Animals : an open access journal from MDPI2023; 13(8); 1311; doi: 10.3390/ani13081311

Homocysteine-Potential Novel Diagnostic Indicator of Health and Disease in Horses.

Abstract: Homocysteine is an endogenous, non-protein sulfuric amino acid, an intermediate metabolite formed by the methionine transmethylation reaction. Its elevated serum concentration in humans, hyperhomocysteinemia, is a sensitive indicator and a risk factor for coagulation disorders, cardiovascular diseases and dementia. However, the role of homocysteine in veterinary species has not been unequivocally established. Although some research has been conducted in dogs, cats, cattle and pigs, relatively few studies on homocysteine have been conducted in horses. So far, it has been established in this species that homocysteine has an atherogenic effect, plays a role in early embryo mortality and is responsible for the induction of oxidative stress. These preliminary findings support establishing a reference range in a normal population of horses, including horses in training and merit further investigations into the role of this amino acid in health and disease in this species.
Publication Date: 2023-04-11 PubMed ID: 37106874PubMed Central: PMC10135347DOI: 10.3390/ani13081311Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article
  • Review

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

This research explores the potential of homocysteine as a novel diagnostic indicator of health and disease in horses.

What is Homocysteine?

  • Homocysteine is an endogenous, non-protein sulfuric amino acid. Endogenous implies that the substance is formed within the organism, cell, or system it acts upon rather than coming from an external source.
  • As an intermediate metabolite, it’s a byproduct resulted from the methionine transmethylation reaction, which is a biochemical process involving the transfer of a methyl group from methionine, an essential amino acid.

Role of Homocysteine in Humans

  • In humans, elevated concentrations of homocysteine in the serum, known as hyperhomocysteinemia, serves as a sensitive, potential warning sign. It is considered a risk factor for various health complications like coagulation disorders (issues with blood clotting), cardiovascular diseases (like heart disease or stroke), and dementia.

Homocysteine in Veterinary Species

  • The role of homocysteine in animals, specifically veterinary species, is yet to be conclusively established. Some research has been conducted in dogs, cats, cattle, and pigs but there are relatively fewer studies about homocysteine’s role in horses.

Homocysteine’s Effects in Horses

  • From what research has been carried out, it’s been established that homocysteine can have an atherogenic effect in horses. Atherogenic means contributing to the formation of fatty deposits in the arteries, which is a common cause of heart disease.
  • It is also suggested as a factor in early embryo mortality among horses.
  • The amino acid has been implicated in inducing oxidative stress in horses. Oxidative stress is an imbalance between the production of free radicals and the ability of the body to counteract or detoxify their harmful effects through neutralization by antioxidants.

Future Research Directions

  • Given these preliminary findings, this research supports the establishment of a reference range for homocysteine levels in a normal population of horses, which would include horses in training.
  • Further investigation into the role of homocysteine in the health and disease of horses is seen as meritorious, suggesting the possibility of using this amino acid as a diagnostic indicator in this species.

Cite This Article

APA
Gou0142yu0144ski M, Metyk M, Ciszewska J, Szczepanik MP, Fitch G, Bu0119czkowski PM. (2023). Homocysteine-Potential Novel Diagnostic Indicator of Health and Disease in Horses. Animals (Basel), 13(8), 1311. https://doi.org/10.3390/ani13081311

Publication

ISSN: 2076-2615
NlmUniqueID: 101635614
Country: Switzerland
Language: English
Volume: 13
Issue: 8
PII: 1311

Researcher Affiliations

Gou0142yu0144ski, Marcin
  • Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruu0144, 87-100 Toruu0144, Poland.
Metyk, Michau0142
  • Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruu0144, 87-100 Toruu0144, Poland.
Ciszewska, Jagoda
  • Sub-Department of Diagnostics and Veterinary Dermatology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland.
Szczepanik, Marcin Paweu0142
  • Sub-Department of Diagnostics and Veterinary Dermatology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland.
Fitch, Gareth
  • Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China.
Bu0119czkowski, Paweu0142 Marek
  • Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China.

Grant Funding

  • Madam CHONG Kin Wo, a donor of City University of Hong Kong

Conflict of Interest Statement

The authors declare no conflict of interest.

References

This article includes 143 references
  1. Brosnan JT, Brosnan ME. The sulfur-containing amino acids: an overview.. J Nutr 2006 Jun;136(6 Suppl):1636S-1640S.
    doi: 10.1093/jn/136.6.1636Spubmed: 16702333google scholar: lookup
  2. Youssef-Saliba S, Milet A, Vallu00e9e Y. Did Homocysteine Take Part in the Start of the Synthesis of Peptides on the Early Earth?. Biomolecules 2022 Apr 8;12(4).
    doi: 10.3390/biom12040555pmc: PMC9031595pubmed: 35454145google scholar: lookup
  3. Riedijk MA, Stoll B, Chacko S, Schierbeek H, Sunehag AL, van Goudoever JB, Burrin DG. Methionine transmethylation and transsulfuration in the piglet gastrointestinal tract.. Proc Natl Acad Sci U S A 2007 Feb 27;104(9):3408-13.
    doi: 10.1073/pnas.0607965104pmc: PMC1805557pubmed: 17360659google scholar: lookup
  4. Froese DS, Fowler B, Baumgartner MR. Vitamin B(12) , folate, and the methionine remethylation cycle-biochemistry, pathways, and regulation.. J Inherit Metab Dis 2019 Jul;42(4):673-685.
    doi: 10.1002/jimd.12009pubmed: 30693532google scholar: lookup
  5. Tjong E, Dimri M, Mohiuddin SS. Biochemistry, Tetrahydrofolate.. 2023 Jan;.
    pubmed: 30969534
  6. Yoshitomi R, Nakayama K, Yamashita S, Kumazoe M, Lin TA, Mei CY, Marugame Y, Fujimura Y, Maeda-Yamamoto M, Kuriyama S, Tachibana H. Plasma Homocysteine Concentration is Associated with the Expression Level of Folate Receptor 3.. Sci Rep 2020 Jun 24;10(1):10283.
    doi: 10.1038/s41598-020-67288-9pmc: PMC7314855pubmed: 32581311google scholar: lookup
  7. Ma Y, Peng D, Liu C, Huang C, Luo J. Serum high concentrations of homocysteine and low levels of folic acid and vitamin B(12) are significantly correlated with the categories of coronary artery diseases.. BMC Cardiovasc Disord 2017 Jan 21;17(1):37.
    doi: 10.1186/s12872-017-0475-8pmc: PMC5251223pubmed: 28109191google scholar: lookup
  8. McMullin MF, Young PB, Bailie KE, Savage GA, Lappin TR, White R. Homocysteine and methylmalonic acid as indicators of folate and vitamin B12 deficiency in pregnancy.. Clin Lab Haematol 2001 Jun;23(3):161-5.
  9. Blount BC, Mack MM, Wehr CM, MacGregor JT, Hiatt RA, Wang G, Wickramasinghe SN, Everson RB, Ames BN. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage.. Proc Natl Acad Sci U S A 1997 Apr 1;94(7):3290-5.
    doi: 10.1073/pnas.94.7.3290pmc: PMC20362pubmed: 9096386google scholar: lookup
  10. Brattstru00f6m LE, Israelsson B, Jeppsson JO, Hultberg BL. Folic acid--an innocuous means to reduce plasma homocysteine.. Scand J Clin Lab Invest 1988 May;48(3):215-21.
    doi: 10.3109/00365518809167487pubmed: 3375778google scholar: lookup
  11. Shane B. Folate and vitamin B12 metabolism: overview and interaction with riboflavin, vitamin B6, and polymorphisms.. Food Nutr Bull 2008 Jun;29(2 Suppl):S5-16; discussion S17-9.
    doi: 10.1177/15648265080292S103pubmed: 18709878google scholar: lookup
  12. Allen LH. Vitamin B-12.. Adv Nutr 2012 Jan;3(1):54-5.
    doi: 10.3945/an.111.001370pmc: PMC3262614pubmed: 22332101google scholar: lookup
  13. Midttun u00d8, Hustad S, Schneede J, Vollset SE, Ueland PM. Plasma vitamin B-6 forms and their relation to transsulfuration metabolites in a large, population-based study.. Am J Clin Nutr 2007 Jul;86(1):131-8.
    doi: 10.1093/ajcn/86.1.131pubmed: 17616772google scholar: lookup
  14. Sharma M, Tiwari M, Tiwari RK. Hyperhomocysteinemia: Impact on Neurodegenerative Diseases.. Basic Clin Pharmacol Toxicol 2015 Nov;117(5):287-96.
    doi: 10.1111/bcpt.12424pubmed: 26036286google scholar: lookup
  15. Furness D, Fenech M, Dekker G, Khong TY, Roberts C, Hague W. Folate, vitamin B12, vitamin B6 and homocysteine: impact on pregnancy outcome.. Matern Child Nutr 2013 Apr;9(2):155-66.
  16. McCully KS. Homocysteine, vitamins, and vascular disease prevention.. Am J Clin Nutr 2007 Nov;86(5):1563S-8S.
    doi: 10.1093/ajcn/86.5.1563Spubmed: 17991676google scholar: lookup
  17. Herrmann W. The importance of hyperhomocysteinemia as a risk factor for diseases: an overview.. Clin Chem Lab Med 2001 Aug;39(8):666-74.
    doi: 10.1515/CCLM.2001.110pubmed: 11592431google scholar: lookup
  18. Al-Maskari MY, Waly MI, Ali A, Al-Shuaibi YS, Ouhtit A. Folate and vitamin B12 deficiency and hyperhomocysteinemia promote oxidative stress in adult type 2 diabetes.. Nutrition 2012 Jul;28(7-8):e23-6.
    doi: 10.1016/j.nut.2012.01.005pubmed: 22595450google scholar: lookup
  19. Sunder-Plassmann G, Winkelmayer WC, Fu00f6dinger M. Therapeutic potential of total homocysteine-lowering drugs on cardiovascular disease.. Expert Opin Investig Drugs 2000 Nov;9(11):2637-51.
    doi: 10.1517/13543784.9.11.2637pubmed: 11060826google scholar: lookup
  20. Wald DS, Law M, Morris JK. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis.. BMJ 2002 Nov 23;325(7374):1202.
    doi: 10.1136/bmj.325.7374.1202pmc: PMC135491pubmed: 12446535google scholar: lookup
  21. den Heijer M, Willems HP, Blom HJ, Gerrits WB, Cattaneo M, Eichinger S, Rosendaal FR, Bos GM. Homocysteine lowering by B vitamins and the secondary prevention of deep vein thrombosis and pulmonary embolism: A randomized, placebo-controlled, double-blind trial.. Blood 2007 Jan 1;109(1):139-44.
    doi: 10.1182/blood-2006-04-014654pubmed: 16960155google scholar: lookup
  22. Luo J.J., Zhang L., Dun N.J. Dementia in Parkinsonu2019s Disease: Everything You Need to Know. IntechOpen; London, UK: 2022. Homocysteine and Dementia in Parkinson Disease; p. 41.
  23. Kim J, Kim H, Roh H, Kwon Y. Causes of hyperhomocysteinemia and its pathological significance.. Arch Pharm Res 2018 Apr;41(4):372-383.
    doi: 10.1007/s12272-018-1016-4pubmed: 29552692google scholar: lookup
  24. Sauls DL, Arnold EK, Bell CW, Allen JC, Hoffman M. Pro-thrombotic and pro-oxidant effects of diet-induced hyperhomocysteinemia.. Thromb Res 2007;120(1):117-26.
  25. Hou0163oleanu C, Porojan-Iuga M, Rusu ML, Andercou A. Hyperhomocysteinemia: clinical and therapeutical involvement in venous thrombosis.. Rom J Intern Med 2007;45(2):159-64.
    pubmed: 18333369
  26. van den Berg M, Stehouwer CD, Bierdrager E, Rauwerda JA. Plasma homocysteine and severity of atherosclerosis in young patients with lower-limb atherosclerotic disease.. Arterioscler Thromb Vasc Biol 1996 Jan;16(1):165-71.
    doi: 10.1161/01.ATV.16.1.165pubmed: 8548418google scholar: lookup
  27. Stampfer MJ, Malinow MR, Willett WC, Newcomer LM, Upson B, Ullmann D, Tishler PV, Hennekens CH. A prospective study of plasma homocyst(e)ine and risk of myocardial infarction in US physicians.. JAMA 1992 Aug 19;268(7):877-81.
  28. Perry IJ, Refsum H, Morris RW, Ebrahim SB, Ueland PM, Shaper AG. Prospective study of serum total homocysteine concentration and risk of stroke in middle-aged British men.. Lancet 1995 Nov 25;346(8987):1395-8.
    doi: 10.1016/S0140-6736(95)92407-8pubmed: 7475822google scholar: lookup
  29. Price BR, Wilcock DM, Weekman EM. Hyperhomocysteinemia as a Risk Factor for Vascular Contributions to Cognitive Impairment and Dementia.. Front Aging Neurosci 2018;10:350.
    doi: 10.3389/fnagi.2018.00350pmc: PMC6220027pubmed: 30429785google scholar: lookup
  30. Smith AD, Refsum H, Bottiglieri T, Fenech M, Hooshmand B, McCaddon A, Miller JW, Rosenberg IH, Obeid R. Homocysteine and Dementia: An International Consensus Statement.. J Alzheimers Dis 2018;62(2):561-570.
    doi: 10.3233/JAD-171042pmc: PMC5836397pubmed: 29480200google scholar: lookup
  31. Cordaro M, Siracusa R, Fusco R, Cuzzocrea S, Di Paola R, Impellizzeri D. Involvements of Hyperhomocysteinemia in Neurological Disorders.. Metabolites 2021 Jan 6;11(1).
    doi: 10.3390/metabo11010037pmc: PMC7825518pubmed: 33419180google scholar: lookup
  32. Le Stunff H, Vu00e9ret J, Kassis N, Denom J, Meneyrol K, Paul JL, Cruciani-Guglielmacci C, Magnan C, Janel N. Deciphering the Link Between Hyperhomocysteinemia and Ceramide Metabolism in Alzheimer-Type Neurodegeneration.. Front Neurol 2019;10:807.
    doi: 10.3389/fneur.2019.00807pmc: PMC6684947pubmed: 31417486google scholar: lookup
  33. Heneghan HM, Sultan S. Homocysteine, the cholesterol of the 21st century. Impact of hyperhomocysteinemia on patency and amputation-free survival after intervention for critical limb ischemia.. J Endovasc Ther 2008 Aug;15(4):399-407.
    doi: 10.1583/08-2385.1pubmed: 18729558google scholar: lookup
  34. Badri S, Vahdat S, Seirafian S, Pourfarzam M, Gholipur-Shahraki T, Ataei S. Homocysteine-Lowering Interventions in Chronic Kidney Disease.. J Res Pharm Pract 2021 Jul-Sep;10(3):114-124.
    doi: 10.4103/jrpp.jrpp_75_21pmc: PMC8809459pubmed: 35198504google scholar: lookup
  35. Keskin A, U Ustun G, Aci R, Duran U. Homocysteine as a marker for predicting disease severity in patients with COVID-19.. Biomark Med 2022 May;16(7):559-568.
    doi: 10.2217/bmm-2021-0688pubmed: 35343243google scholar: lookup
  36. Oksuz M., Yilmaz E. C677T methylenetetrahydrofolate reductase polymorphism, folate and homocysteine levels and the risk of colorectal cancer. Ann. Med. Res. 2021;28:1620. doi: 10.5455/annalsmedres.2020.07.765.
  37. Kjaergaard AD, Wu Y, Ming WK, Wang Z, Kjaergaard MN, Ellervik C. Homocysteine and female fertility, pregnancy loss and offspring birthweight: a two-sample Mendelian randomization study.. Eur J Clin Nutr 2022 Jan;76(1):40-47.
    doi: 10.1038/s41430-021-00898-2pubmed: 33772217google scholar: lookup
  38. Hasan T, Arora R, Bansal AK, Bhattacharya R, Sharma GS, Singh LR. Disturbed homocysteine metabolism is associated with cancer.. Exp Mol Med 2019 Feb 21;51(2):1-13.
    doi: 10.1038/s12276-019-0216-4pmc: PMC6389897pubmed: 30804341google scholar: lookup
  39. Fouda EM, Wahba NS, Elsharawy AIM, Ishak SR. Serum homocysteine level in pediatric patients with COVID-19 and its correlation with the disease severity.. Pediatr Pulmonol 2022 Jul;57(7):1701-1708.
    doi: 10.1002/ppul.25920pmc: PMC9088336pubmed: 35420248google scholar: lookup
  40. Rossi S, Rossi G, Giordano A, Paltrinieri S. Homocysteine measurement by an enzymatic method and potential role of homocysteine as a biomarker in dogs.. J Vet Diagn Invest 2008 Sep;20(5):644-9.
    doi: 10.1177/104063870802000520pubmed: 18776102google scholar: lookup
  41. Giraldi M, Paltrinieri S, Curcio C, Scarpa P. Serum concentration of homocysteine in spontaneous feline chronic kidney disease.. Vet J 2019 Dec;254:105358.
    doi: 10.1016/j.tvjl.2019.105358pubmed: 31836166google scholar: lookup
  42. Gou0142yu0144ski M, Lutnicki K, Krumrych W, Szczepanik M, Gou0142yu0144ska M, Wilkou0142ek P, Adamek u0141, Sitkowski u0141, Kurek u0141. Relationship between Total Homocysteine, Folic Acid, and Thyroid Hormones in Hypothyroid Dogs.. J Vet Intern Med 2017 Sep;31(5):1403-1405.
    doi: 10.1111/jvim.14804pmc: PMC5598881pubmed: 28804925google scholar: lookup
  43. Benvenuti E, Pierini A, Gori E, Bottero E, Pietra M, Lippi I, Meucci V, Marchetti V. Serum homocysteine concentration in dogs with immunosuppressant-responsive enteropathy.. J Vet Sci 2020 Jul;21(4):e47.
    doi: 10.4142/jvs.2020.21.e47pmc: PMC7402937pubmed: 32735090google scholar: lookup
  44. Bamashmoos SA, Al-Nuzaily MA, Al-Meeri AM, Ali FH. Relationship between total homocysteine, total cholesterol and creatinine levels in overt hypothyroid patients.. Springerplus 2013;2:423.
    doi: 10.1186/2193-1801-2-423pmc: PMC3766507pubmed: 24024107google scholar: lookup
  45. Orzechowska-Pawilojc A, Siekierska-Hellmann M, Syrenicz A, Sworczak K. Homocysteine, folate, and cobalamin levels in hyperthyroid women before and after treatment.. Endokrynol Pol 2009 Nov-Dec;60(6):443-8.
    pubmed: 20041361
  46. Den Heijer M, Lewington S, Clarke R. Homocysteine, MTHFR and risk of venous thrombosis: a meta-analysis of published epidemiological studies.. J Thromb Haemost 2005 Feb;3(2):292-9.
  47. Zhou Y, Chen Y, Cao X, Liu C, Xie Y. Association between plasma homocysteine status and hypothyroidism: a meta-analysis.. Int J Clin Exp Med 2014;7(11):4544-53.
    pmc: PMC4276243pubmed: 25550985
  48. Yang R, Pu D, Tan R, Wu J. Association of methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms (C677T and A1298C) with thyroid dysfunction: A meta-analysis and trial sequential analysis.. Arch Endocrinol Metab 2022 Sept 08;66(4):551-581.
    doi: 10.20945/2359-3997000000471pubmed: 35758831google scholar: lookup
  49. Moll S, Varga EA. Homocysteine and MTHFR Mutations.. Circulation 2015 Jul 7;132(1):e6-9.
  50. Morris MS, Bostom AG, Jacques PF, Selhub J, Rosenberg IH. Hyperhomocysteinemia and hypercholesterolemia associated with hypothyroidism in the third US National Health and Nutrition Examination Survey.. Atherosclerosis 2001 Mar;155(1):195-200.
    doi: 10.1016/S0021-9150(00)00537-2pubmed: 11223442google scholar: lookup
  51. Audet I, Girard CL, Lessard M, Lo Verso L, Beaudoin F, Matte JJ. Homocysteine metabolism, growth performance, and immune responses in suckling and weanling piglets.. J Anim Sci 2015 Jan;93(1):147-57.
    doi: 10.2527/jas.2014-7872pubmed: 25412751google scholar: lookup
  52. Franu00e7a L.H.G., Pereira A.H., Perini S.C., Aveline C.C., Argenta R., Mollerke R.d.O., Soares M.E., Nu00f3brega F., Ferreira M.P. Atherogenesis in swine iliac artery with homocystinemia induced by methionine ingestion. J. Vasc. Bras. 2006;5:11u201316. doi: 10.1590/S1677-54492006000100003.
  53. Razavi S., Moghaddas B., Rakhshande E., Nazifi S. Bovine Theileriosis: Effects on the Status of Thyroid Hormones, Homocystein, Serum Lipids and Lipoproteins. Res. J. Parasitol. 2015;10:151u2013159.
  54. Stangl GI, Schwarz FJ, Mu00fcller H, Kirchgessner M. Evaluation of the cobalt requirement of beef cattle based on vitamin B12, folate, homocysteine and methylmalonic acid.. Br J Nutr 2000 Nov;84(5):645-53.
    doi: 10.1017/S0007114500001987pubmed: 11177177google scholar: lookup
  55. Ardalan M, Batista ED, Titgemeyer EC. Effect of post-ruminal guanidinoacetic acid supplementation on creatine synthesis and plasma homocysteine concentrations in cattle.. J Anim Sci 2020 Mar 1;98(3).
    doi: 10.1093/jas/skaa072pmc: PMC7097713pubmed: 32152623google scholar: lookup
  56. Denizhan V., Kozat S., u00d6zkan C. Evaluation of Cobalt, Vitamin B-12 and Homocystein levels in Cattle infected with Theileria annulata. J. Livest. Sci. 2017;8:72u201376.
  57. Giammarino A, Robbe D, Dainese E, Minoia R, Sciorsci RL. Mare embryonic resorption and homocysteine.. Vet Res Commun 2003 Sep;27 Suppl 1:607-9.
  58. Berhane Y, Bailey SR, Harris PA, Griffiths MJ, Elliott J. In vitro and in vivo studies of homocysteine in equine tissues: implications for the pathophysiology of laminitis.. Equine Vet J 2004 Apr;36(3):279-84.
    doi: 10.2746/0425164044877161pubmed: 15147138google scholar: lookup
  59. Fazio F, Casella S, Giannetto C, Caola G, Piccione G. Serum homocysteine and oxidative stress evaluation during exercise in horse.. Pol J Vet Sci 2009;12(2):169-74.
    pubmed: 19645345
  60. Fazio F., Piccione G., Casella S., Assenza A., Messina V., Caola G. Influence of Acute Exercise on Serum Homocysteine in Horse. J. Equine Vet. Sci. 2010;30:39u201343. doi: 10.1016/j.jevs.2009.11.003.
  61. Mitchell KJ, De Clercq D, Stirn M, van Loon G, Schwarzwald CC. Plasma homocysteine concentrations in healthy horses and horses with atrial fibrillation.. J Vet Cardiol 2018 Aug;20(4):276-284.
    doi: 10.1016/j.jvc.2018.04.007pubmed: 29861401google scholar: lookup
  62. Ahmadpour S, Esmaeilnejad B, Dalir-Naghadeh B, Asri-Rezaei S. Alterations of cardiac and renal biomarkers in horses naturally infected with theileria equi.. Comp Immunol Microbiol Infect Dis 2020 May 30;71:101502.
    doi: 10.1016/j.cimid.2020.101502pubmed: 32505763google scholar: lookup
  63. Arfuso F, Rizzo M, Giannetto C, Giudice E, Cirincione R, Cassata G, Cicero L, Piccione G. Oxidant and Antioxidant Parameters' Assessment Together with Homocysteine and Muscle Enzymes in Racehorses: Evaluation of Positive Effects of Exercise.. Antioxidants (Basel) 2022 Jun 15;11(6).
    doi: 10.3390/antiox11061176pmc: PMC9220350pubmed: 35740073google scholar: lookup
  64. Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease.. Nutr J 2015 Jan 10;14:6.
    doi: 10.1186/1475-2891-14-6pmc: PMC4326479pubmed: 25577237google scholar: lookup
  65. Jacobsen DW. Homocysteine and vitamins in cardiovascular disease.. Clin Chem 1998 Aug;44(8 Pt 2):1833-43.
    doi: 10.1093/clinchem/44.8.1833pubmed: 9702993google scholar: lookup
  66. Harpel PC, Zhang X, Borth W. Homocysteine and hemostasis: pathogenic mechanisms predisposing to thrombosis.. J Nutr 1996 Apr;126(4 Suppl):1285S-9S.
    doi: 10.1093/jn/126.suppl_4.1285Spubmed: 8642472google scholar: lookup
  67. Ling Q, Hajjar KA. Inhibition of endothelial cell thromboresistance by homocysteine.. J Nutr 2000 Feb;130(2S Suppl):373S-376S.
    doi: 10.1093/jn/130.2.373Spubmed: 10721910google scholar: lookup
  68. Pang X, Liu J, Zhao J, Mao J, Zhang X, Feng L, Han C, Li M, Wang S, Wu D. Homocysteine induces the expression of C-reactive protein via NMDAr-ROS-MAPK-NF-u03baB signal pathway in rat vascular smooth muscle cells.. Atherosclerosis 2014 Sep;236(1):73-81.
  69. Schaffer A, Verdoia M, Cassetti E, Marino P, Suryapranata H, De Luca G. Relationship between homocysteine and coronary artery disease. Results from a large prospective cohort study.. Thromb Res 2014 Aug;134(2):288-93.
  70. Mangge H, Becker K, Fuchs D, Gostner JM. Antioxidants, inflammation and cardiovascular disease.. World J Cardiol 2014 Jun 26;6(6):462-77.
    doi: 10.4330/wjc.v6.i6.462pmc: PMC4072837pubmed: 24976919google scholar: lookup
  71. Okura T, Miyoshi K, Irita J, Enomoto D, Nagao T, Kukida M, Tanino A, Kudo K, Pei Z, Higaki J. Hyperhomocysteinemia is one of the risk factors associated with cerebrovascular stiffness in hypertensive patients, especially elderly males.. Sci Rep 2014 Jul 11;4:5663.
    doi: 10.1038/srep05663pmc: PMC4092328pubmed: 25012721google scholar: lookup
  72. Zhang S, Bai YY, Luo LM, Xiao WK, Wu HM, Ye P. Association between serum homocysteine and arterial stiffness in elderly: a community-based study.. J Geriatr Cardiol 2014 Mar;11(1):32-8.
  73. Graeber JE, Slott JH, Ulane RE, Schulman JD, Stuart MJ. Effect of homocysteine and homocystine on platelet and vascular arachidonic acid metabolism.. Pediatr Res 1982 Jun;16(6):490-3.
  74. Mohan IV, Jagroop IA, Mikhailidis DP, Stansby GP. Homocysteine activates platelets in vitro.. Clin Appl Thromb Hemost 2008 Jan;14(1):8-18.
    doi: 10.1177/1076029607308390pubmed: 18160593google scholar: lookup
  75. Ridker PM, Hennekens CH, Selhub J, Miletich JP, Malinow MR, Stampfer MJ. Interrelation of hyperhomocyst(e)inemia, factor V Leiden, and risk of future venous thromboembolism.. Circulation 1997 Apr 1;95(7):1777-82.
    doi: 10.1161/01.CIR.95.7.1777pubmed: 9107163google scholar: lookup
  76. Hayashi T, Honda G, Suzuki K. An atherogenic stimulus homocysteine inhibits cofactor activity of thrombomodulin and enhances thrombomodulin expression in human umbilical vein endothelial cells.. Blood 1992 Jun 1;79(11):2930-6.
    doi: 10.1182/blood.V79.11.2930.2930pubmed: 1316788google scholar: lookup
  77. Rodgers GM, Kane WH. Activation of endogenous factor V by a homocysteine-induced vascular endothelial cell activator.. J Clin Invest 1986 Jun;77(6):1909-16.
    doi: 10.1172/JCI112519pmc: PMC370551pubmed: 3519683google scholar: lookup
  78. Lentz SR, Sadler JE. Inhibition of thrombomodulin surface expression and protein C activation by the thrombogenic agent homocysteine.. J Clin Invest 1991 Dec;88(6):1906-14.
    doi: 10.1172/JCI115514pmc: PMC295763pubmed: 1661291google scholar: lookup
  79. Palareti G, Coccheri S. Lowered antithrombin III activity and other clotting changes in homocystinuria: effects of a pyridoxine-folate regimen.. Haemostasis 1989;19 Suppl 1:24-8.
    doi: 10.1159/000216092pubmed: 2807044google scholar: lookup
  80. Mandaviya PR, Stolk L, Heil SG. Homocysteine and DNA methylation: a review of animal and human literature.. Mol Genet Metab 2014 Dec;113(4):243-52.
    doi: 10.1016/j.ymgme.2014.10.006pubmed: 25456744google scholar: lookup
  81. Jamaluddin MD, Chen I, Yang F, Jiang X, Jan M, Liu X, Schafer AI, Durante W, Yang X, Wang H. Homocysteine inhibits endothelial cell growth via DNA hypomethylation of the cyclin A gene.. Blood 2007 Nov 15;110(10):3648-55.
  82. Barroso M., Handy D.E., Castro R. The Link Between Hyperhomocysteinemia and Hypomethylation:Implications for Cardiovascular Disease. J. Inborn Errors Metab. Screen. 2017;5:2326409817698994. doi: 10.1177/2326409817698994.
    doi: 10.1177/2326409817698994google scholar: lookup
  83. Yi P, Melnyk S, Pogribna M, Pogribny IP, Hine RJ, James SJ. Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation.. J Biol Chem 2000 Sep 22;275(38):29318-23.
    doi: 10.1074/jbc.M002725200pubmed: 10884384google scholar: lookup
  84. Wang H, Yoshizumi M, Lai K, Tsai JC, Perrella MA, Haber E, Lee ME. Inhibition of growth and p21ras methylation in vascular endothelial cells by homocysteine but not cysteine.. J Biol Chem 1997 Oct 3;272(40):25380-5.
    doi: 10.1074/jbc.272.40.25380pubmed: 9312159google scholar: lookup
  85. Bajic Z, Sobot T, Skrbic R, Stojiljkovic MP, Ponorac N, Matavulj A, Djuric DM. Homocysteine, Vitamins B6 and Folic Acid in Experimental Models of Myocardial Infarction and Heart Failure-How Strong Is That Link?. Biomolecules 2022 Apr 1;12(4).
    doi: 10.3390/biom12040536pmc: PMC9027107pubmed: 35454125google scholar: lookup
  86. O'Suilleabhain PE, Sung V, Hernandez C, Lacritz L, Dewey RB Jr, Bottiglieri T, Diaz-Arrastia R. Elevated plasma homocysteine level in patients with Parkinson disease: motor, affective, and cognitive associations.. Arch Neurol 2004 Jun;61(6):865-8.
    doi: 10.1001/archneur.61.6.865pubmed: 15210523google scholar: lookup
  87. McCaddon A. Homocysteine and cognitive impairment; a case series in a General Practice setting.. Nutr J 2006 Feb 15;5:6.
    doi: 10.1186/1475-2891-5-6pmc: PMC1395322pubmed: 16480506google scholar: lookup
  88. Garcia A, Zanibbi K. Homocysteine and cognitive function in elderly people.. CMAJ 2004 Oct 12;171(8):897-904.
    doi: 10.1503/cmaj.1031586pmc: PMC522658pubmed: 15477631google scholar: lookup
  89. Zoccolella S, Lamberti P, Armenise E, de Mari M, Lamberti SV, Mastronardi R, Fraddosio A, Iliceto G, Livrea P. Plasma homocysteine levels in Parkinson's disease: role of antiparkinsonian medications.. Parkinsonism Relat Disord 2005 Mar;11(2):131-3.
  90. Zoccolella S, Martino D, Defazio G, Lamberti P, Livrea P. Hyperhomocysteinemia in movement disorders: Current evidence and hypotheses.. Curr Vasc Pharmacol 2006 Jul;4(3):237-43.
    doi: 10.2174/157016106777698414pubmed: 16842141google scholar: lookup
  91. Martignoni E, Tassorelli C, Nappi G, Zangaglia R, Pacchetti C, Blandini F. Homocysteine and Parkinson's disease: a dangerous liaison?. J Neurol Sci 2007 Jun 15;257(1-2):31-7.
    doi: 10.1016/j.jns.2007.01.028pubmed: 17336337google scholar: lookup
  92. Zhou H, Zhong X, Chen B, Wang Q, Zhang M, Mai N, Wu Z, Huang X, Chen X, Peng Q, Ning Y. Elevated homocysteine levels, white matter abnormalities and cognitive impairment in patients with late-life depression.. Front Aging Neurosci 2022;14:931560.
    doi: 10.3389/fnagi.2022.931560pmc: PMC9340773pubmed: 35923546google scholar: lookup
  93. Kocer B, Guven H, Comoglu SS. Homocysteine Levels in Parkinson's Disease: Is Entacapone Effective?. Biomed Res Int 2016;2016:7563705.
    doi: 10.1155/2016/7563705pmc: PMC4967439pubmed: 27493964google scholar: lookup
  94. Duan W, Ladenheim B, Cutler RG, Kruman II, Cadet JL, Mattson MP. Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson's disease.. J Neurochem 2002 Jan;80(1):101-10.
  95. Shcherbitskaia AD, Vasilev DS, Milyutina YP, Tumanova NL, Mikhel AV, Zalozniaia IV, Arutjunyan AV. Prenatal Hyperhomocysteinemia Induces Glial Activation and Alters Neuroinflammatory Marker Expression in Infant Rat Hippocampus.. Cells 2021 Jun 18;10(6).
    doi: 10.3390/cells10061536pmc: PMC8234222pubmed: 34207057google scholar: lookup
  96. James SJ, Cutler P, Melnyk S, Jernigan S, Janak L, Gaylor DW, Neubrander JA. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism.. Am J Clin Nutr 2004 Dec;80(6):1611-7.
    doi: 10.1093/ajcn/80.6.1611pubmed: 15585776google scholar: lookup
  97. Perna AF, Ingrosso D, De Santo NG. Homocysteine and oxidative stress.. Amino Acids 2003 Dec;25(3-4):409-17.
    doi: 10.1007/s00726-003-0026-8pubmed: 14661100google scholar: lookup
  98. Kruman II, Culmsee C, Chan SL, Kruman Y, Guo Z, Penix L, Mattson MP. Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity.. J Neurosci 2000 Sep 15;20(18):6920-6.
  99. Su JH, Anderson AJ, Cummings BJ, Cotman CW. Immunohistochemical evidence for apoptosis in Alzheimer's disease.. Neuroreport 1994 Dec 20;5(18):2529-33.
  100. Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S, Van der Flier WM. Alzheimer's disease.. Lancet 2016 Jul 30;388(10043):505-17.
    doi: 10.1016/S0140-6736(15)01124-1pubmed: 26921134google scholar: lookup
  101. Lane CA, Hardy J, Schott JM. Alzheimer's disease.. Eur J Neurol 2018 Jan;25(1):59-70.
    doi: 10.1111/ene.13439pubmed: 28872215google scholar: lookup
  102. Murphy MP, LeVine H 3rd. Alzheimer's disease and the amyloid-beta peptide.. J Alzheimers Dis 2010;19(1):311-23.
    doi: 10.3233/JAD-2010-1221pmc: PMC2813509pubmed: 20061647google scholar: lookup
  103. DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer's disease.. Mol Neurodegener 2019 Aug 2;14(1):32.
    doi: 10.1186/s13024-019-0333-5pmc: PMC6679484pubmed: 31375134google scholar: lookup
  104. Varshney K.K., Gupta J.K., Mujwar S. Homocysteine induced neurological dysfunctions: A link to neurodegenerative disorders. Int. J. Med. Res. Health Sci. 2019;8:135u2013146.
  105. Wang Q, Zhao J, Chang H, Liu X, Zhu R. Homocysteine and Folic Acid: Risk Factors for Alzheimer's Disease-An Updated Meta-Analysis.. Front Aging Neurosci 2021;13:665114.
    doi: 10.3389/fnagi.2021.665114pmc: PMC8188894pubmed: 34122042google scholar: lookup
  106. Pi T, Liu B, Shi J. Abnormal Homocysteine Metabolism: An Insight of Alzheimer's Disease from DNA Methylation.. Behav Neurol 2020;2020:8438602.
    doi: 10.1155/2020/8438602pmc: PMC7495165pubmed: 32963633google scholar: lookup
  107. Zhuo JM, Wang H, Praticu00f2 D. Is hyperhomocysteinemia an Alzheimer's disease (AD) risk factor, an AD marker, or neither?. Trends Pharmacol Sci 2011 Sep;32(9):562-71.
    doi: 10.1016/j.tips.2011.05.003pmc: PMC3159702pubmed: 21684021google scholar: lookup
  108. Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D'Agostino RB, Wilson PW, Wolf PA. Plasma homocysteine as a risk factor for dementia and Alzheimer's disease.. N Engl J Med 2002 Feb 14;346(7):476-83.
    doi: 10.1056/NEJMoa011613pubmed: 11844848google scholar: lookup
  109. Luzzi S, Papiri G, Viticchi G, Baldinelli S, Fiori C, Silvestrini M, Toraldo A. Association between homocysteine levels and cognitive profile in Alzheimer's Disease.. J Clin Neurosci 2021 Dec;94:250-256.
    doi: 10.1016/j.jocn.2021.09.033pubmed: 34863447google scholar: lookup
  110. Tyagi N, Gillespie W, Vacek JC, Sen U, Tyagi SC, Lominadze D. Activation of GABA-A receptor ameliorates homocysteine-induced MMP-9 activation by ERK pathway.. J Cell Physiol 2009 Jul;220(1):257-66.
    doi: 10.1002/jcp.21757pmc: PMC2811271pubmed: 19308943google scholar: lookup
  111. Lominadze D, Tyagi N, Sen U, Ovechkin A, Tyagi SC. Homocysteine alters cerebral microvascular integrity and causes remodeling by antagonizing GABA-A receptor.. Mol Cell Biochem 2012 Dec;371(1-2):89-96.
    doi: 10.1007/s11010-012-1425-5pmc: PMC3484206pubmed: 22886392google scholar: lookup
  112. Jimu00e9nez-Balado J, Eich TS. GABAergic dysfunction, neural network hyperactivity and memory impairments in human aging and Alzheimer's disease.. Semin Cell Dev Biol 2021 Aug;116:146-159.
  113. Ghanizadeh A. Increased glutamate and homocysteine and decreased glutamine levels in autism: a review and strategies for future studies of amino acids in autism.. Dis Markers 2013;35(5):281-6.
    doi: 10.1155/2013/536521pmc: PMC3787567pubmed: 24167375google scholar: lookup
  114. Numata S, Kinoshita M, Tajima A, Nishi A, Imoto I, Ohmori T. Evaluation of an association between plasma total homocysteine and schizophrenia by a Mendelian randomization analysis.. BMC Med Genet 2015 Jul 26;16:54.
    doi: 10.1186/s12881-015-0197-7pmc: PMC4557634pubmed: 26208850google scholar: lookup
  115. Gorgone G, Caccamo D, Pisani LR, Curru00f2 M, Parisi G, Oteri G, Ientile R, Rossini PM, Pisani F. Hyperhomocysteinemia in patients with epilepsy: does it play a role in the pathogenesis of brain atrophy? A preliminary report.. Epilepsia 2009 Jan;50 Suppl 1:33-6.
  116. Ghanizadeh A, Singh AB, Berk M, Torabi-Nami M. Homocysteine as a potential biomarker in bipolar disorders: a critical review and suggestions for improved studies.. Expert Opin Ther Targets 2015 Jul;19(7):927-39.
    doi: 10.1517/14728222.2015.1019866pubmed: 25882812google scholar: lookup
  117. Fortin JS, Hetak AA, Duggan KE, Burglass CM, Penticoff HB, Schott HC 2nd. Equine pituitary pars intermedia dysfunction: a spontaneous model of synucleinopathy.. Sci Rep 2021 Aug 6;11(1):16036.
    doi: 10.1038/s41598-021-95396-7pmc: PMC8346493pubmed: 34362943google scholar: lookup
  118. Miller MM, Collatos C. Equine degenerative myeloencephalopathy.. Vet Clin North Am Equine Pract 1997 Apr;13(1):43-52.
    doi: 10.1016/S0749-0739(17)30254-7pubmed: 9106342google scholar: lookup
  119. De la Ru00faa-Domu00e8nech R, Mohammed HO, Cummings JF, Divers TJ, De Lahunta A, Summers BA. Association between plasma vitamin E concentration and the risk of equine motor neuron disease.. Vet J 1997 Nov;154(3):203-13.
    doi: 10.1016/S1090-0233(97)80021-4pubmed: 9414953google scholar: lookup
  120. Hinchcliff K.W., Geor R.J. The horse as an athlete: A physiological overview. Equine Exerc. Physiol. Sci. Exerc. Athl. Horse. 2008;454:454.
  121. Goodwin D. Horse Behaviour: Evolution, Domestication and Feralisation. In: Waran N., editor. The Welfare of Horses. Springer; Dordrecht, The Netherlands: 2007. pp. 1u201318.
  122. Art T, Lekeux P. Ventilatory and arterial blood gas tension adjustments to strenuous exercise in standardbreds.. Am J Vet Res 1995 Oct;56(10):1332-7.
    pubmed: 8928951
  123. Poole DC, Erickson HH. Highly athletic terrestrial mammals: horses and dogs.. Compr Physiol 2011 Jan;1(1):1-37.
    pubmed: 23737162doi: 10.1002/cphy.c091001google scholar: lookup
  124. Wagner PD, Gillespie JR, Landgren GL, Fedde MR, Jones BW, DeBowes RM, Pieschl RL, Erickson HH. Mechanism of exercise-induced hypoxemia in horses.. J Appl Physiol (1985) 1989 Mar;66(3):1227-33.
    doi: 10.1152/jappl.1989.66.3.1227pubmed: 2496088google scholar: lookup
  125. Mills PC, Smith NC, Casas I, Harris P, Harris RC, Marlin DJ. Effects of exercise intensity and environmental stress on indices of oxidative stress and iron homeostasis during exercise in the horse.. Eur J Appl Physiol Occup Physiol 1996;74(1-2):60-6.
    doi: 10.1007/BF00376495pubmed: 8891501google scholar: lookup
  126. Marlin DJ, Fenn K, Smith N, Deaton CD, Roberts CA, Harris PA, Dunster C, Kelly FJ. Changes in circulatory antioxidant status in horses during prolonged exercise.. J Nutr 2002 Jun;132(6 Suppl 2):1622S-7S.
    doi: 10.1093/jn/132.6.1622Spubmed: 12042474google scholar: lookup
  127. Dru00f6ge W. Free radicals in the physiological control of cell function.. Physiol Rev 2002 Jan;82(1):47-95.
    doi: 10.1152/physrev.00018.2001pubmed: 11773609google scholar: lookup
  128. Chiaradia E, Avellini L, Rueca F, Spaterna A, Porciello F, Antonioni MT, Gaiti A. Physical exercise, oxidative stress and muscle damage in racehorses.. Comp Biochem Physiol B Biochem Mol Biol 1998 Apr;119(4):833-6.
    doi: 10.1016/S0305-0491(98)10001-9pubmed: 9787774google scholar: lookup
  129. Tofas T, Draganidis D, Deli CK, Georgakouli K, Fatouros IG, Jamurtas AZ. Exercise-Induced Regulation of Redox Status in Cardiovascular Diseases: The Role of Exercise Training and Detraining.. Antioxidants (Basel) 2019 Dec 23;9(1).
    doi: 10.3390/antiox9010013pmc: PMC7023632pubmed: 31877965google scholar: lookup
  130. Maroto-Su00e1nchez B, Lopez-Torres O, Palacios G, Gonzu00e1lez-Gross M. What do we know about homocysteine and exercise? A review from the literature.. Clin Chem Lab Med 2016 Oct 1;54(10):1561-77.
    doi: 10.1515/cclm-2015-1040pubmed: 26876813google scholar: lookup
  131. Iglesias-Gutiu00e9rrez E, Garcu00eda-Gonzu00e1lez u00c1, Montero-Bravo A, Gonzu00e1lez-Medina A, Joglar J, Tomu00e1s-Zapico C, Fernu00e1ndez-Garcu00eda B, Fernu00e1ndez-Sanjurjo M, de Gonzalo-Calvo D, Du00edaz-Martu00ednez u00c1E, u00dabeda N. Exercise-Induced Hyperhomocysteinemia Is Not Related to Oxidative Damage or Impaired Vascular Function in Amateur Middle-Aged Runners under Controlled Nutritional Intake.. Nutrients 2021 Aug 30;13(9).
    doi: 10.3390/nu13093033pmc: PMC8471188pubmed: 34578910google scholar: lookup
  132. Joubert LM, Manore MM. The role of physical activity level and B-vitamin status on blood homocysteine levels.. Med Sci Sports Exerc 2008 Nov;40(11):1923-31.
    doi: 10.1249/MSS.0b013e31817f36f9pubmed: 18845970google scholar: lookup
  133. Borrione P, Rizzo M, Spaccamiglio A, Salvo RA, Dovio A, Termine A, Parisi A, Fagnani F, Angeli A, Pigozzi F. Sport-related hyperhomocysteinaemia: a putative marker of muscular demand to be noted for cardiovascular risk.. Br J Sports Med 2008 Nov;42(11):894-900.
    doi: 10.1136/bjsm.2007.045021pubmed: 18216160google scholar: lookup
  134. Hodgson D.R., Rose R.J. The Athletic Horse: Principles and Practice of Equine Sports Medicine. Saunders; Philadephia, PA, USA: 1994.
  135. Mattson MP. Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives.. Physiol Rev 1997 Oct;77(4):1081-132.
    doi: 10.1152/physrev.1997.77.4.1081pubmed: 9354812google scholar: lookup
  136. Fan X, Zhang L, Li H, Chen G, Qi G, Ma X, Jin Y. Role of homocysteine in the development and progression of Parkinson's disease.. Ann Clin Transl Neurol 2020 Nov;7(11):2332-2338.
    doi: 10.1002/acn3.51227pmc: PMC7664283pubmed: 33085841google scholar: lookup
  137. Shang Y, Siow YL, Isaak CK, O K. Downregulation of Glutathione Biosynthesis Contributes to Oxidative Stress and Liver Dysfunction in Acute Kidney Injury.. Oxid Med Cell Longev 2016;2016:9707292.
    doi: 10.1155/2016/9707292pmc: PMC5107229pubmed: 27872680google scholar: lookup
  138. Lawrence de Koning AB, Werstuck GH, Zhou J, Austin RC. Hyperhomocysteinemia and its role in the development of atherosclerosis.. Clin Biochem 2003 Sep;36(6):431-41.
    doi: 10.1016/S0009-9120(03)00062-6pubmed: 12951169google scholar: lookup
  139. Mack SJ, Kirkby K, Malalana F, McGowan CM. Elevations in serum muscle enzyme activities in racehorses due to unaccustomed exercise and training.. Vet Rec 2014 Feb 8;174(6):145.
    doi: 10.1136/vr.101669pubmed: 24415762google scholar: lookup
  140. Mann S, Ramsay JD, Wakshlag JJ, Stokol T, Reed S, Divers TJ. Investigating the pathogenesis of high-serum gamma-glutamyl transferase activity in Thoroughbred racehorses: A series of case-control studies.. Equine Vet J 2022 Jan;54(1):39-51.
    doi: 10.1111/evj.13435pubmed: 33555643google scholar: lookup
  141. Welch GN, Loscalzo J. Homocysteine and atherothrombosis.. N Engl J Med 1998 Apr 9;338(15):1042-50.
    doi: 10.1056/NEJM199804093381507pubmed: 9535670google scholar: lookup
  142. Williams KT, Schalinske KL. Homocysteine metabolism and its relation to health and disease.. Biofactors 2010 Jan-Feb;36(1):19-24.
    doi: 10.1002/biof.71pubmed: 20091801google scholar: lookup
  143. Demuth K, Ducros V, Michelsohn S, Paul JL. Evaluation of Advia Centaur automated chemiluminescence immunoassay for determining total homocysteine in plasma.. Clin Chim Acta 2004 Nov;349(1-2):113-20.
    doi: 10.1016/j.cccn.2004.06.012pubmed: 15469863google scholar: lookup

Citations

This article has been cited 0 times.