Science. 2012;32(2):116u2013116.
  51. Larance M, Ramm G, Stu00f6ckli J, van Dam EM, Winata S, Wasinger V, Simpson F, Graham M, Junutula JR, Guilhaus M, James DE. Characterization of the role of the Rab GTPase-activating protein AS160 in insulin-regulated GLUT4 trafficking.. J Biol Chem 2005 Nov 11;280(45):37803-13.
    pubmed: 16154996doi: 10.1074/jbc.M503897200google scholar: lookup
  52. Kramer HF, Witczak CA, Fujii N, Jessen N, Taylor EB, Arnolds DE, Sakamoto K, Hirshman MF, Goodyear LJ. Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle.. Diabetes 2006 Jul;55(7):2067-76.
    pubmed: 16804077doi: 10.2337/db06-0150google scholar: lookup
  53. Kramer HF, Taylor EB, Witczak CA, Fujii N, Hirshman MF, Goodyear LJ. Calmodulin-binding domain of AS160 regulates contraction- but not insulin-stimulated glucose uptake in skeletal muscle.. Diabetes 2007 Dec;56(12):2854-62.
    pubmed: 17717281doi: 10.2337/db07-0681google scholar: lookup
  54. Waller AP, Burns TA, Mudge MC, Belknap JK, Lacombe VA. Insulin resistance selectively alters cell-surface glucose transporters but not their total protein expression in equine skeletal muscle.. J Vet Intern Med 2011 Mar-Apr;25(2):315-21.
  55. Talior-Volodarsky I, Randhawa VK, Zaid H, Klip A. Alpha-actinin-4 is selectively required for insulin-induced GLUT4 translocation.. J Biol Chem 2008 Sep 12;283(37):25115-25123.
    pubmed: 18617516doi: 10.1074/jbc.M801750200google scholar: lookup
  56. Huang G, Ge G, Wang D, Gopalakrishnan B, Butz DH, Colman RJ, Nagy A, Greenspan DS. u03b13(V) collagen is critical for glucose homeostasis in mice due to effects in pancreatic islets and peripheral tissues.. J Clin Invest 2011 Feb;121(2):769-83.
    pmc: PMC3026738pubmed: 21293061doi: 10.1172/JCI45096google scholar: lookup
  57. Douen AG, Ramlal T, Cartee GD, Klip A. Exercise modulates the insulin-induced translocation of glucose transporters in rat skeletal muscle.. FEBS Lett 1990 Feb 26;261(2):256-60.
    pubmed: 2178971doi: 10.1016/0014-5793(90)80566-2google scholar: lookup
  58. Wright DC, Geiger PC, Holloszy JO, Han DH. Contraction- and hypoxia-stimulated glucose transport is mediated by a Ca2+-dependent mechanism in slow-twitch rat soleus muscle.. Am J Physiol Endocrinol Metab 2005 Jun;288(6):E1062-6.
    pubmed: 15657088doi: 10.1152/ajpendo.00561.2004google scholar: lookup
  59. Holloszy JO, Narahara HT. Enhanced permeability to sugar associated with muscle contraction. Studies of the role of Ca++.. J Gen Physiol 1967 Jan;50(3):551-62.
    pmc: PMC2225682pubmed: 11526846doi: 10.1085/jgp.50.3.551google scholar: lookup
  60. Youn JH, Gulve EA, Holloszy JO. Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction.. Am J Physiol 1991 Mar;260(3 Pt 1):C555-61.
  61. Wright DC, Fick CA, Olesen JB, Lim K, Barnes BR, Craig BW. A role for calcium/calmodulin kinase in insulin stimulated glucose transport.. Life Sci 2004 Jan 2;74(7):815-25.
    pubmed: 14659970doi: 10.1016/j.lfs.2003.06.041google scholar: lookup
  62. Jessen N, Goodyear LJ. Contraction signaling to glucose transport in skeletal muscle.. J Appl Physiol (1985) 2005 Jul;99(1):330-7.
  63. Treebak JT, Taylor EB, Witczak CA, An D, Toyoda T, Koh HJ, Xie J, Feener EP, Wojtaszewski JF, Hirshman MF, Goodyear LJ. Identification of a novel phosphorylation site on TBC1D4 regulated by AMP-activated protein kinase in skeletal muscle.. Am J Physiol Cell Physiol 2010 Feb;298(2):C377-85.
    pmc: PMC2822490pubmed: 19923418doi: 10.1152/ajpcell.00297.2009google scholar: lookup
  64. Lacombe VA, Hinchcliff KW, Devor ST. Effects of exercise and glucose administration on content of insulin-sensitive glucose transporter in equine skeletal muscle.. Am J Vet Res 2003 Dec;64(12):1500-6.
    pubmed: 14672428doi: 10.2460/ajvr.2003.64.1500google scholar: lookup
  65. Robinson MA, Liu Y, Uboh CE, Soma LR. Exercise increases plasma AICAR (5-amino-4-imidazolecarboxamide riboside) in the horse. The FASEB Journal. 2012;26
  66. Lacombe VA, Hinchcliff KW, Geor RJ, Baskin CR. Muscle glycogen depletion and subsequent replenishment affect anaerobic capacity of horses.. J Appl Physiol (1985) 2001 Oct;91(4):1782-90.
    pubmed: 11568163doi: 10.1152/jappl.2001.91.4.1782google scholar: lookup
  67. Lacombe VA, Hinchcliff KW, Kohn CW, Devor ST, Taylor LE. Effects of feeding meals with various soluble-carbohydrate content on muscle glycogen synthesis after exercise in horses.. Am J Vet Res 2004 Jul;65(7):916-23.
    pubmed: 15281649doi: 10.2460/ajvr.2004.65.916google scholar: lookup
  68. Votion DM, Navet R, Lacombe VA, et al. Muscle energetics in exercising horses. Equine and Comparative Exercise Physiology. 2007;4(3/4):105u2013118.
  69. Ivy JL, Kuo CH. Regulation of GLUT4 protein and glycogen synthase during muscle glycogen synthesis after exercise.. Acta Physiol Scand 1998 Mar;162(3):295-304.
  70. Jose-Cunilleras E, Hinchcliff KW, Lacombe VA, Sams RA, Kohn CW, Taylor LE, Devor ST. Ingestion of starch-rich meals after exercise increases glucose kinetics but fails to enhance muscle glycogen replenishment in horses.. Vet J 2006 May;171(3):468-77.
    pubmed: 16624713doi: 10.1016/j.tvjl.2005.02.002google scholar: lookup
  71. Duehlmeier R, Hacker A, Widdel-Bigdely A, von Engelhardt W, Sallmann HP. Insulin stimulates GLUT4 translocation in the semitendinosus muscle of Shetland ponies.. Vet J 2010 May;184(2):176-81.
    pubmed: 19278877doi: 10.1016/j.tvjl.2009.01.024google scholar: lookup
  72. Ryder JW, Yang J, Galuska D, Rincu00f3n J, Bju00f6rnholm M, Krook A, Lund S, Pedersen O, Wallberg-Henriksson H, Zierath JR, Holman GD. Use of a novel impermeable biotinylated photolabeling reagent to assess insulin- and hypoxia-stimulated cell surface GLUT4 content in skeletal muscle from type 2 diabetic patients.. Diabetes 2000 Apr;49(4):647-54.
    pubmed: 10871204doi: 10.2337/diabetes.49.4.647google scholar: lookup
  73. Suagee JK, Corl BA, Hulver MW, McCutcheon LJ, Geor RJ. Effects of hyperinsulinemia on glucose and lipid transporter expression in insulin-sensitive horses.. Domest Anim Endocrinol 2011 Apr;40(3):173-81.
  74. Abel ED, Peroni O, Kim JK, Kim YB, Boss O, Hadro E, Minnemann T, Shulman GI, Kahn BB. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver.. Nature 2001 Feb 8;409(6821):729-33.
    pubmed: 11217863doi: 10.1038/35055575google scholar: lookup
  75. Virtanen KA, Lu00f6nnroth P, Parkkola R, Peltoniemi P, Asola M, Viljanen T, Tolvanen T, Knuuti J, Ru00f6nnemaa T, Huupponen R, Nuutila P. Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans.. J Clin Endocrinol Metab 2002 Aug;87(8):3902-10.
    pubmed: 12161530doi: 10.1210/jcem.87.8.8761google scholar: lookup
  76. MacLaren R, Cui W, Simard S, Cianflone K. Influence of obesity and insulin sensitivity on insulin signaling genes in human omental and subcutaneous adipose tissue.. J Lipid Res 2008 Feb;49(2):308-23.
    pubmed: 17986714doi: 10.1194/jlr.M700199-JLR200google scholar: lookup
  77. Annandale EJ, Valberg SJ, Mickelson JR, Seaquist ER. Insulin sensitivity and skeletal muscle glucose transport in horses with equine polysaccharide storage myopathy.. Neuromuscul Disord 2004 Oct;14(10):666-74.
    pubmed: 15351424doi: 10.1016/j.nmd.2004.05.007google scholar: lookup
  78. Chagas LM, Lucy MC, Back PJ, Blache D, Lee JM, Gore PJ, Sheahan AJ, Roche JR. Insulin resistance in divergent strains of Holstein-Friesian dairy cows offered fresh pasture and increasing amounts of concentrate in early lactation.. J Dairy Sci 2009 Jan;92(1):216-22.
    pubmed: 19109281doi: 10.3168/jds.2008-1329google scholar: lookup
  79. Ohtsuka H, Koiwa M, Hatsugaya A, Kudo K, Hoshi F, Itoh N, Yokota H, Okada H, Kawamura S. Relationship between serum TNF activity and insulin resistance in dairy cows affected with naturally occurring fatty liver.. J Vet Med Sci 2001 Sep;63(9):1021-5.
    pubmed: 11642272doi: 10.1292/jvms.63.1021google scholar: lookup
  80. Feldhahn JR, Rand JS, Martin G. Insulin sensitivity in normal and diabetic cats.. J Feline Med Surg 1999 Jun;1(2):107-15.
    pubmed: 11919024doi: 10.1016/S1098-612X(99)90067-0google scholar: lookup
  81. German AJ, Hervera M, Hunter L, Holden SL, Morris PJ, Biourge V, Trayhurn P. Improvement in insulin resistance and reduction in plasma inflammatory adipokines after weight loss in obese dogs.. Domest Anim Endocrinol 2009 Nov;37(4):214-26.
  82. Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus--present and future perspectives.. Nat Rev Endocrinol 2011 Nov 8;8(4):228-36.
    pubmed: 22064493doi: 10.1038/nrendo.2011.183google scholar: lookup
  83. Tabu00e1k AG, Herder C, Rathmann W, Brunner EJ, Kivimu00e4ki M. Prediabetes: a high-risk state for diabetes development.. Lancet 2012 Jun 16;379(9833):2279-90.
  84. Durham AE, Hughes KJ, Cottle HJ, Rendle DI, Boston RC. Type 2 diabetes mellitus with pancreatic beta cell dysfunction in 3 horses confirmed with minimal model analysis.. Equine Vet J 2009 Dec;41(9):924-9.
    pubmed: 20383993doi: 10.2746/042516409x452152google scholar: lookup
  85. Frank N, Geor RJ, Bailey SR, Durham AE, Johnson PJ. Equine metabolic syndrome.. J Vet Intern Med 2010 May-Jun;24(3):467-75.
  86. Geor RJ, Harris P. Dietary management of obesity and insulin resistance: countering risk for laminitis.. Vet Clin North Am Equine Pract 2009 Apr;25(1):51-65, vi.
    pubmed: 19303550doi: 10.1016/j.cveq.2009.02.001google scholar: lookup
  87. Geor R, Frank N. Metabolic syndrome-From human organ disease to laminar failure in equids.. Vet Immunol Immunopathol 2009 Jun 15;129(3-4):151-4.
    pubmed: 19110319doi: 10.1016/j.vetimm.2008.11.012google scholar: lookup
  88. Johnson PJ, Wiedmeyer CE, LaCarrubba A, Ganjam VK, Messer NT 4th. Laminitis and the equine metabolic syndrome.. Vet Clin North Am Equine Pract 2010 Aug;26(2):239-55.
    pubmed: 20699172doi: 10.1016/j.cveq.2010.04.004google scholar: lookup
  89. Frank N, Elliott SB, Brandt LE, Keisler DH. Physical characteristics, blood hormone concentrations, and plasma lipid concentrations in obese horses with insulin resistance.. J Am Vet Med Assoc 2006 May 1;228(9):1383-90.
    pubmed: 16649943doi: 10.2460/javma.228.9.1383google scholar: lookup
  90. Treiber KH, Kronfeld DS, Hess TM, Byrd BM, Splan RK, Staniar WB. Evaluation of genetic and metabolic predispositions and nutritional risk factors for pasture-associated laminitis in ponies.. J Am Vet Med Assoc 2006 May 15;228(10):1538-45.
    pubmed: 16677122doi: 10.2460/javma.228.10.1538google scholar: lookup
  91. Geor RJ, Thatcher CD, Pleasant RS, Elvinger F, Gay L, Werre SR. Prevalence of hyperinsulinemia in mature horses: relationship to adiposity. Journal of Veterinary Internal Medicine. 2007;21(3):p. 601.
  92. Hoffman RM, Boston RC, Stefanovski D, Kronfeld DS, Harris PA. Obesity and diet affect glucose dynamics and insulin sensitivity in Thoroughbred geldings.. J Anim Sci 2003 Sep;81(9):2333-42.
    pubmed: 12968709doi: 10.2527/2003.8192333xgoogle scholar: lookup
  93. George LA, Staniar WB, Treiber KH, Harris PA, Geor RJ. Insulin sensitivity and glucose dynamics during pre-weaning foal development and in response to maternal diet composition.. Domest Anim Endocrinol 2009 Jul;37(1):23-9.
  94. Ralston SL, Nockels CF, Squires EL. Differences in diagnostic test results and hematologic data between aged and young horses.. Am J Vet Res 1988 Aug;49(8):1387-92.
    pubmed: 3052193
  95. Bailey SR, Habershon-Butcher JL, Ransom KJ, Elliott J, Menzies-Gow NJ. Hypertension and insulin resistance in a mixed-breed population of ponies predisposed to laminitis.. Am J Vet Res 2008 Jan;69(1):122-9.
    pubmed: 18167097doi: 10.2460/ajvr.69.1.122google scholar: lookup
  96. Bailey SR, Menzies-Gow NJ, Harris PA, Habershon-Butcher JL, Crawford C, Berhane Y, Boston RC, Elliott J. Effect of dietary fructans and dexamethasone administration on the insulin response of ponies predisposed to laminitis.. J Am Vet Med Assoc 2007 Nov 1;231(9):1365-73.
    pubmed: 17975996doi: 10.2460/javma.231.9.1365google scholar: lookup
  97. Kitamura Y, Accili D. New insights into the integrated physiology of insulin action.. Rev Endocr Metab Disord 2004 May;5(2):143-9.
  98. Handberg A, Vaag A, Damsbo P, Beck-Nielsen H, Vinten J. Expression of insulin regulatable glucose transporters in skeletal muscle from type 2 (non-insulin-dependent) diabetic patients.. Diabetologia 1990 Oct;33(10):625-7.
    pubmed: 2258000doi: 10.1007/BF00400207google scholar: lookup
  99. Zierath JR, Houseknecht KL, Gnudi L, Kahn BB. High-fat feeding impairs insulin-stimulated GLUT4 recruitment via an early insulin-signaling defect.. Diabetes 1997 Feb;46(2):215-23.
    pubmed: 9000697doi: 10.2337/diab.46.2.215google scholar: lookup
  100. Cartwright MJ, Tchkonia T, Kirkland JL. Aging in adipocytes: potential impact of inherent, depot-specific mechanisms.. Exp Gerontol 2007 Jun;42(6):463-71.
    pmc: PMC1961638pubmed: 17507194doi: 10.1016/j.exger.2007.03.003google scholar: lookup
  101. Garvey WT, Maianu L, Zhu JH, Hancock JA, Golichowski AM. Multiple defects in the adipocyte glucose transport system cause cellular insulin resistance in gestational diabetes. Heterogeneity in the number and a novel abnormality in subcellular localization of GLUT4 glucose transporters.. Diabetes 1993 Dec;42(12):1773-85.
    pubmed: 8243823doi: 10.2337/diab.42.12.1773google scholar: lookup
  102. Maianu L, Keller SR, Garvey WT. Adipocytes exhibit abnormal subcellular distribution and translocation of vesicles containing glucose transporter 4 and insulin-regulated aminopeptidase in type 2 diabetes mellitus: implications regarding defects in vesicle trafficking.. J Clin Endocrinol Metab 2001 Nov;86(11):5450-6.
    pubmed: 11701721doi: 10.1210/jcem.86.11.8053google scholar: lookup
  103. Glinsky MJ, Smith RM, Spires HR, Davis CL. Measurement of volatile fatty acid production rates in the cecum of the pony.. J Anim Sci 1976 Jun;42(6):1465-70.
    pubmed: 931822doi: 10.2527/jas1976.4261465xgoogle scholar: lookup
  104. Pethick DW, Rose RJ, Bryden WL, Gooden JM. Nutrient utilisation by the hindlimb of thoroughbred horses at rest.. Equine Vet J 1993 Jan;25(1):41-4.
  105. Moore-Colyer MJS, Hyslop JJ, Longland AC, Cuddeford D. Intra-caecal fermentation parameters in ponies fed botanically diverse fibre-based diets. Animal Feed Science and Technology. 2000;84(3-4):183u2013197.
  106. Hintz HF, Argenzio RA, Schryver HF. Digestion coefficients, blood glucose levels and molar percentage of volatile acids in intestinal fluid of ponies fed varying forage-grain ratios.. J Anim Sci 1971 Nov;33(5):992-5.
    pubmed: 5119977doi: 10.2527/jas1971.335992xgoogle scholar: lookup
  107. Clu00e9ment K, Viguerie N, Poitou C, Carette C, Pelloux V, Curat CA, Sicard A, Rome S, Benis A, Zucker JD, Vidal H, Laville M, Barsh GS, Basdevant A, Stich V, Cancello R, Langin D. Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects.. FASEB J 2004 Nov;18(14):1657-69.
    pubmed: 15522911doi: 10.1096/fj.04-2204comgoogle scholar: lookup
  108. Rasouli N, Kern PA. Adipocytokines and the metabolic complications of obesity.. J Clin Endocrinol Metab 2008 Nov;93(11 Suppl 1):S64-73.
    pmc: PMC2585759pubmed: 18987272doi: 10.1210/jc.2008-1613google scholar: lookup
  109. Collino M, Aragno M, Castiglia S, Miglio G, Tomasinelli C, Boccuzzi G, Thiemermann C, Fantozzi R. Pioglitazone improves lipid and insulin levels in overweight rats on a high cholesterol and fructose diet by decreasing hepatic inflammation.. Br J Pharmacol 2010 Aug;160(8):1892-902.
  110. Farrell GC. Signalling links in the liver: knitting SOCS with fat and inflammation.. J Hepatol 2005 Jul;43(1):193-6.
    pubmed: 15913829doi: 10.1016/j.jhep.2005.04.004google scholar: lookup
  111. Ueki K, Kondo T, Tseng YH, Kahn CR. Central role of suppressors of cytokine signaling proteins in hepatic steatosis, insulin resistance, and the metabolic syndrome in the mouse.. Proc Natl Acad Sci U S A 2004 Jul 13;101(28):10422-7.
    pmc: PMC478587pubmed: 15240880doi: 10.1073/pnas.0402511101google scholar: lookup
  112. Liu L, Gu H, Zhao Y, Yu F. [Study on SOCS-3, PPARgamma and ACO mRNA expression of adipose tissues in obese rats with leptin resistance].. Wei Sheng Yan Jiu 2008 Jan;37(1):40-2.
    pubmed: 18421861
  113. Yoshimura A, Naka T, Kubo M. SOCS proteins, cytokine signalling and immune regulation.. Nat Rev Immunol 2007 Jun;7(6):454-65.
    pubmed: 17525754doi: 10.1038/nri2093google scholar: lookup
  114. Tu00f3th F, Frank N, Elliott SB, Geor RJ, Boston RC. Effects of an intravenous endotoxin challenge on glucose and insulin dynamics in horses.. Am J Vet Res 2008 Jan;69(1):82-8.
    pubmed: 18167091doi: 10.2460/ajvr.69.1.82google scholar: lookup
  115. Holbrook TC, Tipton T, McFarlane D. Neutrophil and cytokine dysregulation in hyperinsulinemic obese horses.. Vet Immunol Immunopathol 2012 Jan 15;145(1-2):283-9.
    pubmed: 22169327doi: 10.1016/j.vetimm.2011.11.013google scholar: lookup
  116. Vick MM, Adams AA, Murphy BA, Sessions DR, Horohov DW, Cook RF, Shelton BJ, Fitzgerald BP. Relationships among inflammatory cytokines, obesity, and insulin sensitivity in the horse.. J Anim Sci 2007 May;85(5):1144-55.
    pubmed: 17264235doi: 10.2527/jas.2006-673google scholar: lookup
  117. Carter RA, Treiber KH, Geor RJ, Douglass L, Harris PA. Prediction of incipient pasture-associated laminitis from hyperinsulinaemia, hyperleptinaemia and generalised and localised obesity in a cohort of ponies.. Equine Vet J 2009 Feb;41(2):171-8.
    pubmed: 19418747doi: 10.2746/042516408x342975google scholar: lookup
  118. Treiber K, Carter R, Gay L, Williams C, Geor R. Inflammatory and redox status of ponies with a history of pasture-associated laminitis.. Vet Immunol Immunopathol 2009 Jun 15;129(3-4):216-20.
    pubmed: 19108899doi: 10.1016/j.vetimm.2008.11.004google scholar: lookup
  119. Burns TA, Geor RJ, Mudge MC, McCutcheon LJ, Hinchcliff KW, Belknap JK. Proinflammatory cytokine and chemokine gene expression profiles in subcutaneous and visceral adipose tissue depots of insulin-resistant and insulin-sensitive light breed horses.. J Vet Intern Med 2010 Jul-Aug;24(4):932-9.
  120. Waller AP, Huettner L, Kohler K, Lacombe VA. Novel link between inflammation and impaired glucose transport during equine insulin resistance.. Vet Immunol Immunopathol 2012 Oct 15;149(3-4):208-15.
    pubmed: 22871576doi: 10.1016/j.vetimm.2012.07.003google scholar: lookup
  121. Ku00f6nner AC, Bru00fcning JC. Toll-like receptors: linking inflammation to metabolism.. Trends Endocrinol Metab 2011 Jan;22(1):16-23.
    pubmed: 20888253doi: 10.1016/j.tem.2010.08.007google scholar: lookup
  122. Kim JK. Fat uses a TOLL-road to connect inflammation and diabetes.. Cell Metab 2006 Dec;4(6):417-9.
    pubmed: 17141623doi: 10.1016/j.cmet.2006.11.008google scholar: lookup
  123. Suganami T, Mieda T, Itoh M, Shimoda Y, Kamei Y, Ogawa Y. Attenuation of obesity-induced adipose tissue inflammation in C3H/HeJ mice carrying a Toll-like receptor 4 mutation.. Biochem Biophys Res Commun 2007 Mar 2;354(1):45-9.
    pubmed: 17210129doi: 10.1016/j.bbrc.2006.12.190google scholar: lookup
  124. Tsukumo DM, Carvalho-Filho MA, Carvalheira JB, Prada PO, Hirabara SM, Schenka AA, Arau00fajo EP, Vassallo J, Curi R, Velloso LA, Saad MJ. Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance.. Diabetes 2007 Aug;56(8):1986-98.
    pubmed: 17519423doi: 10.2337/db06-1595google scholar: lookup
  125. de Laat MA, Clement CK, McGowan CM, Sillence MN, Pollitt CC, Lacombe VA. Toll-like receptor and pro-inflammatory cytokine expression during prolonged hyperinsulinaemia in horses: implications for laminitis.. Vet Immunol Immunopathol 2014 Jan 15;157(1-2):78-86.
    pubmed: 24246153doi: 10.1016/j.vetimm.2013.10.010google scholar: lookup
  126. Meigs JB, Nathan DM, D'Agostino RB Sr, Wilson PW. Fasting and postchallenge glycemia and cardiovascular disease risk: the Framingham Offspring Study.. Diabetes Care 2002 Oct;25(10):1845-50.
    pubmed: 12351489doi: 10.2337/diacare.25.10.1845google scholar: lookup
  127. Sorkin JD, Muller DC, Fleg JL, Andres R. The relation of fasting and 2-h postchallenge plasma glucose concentrations to mortality: data from the Baltimore Longitudinal Study of Aging with a critical review of the literature.. Diabetes Care 2005 Nov;28(11):2626-32.
    pubmed: 16249530doi: 10.2337/diacare.28.11.2626google scholar: lookup
  128. Firshman AM, Valberg SJ. Factors affecting clinical assessment of insulin sensitivity in horses.. Equine Vet J 2007 Nov;39(6):567-75.
    pubmed: 18065318doi: 10.2746/042516407X238512google scholar: lookup
  129. Cripps PJ, Eustace RA. Factors involved in the prognosis of equine laminitis in the UK.. Equine Vet J 1999 Sep;31(5):433-42.
  130. Venugopal CS, Eades S, Holmes EP, Beadle RE. Insulin resistance in equine digital vessel rings: an in vitro model to study vascular dysfunction in equine laminitis.. Equine Vet J 2011 Nov;43(6):744-9.
  131. de Laat MA, McGowan CM, Sillence MN, Pollitt CC. Equine laminitis: induced by 48 h hyperinsulinaemia in Standardbred horses.. Equine Vet J 2010 Mar;42(2):129-35.
    pubmed: 20156248doi: 10.2746/042516409X475779google scholar: lookup
  132. Walsh DM. Field treatment and management of endocrinopathic laminitis in horses and ponies.. Vet Clin North Am Equine Pract 2010 Aug;26(2):379-90.
    pubmed: 20699182doi: 10.1016/j.cveq.2010.05.001google scholar: lookup
  133. Asplin KE, Sillence MN, Pollitt CC, McGowan CM. Induction of laminitis by prolonged hyperinsulinaemia in clinically normal ponies.. Vet J 2007 Nov;174(3):530-5.
    pubmed: 17719811doi: 10.1016/j.tvjl.2007.07.003google scholar: lookup
  134. de Laat MA, Kyaw-Tanner MT, Nourian AR, McGowan CM, Sillence MN, Pollitt CC. The developmental and acute phases of insulin-induced laminitis involve minimal metalloproteinase activity.. Vet Immunol Immunopathol 2011 Apr 15;140(3-4):275-81.
    pubmed: 21333362doi: 10.1016/j.vetimm.2011.01.013google scholar: lookup
  135. DeBosch BJ, Chen Z, Finck BN, Chi M, Moley KH. Glucose transporter-8 (GLUT8) mediates glucose intolerance and dyslipidemia in high-fructose diet-fed male mice.. Mol Endocrinol 2013 Nov;27(11):1887-96.
    pmc: PMC3805847pubmed: 24030250doi: 10.1210/me.2013-1137google scholar: lookup
  136. Boudina S, Abel ED. Diabetic cardiomyopathy revisited.. Circulation 2007 Jun 26;115(25):3213-23.
  137. Cooper ME. Importance of advanced glycation end products in diabetes-associated cardiovascular and renal disease.. Am J Hypertens 2004 Dec;17(12 Pt 2):31S-38S.
  138. Liu J, Masurekar MR, Vatner DE, Jyothirmayi GN, Regan TJ, Vatner SF, Meggs LG, Malhotra A. Glycation end-product cross-link breaker reduces collagen and improves cardiac function in aging diabetic heart.. Am J Physiol Heart Circ Physiol 2003 Dec;285(6):H2587-91.
    pubmed: 12946933doi: 10.1152/ajpheart.00516.2003google scholar: lookup
  139. Kranstuber AL, Del Rio C, Biesiadecki BJ, Hamlin RL, Ottobre J, Gyorke S, Lacombe VA. Advanced glycation end product cross-link breaker attenuates diabetes-induced cardiac dysfunction by improving sarcoplasmic reticulum calcium handling.. Front Physiol 2012;3:292.
    pmc: PMC3429064pubmed: 22934044doi: 10.3389/fphys.2012.00292google scholar: lookup
  140. Asif M, Egan J, Vasan S, Jyothirmayi GN, Masurekar MR, Lopez S, Williams C, Torres RL, Wagle D, Ulrich P, Cerami A, Brines M, Regan TJ. An advanced glycation endproduct cross-link breaker can reverse age-related increases in myocardial stiffness.. Proc Natl Acad Sci U S A 2000 Mar 14;97(6):2809-13.
    pmc: PMC16011pubmed: 10706607doi: 10.1073/pnas.040558497google scholar: lookup
  141. Vaitkevicius PV, Lane M, Spurgeon H, Ingram DK, Roth GS, Egan JJ, Vasan S, Wagle DR, Ulrich P, Brines M, Wuerth JP, Cerami A, Lakatta EG. A cross-link breaker has sustained effects on arterial and ventricular properties in older rhesus monkeys.. Proc Natl Acad Sci U S A 2001 Jan 30;98(3):1171-5.
    pmc: PMC14727pubmed: 11158613doi: 10.1073/pnas.98.3.1171google scholar: lookup
  142. de Laat MA, Kyaw-Tanner MT, Sillence MN, McGowan CM, Pollitt CC. Advanced glycation endproducts in horses with insulin-induced laminitis.. Vet Immunol Immunopathol 2012 Jan 15;145(1-2):395-401.
    pubmed: 22240145doi: 10.1016/j.vetimm.2011.12.016google scholar: lookup
  143. Frank N, Sommardahl CS, Eiler H, Webb LL, Denhart JW, Boston RC. Effects of oral administration of levothyroxine sodium on concentrations of plasma lipids, concentration and composition of very-low-density lipoproteins, and glucose dynamics in healthy adult mares.. Am J Vet Res 2005 Jun;66(6):1032-8.
    pubmed: 16008228doi: 10.2460/ajvr.2005.66.1032google scholar: lookup
  144. Teixeira SS, Tamrakar AK, Goulart-Silva F, Serrano-Nascimento C, Klip A, Nunes MT. Triiodothyronine acutely stimulates glucose transport into L6 muscle cells without increasing surface GLUT4, GLUT1, or GLUT3.. Thyroid 2012 Jul;22(7):747-54.
    pmc: PMC3387762pubmed: 22663547doi: 10.1089/thy.2011.0422google scholar: lookup
  145. Tinworth KD, Edwards S, Noble GK, Harris PA, Sillence MN, Hackett LP. Pharmacokinetics of metformin after enteral administration in insulin-resistant ponies.. Am J Vet Res 2010 Oct;71(10):1201-6.
    pubmed: 20919907doi: 10.2460/ajvr.71.10.1201google scholar: lookup
  146. Durham AE. Metformin in equine metabolic syndrome: an enigma or a dead duck?. Vet J 2012 Jan;191(1):17-8.
    pubmed: 21885304doi: 10.1016/j.tvjl.2011.08.003google scholar: lookup
  147. Vick MM, Sessions DR, Murphy BA, Kennedy EL, Reedy SE, Fitzgerald BP. Obesity is associated with altered metabolic and reproductive activity in the mare: effects of metformin on insulin sensitivity and reproductive cyclicity.. Reprod Fertil Dev 2006;18(6):609-17.
    pubmed: 16930507doi: 10.1071/rd06016google scholar: lookup
  148. Durham AE, Rendle DI, Newton JE. The effect of metformin on measurements of insulin sensitivity and beta cell response in 18 horses and ponies with insulin resistance.. Equine Vet J 2008 Jul;40(5):493-500.
    pubmed: 18482898doi: 10.2746/042516408X273648google scholar: lookup
  149. Hustace JL, Firshman AM, Mata JE. Pharmacokinetics and bioavailability of metformin in horses.. Am J Vet Res 2009 May;70(5):665-8.
    pubmed: 19405907doi: 10.2460/ajvr.70.5.665google scholar: lookup
  150. Wearn JM, Crisman MV, Davis JL, Geor RJ, Hodgson DR, Suagee JK, Ashraf-Khorassani M, McCutcheon LJ. Pharmacokinetics of pioglitazone after multiple oral dose administration in horses.. J Vet Pharmacol Ther 2011 Jun;34(3):252-8.
  151. Ding SY, Shen ZF, Chen YT, Sun SJ, Liu Q, Xie MZ. Pioglitazone can ameliorate insulin resistance in low-dose streptozotocin and high sucrose-fat diet induced obese rats.. Acta Pharmacol Sin 2005 May;26(5):575-80.
  152. Hammarstedt A, Sopasakis VR, Gogg S, Jansson PA, Smith U. Improved insulin sensitivity and adipose tissue dysregulation after short-term treatment with pioglitazone in non-diabetic, insulin-resistant subjects.. Diabetologia 2005 Jan;48(1):96-104.
    pubmed: 15624096doi: 10.1007/s00125-004-1612-3google scholar: lookup
  153. el-Kebbi IM, Roser S, Pollet RJ. Regulation of glucose transport by pioglitazone in cultured muscle cells.. Metabolism 1994 Aug;43(8):953-8.
    pubmed: 8052151doi: 10.1016/0026-0495(94)90173-2google scholar: lookup
  154. Wearn JG, Suagee JK, Crisman MV, Corl BA, Hulver MW, Hodgson DR, Geor RJ, McCutcheon LJ. Effects of the insulin sensitizing drug, pioglitazone, and lipopolysaccharide administration on markers of systemic inflammation and clinical parameters in horses.. Vet Immunol Immunopathol 2012 Jan 15;145(1-2):42-9.
    pubmed: 22088672doi: 10.1016/j.vetimm.2011.10.007google scholar: lookup
  155. Suagee JK, Corl BA, Wearn JG, Crisman MV, Hulver MW, Geor RJ, McCutcheon LJ. Effects of the insulin-sensitizing drug pioglitazone and lipopolysaccharide administration on insulin sensitivity in horses.. J Vet Intern Med 2011 Mar-Apr;25(2):356-64.
  156. Bucci D, Isani G, Spinaci M, Tamanini C, Mari G, Zambelli D, Galeati G. Comparative immunolocalization of GLUTs 1, 2, 3 and 5 in boar, stallion and dog spermatozoa.. Reprod Domest Anim 2010 Apr;45(2):315-22.

Citations

This article has been cited 13 times.
  1. Vidal Moreno de Vega C, Lemmens D, de Meeu00fbs d'Argenteuil C, Boshuizen B, de Maru00e9 L, Leybaert L, Goethals K, de Oliveira JE, Hosotani G, Deforce D, Van Nieuwerburgh F, Devisscher L, Delesalle C. Dynamics of training and acute exercise-induced shifts in muscular glucose transporter (GLUT) 4, 8, and 12 expression in locomotion versus posture muscles in healthy horses.. Front Physiol 2023;14:1256217.
    doi: 10.3389/fphys.2023.1256217pubmed: 37654675google scholar: lookup
  2. Liu X, Bai Y, Cui R, He S, Ling Y, Wu C, Fang M. Integrated Analysis of the ceRNA Network and M-7474 Function in Testosterone-Mediated Fat Deposition in Pigs.. Genes (Basel) 2022 Apr 10;13(4).
    doi: 10.3390/genes13040668pubmed: 35456474google scholar: lookup
  3. Maria Z, Campolo AR, Scherlag BJ, Ritchey JW, Lacombe VA. Insulin Treatment Reduces Susceptibility to Atrial Fibrillation in Type 1 Diabetic Mice.. Front Cardiovasc Med 2020;7:134.
    doi: 10.3389/fcvm.2020.00134pubmed: 32903422google scholar: lookup
  4. Shoop S, Maria Z, Campolo A, Rashdan N, Martin D, Lovern P, Lacombe VA. Glial Growth Factor 2 Regulates Glucose Transport in Healthy Cardiac Myocytes and During Myocardial Infarction via an Akt-Dependent Pathway.. Front Physiol 2019;10:189.
    doi: 10.3389/fphys.2019.00189pubmed: 30971932google scholar: lookup
  5. Intapad S, Dasinger JH, Johnson JM, Brown AD, Ojeda NB, Alexander BT. Male and Female Intrauterine Growth-Restricted Offspring Differ in Blood Pressure, Renal Function, and Glucose Homeostasis Responses to a Postnatal Diet High in Fat and Sugar.. Hypertension 2019 Mar;73(3):620-629.
  6. Zhao P, Ming Q, Xiong M, Song G, Tan L, Tian D, Liu J, Huang Z, Ma J, Shen J, Liu QH, Yang X. Dandelion Chloroform Extract Promotes Glucose Uptake via the AMPK/GLUT4 Pathway in L6 Cells.. Evid Based Complement Alternat Med 2018;2018:1709587.
    doi: 10.1155/2018/1709587pubmed: 30524480google scholar: lookup
  7. Alam MB, An H, Ra JS, Lim JY, Lee SH, Yoo CY, Lee SH. Gossypol from Cottonseeds Ameliorates Glucose Uptake by Mimicking Insulin Signaling and Improves Glucose Homeostasis in Mice with Streptozotocin-Induced Diabetes.. Oxid Med Cell Longev 2018;2018:5796102.
    doi: 10.1155/2018/5796102pubmed: 30510623google scholar: lookup
  8. Clare M, Richard P, Kate K, Sinead W, Mark M, David K. Residual feed intake phenotype and gender affect the expression of key genes of the lipogenesis pathway in subcutaneous adipose tissue of beef cattle.. J Anim Sci Biotechnol 2018;9:68.
    doi: 10.1186/s40104-018-0282-9pubmed: 30250736google scholar: lookup
  9. Urayama S, Arima D, Mizobe F, Shinzaki Y, Nomura M, Minamijima Y, Kusano K. Blood glucose is unlikely to be a prognostic biomarker in acute colitis with systemic inflammatory response syndrome in Thoroughbred racehorses.. J Equine Sci 2018;29(1):15-19.
    doi: 10.1294/jes.29.15pubmed: 29593444google scholar: lookup
  10. Andrisse S, Billings K, Xue P, Wu S. Insulin signaling displayed a differential tissue-specific response to low-dose dihydrotestosterone in female mice.. Am J Physiol Endocrinol Metab 2018 Apr 1;314(4):E353-E365.
    doi: 10.1152/ajpendo.00195.2017pubmed: 29351485google scholar: lookup
  11. Anjum S, Krishna A, Tsutsui K. Possible Role of GnIH as a Mediator between Adiposity and Impaired Testicular Function.. Front Endocrinol (Lausanne) 2016;7:6.
    doi: 10.3389/fendo.2016.00006pubmed: 26869993google scholar: lookup
  12. Jackson EE, Rendina-Ruedy E, Smith BJ, Lacombe VA. Loss of Toll-Like Receptor 4 Function Partially Protects against Peripheral and Cardiac Glucose Metabolic Derangements During a Long-Term High-Fat Diet.. PLoS One 2015;10(11):e0142077.
    doi: 10.1371/journal.pone.0142077pubmed: 26539824google scholar: lookup
  13. Zhang L, Song H, Ge Y, Ji G, Yao Z. Temporal relationship between diet-induced steatosis and onset of insulin/leptin resistance in male Wistar rats.. PLoS One 2015;10(2):e0117008.
    doi: 10.1371/journal.pone.0117008pubmed: 25658428google scholar: lookup