Stem cells and development2014; 23(13); 1515-1523; doi: 10.1089/scd.2013.0461

Generation and characterization of leukemia inhibitory factor-dependent equine induced pluripotent stem cells from adult dermal fibroblasts.

Abstract: In this study we have reprogrammed dermal fibroblasts from an adult female horse into equine induced pluripotent stem cells (equiPSCs). These equiPSCs are dependent only on leukemia inhibitory factor (LIF), placing them in striking contrast to previously derived equiPSCs that have been shown to be co-dependent on both LIF and basic fibroblast growth factor (bFGF). These equiPSCs have a normal karyotype and have been maintained beyond 60 passages. They possess alkaline phosphatase activity and express eqNANOG, eqOCT4, and eqTERT mRNA. Immunocytochemistry confirmed that they produce NANOG, REX1, SSEA4, TRA1-60, and TRA1-81. While our equiPSCs are LIF dependent, bFGF co-stimulates their proliferation via the PI3K/AKT pathway. EquiPSCs lack expression of eqXIST and immunostaining for H3K27me3, suggesting that during reprogramming the inactive X chromosome has likely been reactivated to generate cells that have two active X chromosomes. EquiPSCs form embryoid bodies and in vitro teratomas that contain derivatives of all three germ layers. These LIF-dependent equiPSCs likely reflect a more naive state of pluripotency than equiPSCs that are co-dependent on both LIF and bFGF and so provide a novel resource for understanding pluripotency in the horse.
Publication Date: 2014-04-01 PubMed ID: 24555755PubMed Central: PMC4066230DOI: 10.1089/scd.2013.0461Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article
  • Research Support
  • Non-U.S. Gov't

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

The researchers in this study have managed to create pluripotent stem cells from adult horse skin cells that are dependent only on a factor called leukemia inhibitory factor. This contrasts with previous attempts where two factors were needed. These created stem cells are normal, stable, and can develop into a range of tissue types which might further our understanding of pluripotency in horses.

Creation of equine induced pluripotent stem cells (equiPSCs)

  • The scientists reprogrammed adult female horse skin cells, termed ‘dermal fibroblasts’, into equine pluripotent stem cells.
  • These equiPSCs need only the leukemia inhibitory factor (LIF) to sustain them, a significant shift from prior derived equiPSCs that required both LIF and basic fibroblast growth factor (bFGF).

Characterization of equiPSCs

  • Generated equiPSCs were found to possess a normal karyotype, indicating they have a normal number and arrangement of chromosomes.
  • These cells have been stable and maintained for over 60 cycles of replication.
  • They exhibit alkaline phosphatase activity, a common characteristic of stem cells.
  • They express certain proteins (eqNANOG, eqOCT4, and eqTERT mRNA), evidence of their pluripotent nature.
  • Immunocytochemistry showed that they produce additional proteins (NANOG, REX1, SSEA4, TRA1-60, and TRA1-81) which are related to pluripotency.

Role of basic fibroblast growth factor (bFGF) and X chromosome Reactivation

  • Despite the equiPSCs being maintained just with LIF, the scientists found that bFGF aids their proliferation through a specific biochemical pathway, the PI3K/AKT pathway.
  • The researchers also noted a lack of expression of eqXIST and absence of a certain mark, H3K27me3, suggesting reactivation of the inactive X chromosome during reprogramming. Nothing that cells have two active X chromosomes indicates a more naive state of pluripotency.

Potential of equiPSCs

  • The cells are capable of forming embryoid bodies and in-vitro teratomas, which contain derivatives of all three germ layers, demonstrating their pluripotent nature.
  • This illustrates potential to develop into a wide variety of tissue types.
  • The distinct LIF-dependent equiPSCs offer a new resource for understanding pluripotency in the horse.

Cite This Article

APA
Whitworth DJ, Ovchinnikov DA, Sun J, Fortuna PR, Wolvetang EJ. (2014). Generation and characterization of leukemia inhibitory factor-dependent equine induced pluripotent stem cells from adult dermal fibroblasts. Stem Cells Dev, 23(13), 1515-1523. https://doi.org/10.1089/scd.2013.0461

Publication

ISSN: 1557-8534
NlmUniqueID: 101197107
Country: United States
Language: English
Volume: 23
Issue: 13
Pages: 1515-1523

Researcher Affiliations

Whitworth, Deanne J
  • 1 School of Veterinary Science, University of Queensland , Gatton, Queensland, Australia .
Ovchinnikov, Dmitry A
    Sun, Jane
      Fortuna, Patrick R J
        Wolvetang, Ernst J

          MeSH Terms

          • Animals
          • Biomarkers / metabolism
          • Cell Proliferation
          • Coculture Techniques
          • Feeder Cells
          • Female
          • Fibroblast Growth Factors / physiology
          • Fibroblasts / physiology
          • Gene Expression
          • Histones / metabolism
          • Horses
          • Induced Pluripotent Stem Cells / physiology
          • Leukemia Inhibitory Factor / physiology
          • Skin / cytology
          • Transcription Factors / metabolism
          • X Chromosome / genetics

          References

          This article includes 28 references
          1. Tecirlioglu RT, Trounson AO. Embryonic stem cells in companion animals (horses, dogs and cats): present status and future prospects.. Reprod Fertil Dev 2007;19(6):740-7.
            pubmed: 17714628doi: 10.1071/rd07039google scholar: lookup
          2. Perkins NR, Reid SW, Morris RS. Risk factors for injury to the superficial digital flexor tendon and suspensory apparatus in Thoroughbred racehorses in New Zealand.. N Z Vet J 2005 Jun;53(3):184-92.
            pubmed: 16012588doi: 10.1080/00480169.2005.36503google scholar: lookup
          3. Sarrafian TL, Case JT, Kinde H, Daft BM, Read DH, Moore JD, Uzal FA, Stover SM. Fatal musculoskeletal injuries of Quarter Horse racehorses: 314 cases (1990-2007).. J Am Vet Med Assoc 2012 Oct 1;241(7):935-42.
            pubmed: 23013508doi: 10.2460/javma.241.7.935google scholar: lookup
          4. Vidal MA, Kilroy GE, Johnson JR, Lopez MJ, Moore RM, Gimble JM. Cell growth characteristics and differentiation frequency of adherent equine bone marrow-derived mesenchymal stromal cells: adipogenic and osteogenic capacity.. Vet Surg 2006 Oct;35(7):601-10.
          5. Borjesson DL, Peroni JF. The regenerative medicine laboratory: facilitating stem cell therapy for equine disease.. Clin Lab Med 2011 Mar;31(1):109-23.
            pubmed: 21295725doi: 10.1016/j.cll.2010.12.001google scholar: lookup
          6. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.. Cell 2006 Aug 25;126(4):663-76.
            pubmed: 16904174doi: 10.1016/j.cell.2006.07.024google scholar: lookup
          7. Nagy K, Sung HK, Zhang P, Laflamme S, Vincent P, Agha-Mohammadi S, Woltjen K, Monetti C, Michael IP, Smith LC, Nagy A. Induced pluripotent stem cell lines derived from equine fibroblasts.. Stem Cell Rev Rep 2011 Sep;7(3):693-702.
            pmc: PMC3137777pubmed: 21347602doi: 10.1007/s12015-011-9239-5google scholar: lookup
          8. Khodadadi K, Sumer H, Pashaiasl M, Lim S, Williamson M, Verma PJ. Induction of pluripotency in adult equine fibroblasts without c-MYC.. Stem Cells Int 2012;2012:429160.
            doi: 10.1155/2012/429160pmc: PMC3328202pubmed: 22550508google scholar: lookup
          9. Breton A, Sharma R, Diaz AC, Parham AG, Graham A, Neil C, Whitelaw CB, Milne E, Donadeu FX. Derivation and characterization of induced pluripotent stem cells from equine fibroblasts.. Stem Cells Dev 2013 Feb 15;22(4):611-21.
            pmc: PMC3564467pubmed: 22897112doi: 10.1089/scd.2012.0052google scholar: lookup
          10. Saito S, Ugai H, Sawai K, Yamamoto Y, Minamihashi A, Kurosaka K, Kobayashi Y, Murata T, Obata Y, Yokoyama K. Isolation of embryonic stem-like cells from equine blastocysts and their differentiation in vitro.. FEBS Lett 2002 Nov 20;531(3):389-96.
            pubmed: 12435581doi: 10.1016/s0014-5793(02)03550-0google scholar: lookup
          11. Li X, Zhou SG, Imreh MP, Ahrlund-Richter L, Allen WR. Horse embryonic stem cell lines from the proliferation of inner cell mass cells.. Stem Cells Dev 2006 Aug;15(4):523-31.
            pubmed: 16978056doi: 10.1089/scd.2006.15.523google scholar: lookup
          12. Whitworth DJ, Ovchinnikov DA, Wolvetang EJ. Generation and characterization of LIF-dependent canine induced pluripotent stem cells from adult dermal fibroblasts.. Stem Cells Dev 2012 Aug 10;21(12):2288-97.
            pubmed: 22221227doi: 10.1089/scd.2011.0608google scholar: lookup
          13. Stenberg J, Elovsson M, Strehl R, Kilmare E, Hyllner J, Lindahl A. Sustained embryoid body formation and culture in a non-laborious three dimensional culture system for human embryonic stem cells.. Cytotechnology 2011 May;63(3):227-37.
            pmc: PMC3081049pubmed: 21409453doi: 10.1007/s10616-011-9344-ygoogle scholar: lookup
          14. Stachelscheid H, Wulf-Goldenberg A, Eckert K, Jensen J, Edsbagge J, Bju00f6rquist P, Rivero M, Strehl R, Jozefczuk J, Prigione A, Adjaye J, Urbaniak T, Bussmann P, Zeilinger K, Gerlach JC. Teratoma formation of human embryonic stem cells in three-dimensional perfusion culture bioreactors.. J Tissue Eng Regen Med 2013 Sep;7(9):729-41.
            pubmed: 22438087doi: 10.1002/term.1467google scholar: lookup
          15. Payer B, Lee JT, Namekawa SH. X-inactivation and X-reactivation: epigenetic hallmarks of mammalian reproduction and pluripotent stem cells.. Hum Genet 2011 Aug;130(2):265-80.
            pmc: PMC3744832pubmed: 21667284doi: 10.1007/s00439-011-1024-7google scholar: lookup
          16. Pera MF, Tam PP. Extrinsic regulation of pluripotent stem cells.. Nature 2010 Jun 10;465(7299):713-20.
            pubmed: 20535200doi: 10.1038/nature09228google scholar: lookup
          17. Chou YF, Chen HH, Eijpe M, Yabuuchi A, Chenoweth JG, Tesar P, Lu J, McKay RD, Geijsen N. The growth factor environment defines distinct pluripotent ground states in novel blastocyst-derived stem cells.. Cell 2008 Oct 31;135(3):449-61.
            pmc: PMC2767270pubmed: 18984157doi: 10.1016/j.cell.2008.08.035google scholar: lookup
          18. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RD. New cell lines from mouse epiblast share defining features with human embryonic stem cells.. Nature 2007 Jul 12;448(7150):196-9.
            pubmed: 17597760doi: 10.1038/nature05972google scholar: lookup
          19. Hanna J, Markoulaki S, Mitalipova M, Cheng AW, Cassady JP, Staerk J, Carey BW, Lengner CJ, Foreman R, Love J, Gao Q, Kim J, Jaenisch R. Metastable pluripotent states in NOD-mouse-derived ESCs.. Cell Stem Cell 2009 Jun 5;4(6):513-24.
            pmc: PMC2714944pubmed: 19427283doi: 10.1016/j.stem.2009.04.015google scholar: lookup
          20. Greber B, Wu G, Bernemann C, Joo JY, Han DW, Ko K, Tapia N, Sabour D, Sterneckert J, Tesar P, Schu00f6ler HR. Conserved and divergent roles of FGF signaling in mouse epiblast stem cells and human embryonic stem cells.. Cell Stem Cell 2010 Mar 5;6(3):215-26.
            pubmed: 20207225doi: 10.1016/j.stem.2010.01.003google scholar: lookup
          21. Nichols J, Silva J, Roode M, Smith A. Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo.. Development 2009 Oct;136(19):3215-22.
            pmc: PMC2739140pubmed: 19710168doi: 10.1242/dev.038893google scholar: lookup
          22. Armstrong L, Hughes O, Yung S, Hyslop L, Stewart R, Wappler I, Peters H, Walter T, Stojkovic P, Evans J, Stojkovic M, Lako M. The role of PI3K/AKT, MAPK/ERK and NFkappabeta signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis.. Hum Mol Genet 2006 Jun 1;15(11):1894-913.
            pubmed: 16644866doi: 10.1093/hmg/ddl112google scholar: lookup
          23. Takahashi K, Murakami M, Yamanaka S. Role of the phosphoinositide 3-kinase pathway in mouse embryonic stem (ES) cells.. Biochem Soc Trans 2005 Dec;33(Pt 6):1522-5.
            pubmed: 16246160doi: 10.1042/BST0331522google scholar: lookup
          24. Eiselleova L, Matulka K, Kriz V, Kunova M, Schmidtova Z, Neradil J, Tichy B, Dvorakova D, Pospisilova S, Hampl A, Dvorak P. A complex role for FGF-2 in self-renewal, survival, and adhesion of human embryonic stem cells.. Stem Cells 2009 Aug;27(8):1847-57.
            pmc: PMC2798073pubmed: 19544431doi: 10.1002/stem.128google scholar: lookup
          25. Niwa H, Ogawa K, Shimosato D, Adachi K. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells.. Nature 2009 Jul 2;460(7251):118-22.
            pubmed: 19571885doi: 10.1038/nature08113google scholar: lookup
          26. Kinehara M, Kawamura S, Tateyama D, Suga M, Matsumura H, Mimura S, Hirayama N, Hirata M, Uchio-Yamada K, Kohara A, Yanagihara K, Furue MK. Protein kinase C regulates human pluripotent stem cell self-renewal.. PLoS One 2013;8(1):e54122.
          27. Stiles B, Gilman V, Khanzenzon N, Lesche R, Li A, Qiao R, Liu X, Wu H. Essential role of AKT-1/protein kinase B alpha in PTEN-controlled tumorigenesis.. Mol Cell Biol 2002 Jun;22(11):3842-51.
          28. Jirmanova L, Afanassieff M, Gobert-Gosse S, Markossian S, Savatier P. Differential contributions of ERK and PI3-kinase to the regulation of cyclin D1 expression and to the control of the G1/S transition in mouse embryonic stem cells.. Oncogene 2002 Aug 15;21(36):5515-28.
            pubmed: 12165850doi: 10.1038/sj.onc.1205728google scholar: lookup

          Citations

          This article has been cited 26 times.
          1. Barrachina L, Arshaghi TE, O'Brien A, Ivanovska A, Barry F. Induced pluripotent stem cells in companion animals: how can we move the field forward?. Front Vet Sci 2023;10:1176772.
            doi: 10.3389/fvets.2023.1176772pubmed: 37180067google scholar: lookup
          2. Zhang J, Zhao L, Fu Y, Liu F, Wang Z, Li Y, Zhao G, Sun W, Wu B, Song Y, Li S, Hao C, Wuyun B, Wu R, Liu M, Cao G, Nashun B, Surani MA, Sun Q, Bao S, Liu P, Li X. Reprogramming efficiency and pluripotency of mule iPSCs over its parentsu2020.. Biol Reprod 2023 Jun 9;108(6):887-901.
            doi: 10.1093/biolre/ioad041pubmed: 37040346google scholar: lookup
          3. Botigelli RC, Pieri NCG, Bessi BW, Machado LS, Bridi A, de Souza AF, Recchia K, Neto PF, Ross PJ, Bressan FF, Nogueira MFG. Acquisition and maintenance of pluripotency are influenced by fibroblast growth factor, leukemia inhibitory factor, and 2i in bovine-induced pluripotent stem cells.. Front Cell Dev Biol 2022;10:938709.
            doi: 10.3389/fcell.2022.938709pubmed: 36187479google scholar: lookup
          4. Song K, Yang GM, Han J, Gil M, Dayem AA, Kim K, Lim KM, Kang GH, Kim S, Jang SB, Vellingiri B, Cho SG. Modulation of Osteogenic Differentiation of Adipose-Derived Stromal Cells by Co-Treatment with 3, 4'-Dihydroxyflavone, U0126, and N-Acetyl Cysteine.. Int J Stem Cells 2022 Aug 30;15(3):334-345.
            doi: 10.15283/ijsc22044pubmed: 35769058google scholar: lookup
          5. Martu00ednez-Falguera D, Iborra-Egea O, Gu00e1lvez-Montu00f3n C. iPSC Therapy for Myocardial Infarction in Large Animal Models: Land of Hope and Dreams.. Biomedicines 2021 Dec 5;9(12).
            doi: 10.3390/biomedicines9121836pubmed: 34944652google scholar: lookup
          6. Bessi BW, Botigelli RC, Pieri NCG, Machado LS, Cruz JB, de Moraes P, de Souza AF, Recchia K, Barbosa G, de Castro RVG, Nogueira MFG, Bressan FF. Cattle In Vitro Induced Pluripotent Stem Cells Generated and Maintained in 5 or 20% Oxygen and Different Supplementation.. Cells 2021 Jun 17;10(6).
            doi: 10.3390/cells10061531pubmed: 34204517google scholar: lookup
          7. Kumar D, Talluri TR, Selokar NL, Hyder I, Kues WA. Perspectives of pluripotent stem cells in livestock.. World J Stem Cells 2021 Jan 26;13(1):1-29.
            doi: 10.4252/wjsc.v13.i1.1pubmed: 33584977google scholar: lookup
          8. Korody ML, Ford SM, Nguyen TD, Pivaroff CG, Valiente-Alandi I, Peterson SE, Ryder OA, Loring JF. Rewinding Extinction in the Northern White Rhinoceros: Genetically Diverse Induced Pluripotent Stem Cell Bank for Genetic Rescue.. Stem Cells Dev 2021 Feb;30(4):177-189.
            doi: 10.1089/scd.2021.0001pubmed: 33406994google scholar: lookup
          9. Scarfone RA, Pena SM, Russell KA, Betts DH, Koch TG. The use of induced pluripotent stem cells in domestic animals: a narrative review.. BMC Vet Res 2020 Dec 8;16(1):477.
            doi: 10.1186/s12917-020-02696-7pubmed: 33292200google scholar: lookup
          10. Su Y, Zhu J, Salman S, Tang Y. Induced pluripotent stem cells from farm animals.. J Anim Sci 2020 Nov 1;98(11).
            doi: 10.1093/jas/skaa343pubmed: 33098420google scholar: lookup
          11. Endo Y, Kamei KI, Inoue-Murayama M. Genetic Signatures of Evolution of the Pluripotency Gene Regulating Network across Mammals.. Genome Biol Evol 2020 Oct 1;12(10):1806-1818.
            doi: 10.1093/gbe/evaa169pubmed: 32780791google scholar: lookup
          12. Bressan FF, Bassanezze V, de Figueiredo Pessu00f4a LV, Sacramento CB, Malta TM, Kashima S, Fantinato Neto P, Strefezzi RF, Pieri NCG, Krieger JE, Covas DT, Meirelles FV. Generation of induced pluripotent stem cells from large domestic animals.. Stem Cell Res Ther 2020 Jun 25;11(1):247.
            doi: 10.1186/s13287-020-01716-5pubmed: 32586372google scholar: lookup
          13. Pessu00f4a LVF, Bressan FF, Freude KK. Induced pluripotent stem cells throughout the animal kingdom: Availability and applications.. World J Stem Cells 2019 Aug 26;11(8):491-505.
            doi: 10.4252/wjsc.v11.i8.491pubmed: 31523369google scholar: lookup
          14. Chung MJ, Park S, Son JY, Lee JY, Yun HH, Lee EJ, Lee EM, Cho GJ, Lee S, Park HS, Jeong KS. Differentiation of equine induced pluripotent stem cells into mesenchymal lineage for therapeutic use.. Cell Cycle 2019 Nov;18(21):2954-2971.
            doi: 10.1080/15384101.2019.1664224pubmed: 31505996google scholar: lookup
          15. Pessu00f4a LVF, Pires PRL, Del Collado M, Pieri NCG, Recchia K, Souza AF, Perecin F, da Silveira JC, de Andrade AFC, Ambrosio CE, Bressan FF, Meirelles FV. Generation and miRNA Characterization of Equine Induced Pluripotent Stem Cells Derived from Fetal and Adult Multipotent Tissues.. Stem Cells Int 2019;2019:1393791.
            doi: 10.1155/2019/1393791pubmed: 31191664google scholar: lookup
          16. Pieri NCG, de Souza AF, Botigelli RC, Machado LS, Ambrosio CE, Dos Santos Martins D, de Andrade AFC, Meirelles FV, Hyttel P, Bressan FF. Stem cells on regenerative and reproductive science in domestic animals.. Vet Res Commun 2019 Feb;43(1):7-16.
            doi: 10.1007/s11259-019-9744-6pubmed: 30656543google scholar: lookup
          17. Moro LN, Amin G, Furmento V, Waisman A, Garate X, Neiman G, La Greca A, Santu00edn Velazque NL, Luzzani C, Sevlever GE, Vichera G, Miriuka SG. MicroRNA characterization in equine induced pluripotent stem cells.. PLoS One 2018;13(12):e0207074.
            doi: 10.1371/journal.pone.0207074pubmed: 30507934google scholar: lookup
          18. Alkhilaiwi F, Wang L, Zhou D, Raudsepp T, Ghosh S, Paul S, Palechor-Ceron N, Brandt S, Luff J, Liu X, Schlegel R, Yuan H. Long-term expansion of primary equine keratinocytes that maintain the ability to differentiate into stratified epidermis.. Stem Cell Res Ther 2018 Jul 4;9(1):181.
            doi: 10.1186/s13287-018-0918-xpubmed: 29973296google scholar: lookup
          19. Baird A, Lindsay T, Everett A, Iyemere V, Paterson YZ, McClellan A, Henson FMD, Guest DJ. Osteoblast differentiation of equine induced pluripotent stem cells.. Biol Open 2018 May 10;7(5).
            doi: 10.1242/bio.033514pubmed: 29685993google scholar: lookup
          20. Textor JA, Clark KC, Walker NJ, Aristizobal FA, Kol A, LeJeune SS, Bledsoe A, Davidyan A, Gray SN, Bohannon-Worsley LK, Woolard KD, Borjesson DL. Allogeneic Stem Cells Alter Gene Expression and Improve Healing of Distal Limb Wounds in Horses.. Stem Cells Transl Med 2018 Jan;7(1):98-108.
            doi: 10.1002/sctm.17-0071pubmed: 29063737google scholar: lookup
          21. Ogorevc J, Orehek S, Dovu010d P. Cellular reprogramming in farm animals: an overview of iPSC generation in the mammalian farm animal species.. J Anim Sci Biotechnol 2016;7:10.
            doi: 10.1186/s40104-016-0070-3pubmed: 26900466google scholar: lookup
          22. Soto DA, Ross PJ. Pluripotent stem cells and livestock genetic engineering.. Transgenic Res 2016 Jun;25(3):289-306.
            doi: 10.1007/s11248-016-9929-5pubmed: 26894405google scholar: lookup
          23. Donadeu FX, Esteves CL. Prospects and Challenges of Induced Pluripotent Stem Cells in Equine Health.. Front Vet Sci 2015;2:59.
            doi: 10.3389/fvets.2015.00059pubmed: 26664986google scholar: lookup
          24. Bavin EP, Smith O, Baird AE, Smith LC, Guest DJ. Equine Induced Pluripotent Stem Cells have a Reduced Tendon Differentiation Capacity Compared to Embryonic Stem Cells.. Front Vet Sci 2015;2:55.
            doi: 10.3389/fvets.2015.00055pubmed: 26664982google scholar: lookup
          25. Kumar D, Talluri TR, Anand T, Kues WA. Induced pluripotent stem cells: Mechanisms, achievements and perspectives in farm animals.. World J Stem Cells 2015 Mar 26;7(2):315-28.
            doi: 10.4252/wjsc.v7.i2.315pubmed: 25815117google scholar: lookup
          26. Whitworth DJ, Frith JE, Frith TJ, Ovchinnikov DA, Cooper-White JJ, Wolvetang EJ. Derivation of mesenchymal stromal cells from canine induced pluripotent stem cells by inhibition of the TGFu03b2/activin signaling pathway.. Stem Cells Dev 2014 Dec 15;23(24):3021-33.
            doi: 10.1089/scd.2013.0634pubmed: 25055193google scholar: lookup