Nature2002; 414(6866); 895-899; doi: 10.1038/414895a

Horses damp the spring in their step.

Abstract: The muscular work of galloping in horses is halved by storing and returning elastic strain energy in spring-like muscle-tendon units.These make the legs act like a child's pogo stick that is tuned to stretch and recoil at 2.5 strides per second. This mechanism is optimized by unique musculoskeletal adaptations: the digital flexor muscles have extremely short fibres and significant passive properties, whereas the tendons are very long and span several joints. Length change occurs by a stretching of the spring-like digital flexor tendons rather than through energetically expensive length changes in the muscle. Despite being apparently redundant for such a mechanism, the muscle fibres in the digital flexors are well developed. Here we show that the mechanical arrangement of the elastic leg permits it to vibrate at a higher frequency of 30-40 Hz that could cause fatigue damage to tendon and bone. Furthermore, we show that the digital flexor muscles have minimal ability to contribute to or regulate significantly the 2.5-Hz cycle of movement, but are ideally arranged to damp these high-frequency oscillations in the limb.
Publication Date: 2002-01-10 PubMed ID: 11780059DOI: 10.1038/414895aGoogle Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

This research study explores how horses efficiently use their energy when galloping, revealing a mechanism akin to a child’s pogo stick, allowing the storage and return of elastic energy through their leg muscles.

Research Objective

The main objective of this research was to understand how horses minimize the work of galloping and how their musculoskeletal adaptations contribute to this. Specifically, the study aimed to unveil the possible reasons for the unique arrangement of muscular and tendon structures in a horse’s leg.

Horse’s Galloping Mechanism

  • The researchers found that the muscles and tendons in a horse’s leg behave like a spring, similar to how a child’s pogo stick works, which is tuned to stretch and recoil at 2.5 strides per second.
  • Unique musculoskeletal adaptations have been observed where digital flexor muscles have extremely short fibers and substantial passive properties, whereas the tendons are very long and span multiple joints. This arrangement allows for the stretching of the spring-like digital flexor tendons, hence reducing the energetically costly length changes in the muscle.
  • Despite seeming redundant for this mechanism, the muscle fibers in the digital flexors are well developed.

Vibration and Fatigue Damage

  • The study reveals that apparently the mechanical structure of the horse’s tendon-peppered leg allows it to vibrate at a high frequency of about 30-40 Hz. Such high-frequency vibration could cause fatigue damage to both the tendons and bone if not regulated.
  • The evidence suggests that, in spite of their minimal contribution to the regular 2.5 Hz movement cycle, the digital flexor muscles are precisely arranged to dampen these high-frequency vibrations, acting as shock absorbers, so to speak, preventing potential fatigue damage.

Conclusion

In conclusion, the research provides an insightful understanding of the efficient energy usage in horses during galloping. It demonstrates the critical role of the muscle-tendon units in energy storage and return, and highlights the protective effect of the digital flexor muscles against high-frequency vibrations. This study could guide further research on animal locomotion mechanisms and their potential biomechanical adaptations.

Cite This Article

APA
Wilson AM, McGuigan MP, Su A, van Den Bogert AJ. (2002). Horses damp the spring in their step. Nature, 414(6866), 895-899. https://doi.org/10.1038/414895a

Publication

ISSN: 0028-0836
NlmUniqueID: 0410462
Country: England
Language: English
Volume: 414
Issue: 6866
Pages: 895-899

Researcher Affiliations

Wilson, A M
  • Department of Veterinary Basic Sciences, The Royal Veterinary College, Hatfield, Herts AL9 7TA, UK. awilson@rvc.ac.uk
McGuigan, M P
    Su, A
      van Den Bogert, A J

        MeSH Terms

        • Animals
        • Biomechanical Phenomena
        • Elasticity
        • Forelimb
        • Gait
        • Horses / anatomy & histology
        • Horses / physiology
        • Leg Bones / physiology
        • Locomotion
        • Models, Biological
        • Muscle Fibers, Skeletal / physiology
        • Muscle, Skeletal / anatomy & histology
        • Muscle, Skeletal / physiology
        • Tendons / anatomy & histology
        • Tendons / physiology
        • Vibration

        Citations

        This article has been cited 51 times.
        1. Mo A, Izzi F, Gu00f6nen EC, Haeufle D, Badri-Spru00f6witz A. Slack-based tunable damping leads to a trade-off between robustness and efficiency in legged locomotion.. Sci Rep 2023 Feb 25;13(1):3290.
          doi: 10.1038/s41598-023-30318-3pubmed: 36841875google scholar: lookup
        2. Horan K, Coburn J, Kourdache K, Day P, Carnall H, Brinkley L, Harborne D, Hammond L, Peterson M, Millard S, Pfau T. Hoof Impact and Foot-Off Accelerations in Galloping Thoroughbred Racehorses Trialling Eight Shoe-Surface Combinations.. Animals (Basel) 2022 Aug 23;12(17).
          doi: 10.3390/ani12172161pubmed: 36077882google scholar: lookup
        3. Harrison SM, Whitton RC, Stover SM, Symons JE, Cleary PW. A Coupled Biomechanical-Smoothed Particle Hydrodynamics Model for Horse Racing Tracks.. Front Bioeng Biotechnol 2022;10:766748.
          doi: 10.3389/fbioe.2022.766748pubmed: 35265590google scholar: lookup
        4. Silver FH, Kelkar N, Deshmukh T. Molecular Basis for Mechanical Properties of ECMs: Proposed Role of Fibrillar Collagen and Proteoglycans in Tissue Biomechanics.. Biomolecules 2021 Jul 12;11(7).
          doi: 10.3390/biom11071018pubmed: 34356642google scholar: lookup
        5. St George L, Clayton HM, Sinclair J, Richards J, Roy SH, Hobbs SJ. Muscle Function and Kinematics during Submaximal Equine Jumping: What Can Objective Outcomes Tell Us about Athletic Performance Indicators?. Animals (Basel) 2021 Feb 5;11(2).
          doi: 10.3390/ani11020414pubmed: 33562875google scholar: lookup
        6. Heim S, Millard M, Le Mouel C, Badri-Spru00f6witz A. A little damping goes a long way: a simulation study of how damping influences task-level stability in running.. Biol Lett 2020 Sep;16(9):20200467.
          doi: 10.1098/rsbl.2020.0467pubmed: 32961093google scholar: lookup
        7. Han D, Zhang R, Yu G, Jiang L, Li D, Li J. Study on bio-inspired feet based on the cushioning and shock absorption characteristics of the ostrich foot.. PLoS One 2020;15(7):e0236324.
          doi: 10.1371/journal.pone.0236324pubmed: 32706841google scholar: lookup
        8. Schumacher C, Sharbafi M, Seyfarth A, Rode C. Biarticular muscles in light of template models, experiments and robotics: a review.. J R Soc Interface 2020 Feb;17(163):20180413.
          doi: 10.1098/rsif.2018.0413pubmed: 32093540google scholar: lookup
        9. Chen J, Liang Z, Zhu Y, Liu C, Zhang L, Hao L, Zhao J. Towards the Exploitation of Physical Compliance in Segmented and Electrically Actuated Robotic Legs: A Review Focused on Elastic Mechanisms.. Sensors (Basel) 2019 Dec 4;19(24).
          doi: 10.3390/s19245351pubmed: 31817236google scholar: lookup
        10. Channon SB, Young IS, Cordner B, Swann N. Ontogenetic scaling of pelvic limb muscles, tendons and locomotor economy in the ostrich (Struthio camelus).. J Exp Biol 2019 Sep 3;222(Pt 17).
          doi: 10.1242/jeb.182741pubmed: 31350301google scholar: lookup
        11. Parkes RSV, Weller R, Pfau T, Witte TH. The Effect of Training on Stride Duration in a Cohort of Two-Year-Old and Three-Year-Old Thoroughbred Racehorses.. Animals (Basel) 2019 Jul 22;9(7).
          doi: 10.3390/ani9070466pubmed: 31336595google scholar: lookup
        12. Tsang AS, Dart AJ, Biasutti SA, Jeffcott LB, Smith MM, Little CB. Effects of tendon injury on uninjured regional tendons in the distal limb: An in-vivo study using an ovine tendinopathy model.. PLoS One 2019;14(4):e0215830.
          doi: 10.1371/journal.pone.0215830pubmed: 31013317google scholar: lookup
        13. Riddick R, Farris DJ, Kelly LA. The foot is more than a spring: human foot muscles perform work to adapt to the energetic requirements of locomotion.. J R Soc Interface 2019 Jan 31;16(150):20180680.
          doi: 10.1098/rsif.2018.0680pubmed: 30958152google scholar: lookup
        14. Self Davies ZT, Spence AJ, Wilson AM. External mechanical work in the galloping racehorse.. Biol Lett 2019 Feb 28;15(2):20180709.
          doi: 10.1098/rsbl.2018.0709pubmed: 30958128google scholar: lookup
        15. Salzano MQ, Cox SM, Piazza SJ, Rubenson J. American Society of Biomechanics Journal of Biomechanics Award 2017: High-acceleration training during growth increases optimal muscle fascicle lengths in an avian bipedal model.. J Biomech 2018 Oct 26;80:1-7.
        16. Wilson AM, Hubel TY, Wilshin SD, Lowe JC, Lorenc M, Dewhirst OP, Bartlam-Brooks HLA, Diack R, Bennitt E, Golabek KA, Woledge RC, McNutt JW, Curtin NA, West TG. Biomechanics of predator-prey arms race in lion, zebra, cheetah and impala.. Nature 2018 Feb 8;554(7691):183-188.
          doi: 10.1038/nature25479pubmed: 29364874google scholar: lookup
        17. Christensen KB, Gu00fcnther M, Schmitt S, Siebert T. Strain in shock-loaded skeletal muscle and the time scale of muscular wobbling mass dynamics.. Sci Rep 2017 Oct 16;7(1):13266.
          doi: 10.1038/s41598-017-13630-7pubmed: 29038526google scholar: lookup
        18. Zhang Q, Xu K, Ding X. Investigation of feet functions of large ruminants with a decoupled model of equivalent mechanism.. Biol Open 2017 Apr 15;6(4):407-414.
          doi: 10.1242/bio.023630pubmed: 28412713google scholar: lookup
        19. McCarty CA, Thomason JJ, Gordon KD, Burkhart TA, Milner JS, Holdsworth DW. Finite-Element Analysis of Bone Stresses on Primary Impact in a Large-Animal Model: The Distal End of the Equine Third Metacarpal.. PLoS One 2016;11(7):e0159541.
          doi: 10.1371/journal.pone.0159541pubmed: 27459189google scholar: lookup
        20. Biewener AA. Locomotion as an emergent property of muscle contractile dynamics.. J Exp Biol 2016 Jan;219(Pt 2):285-94.
          doi: 10.1242/jeb.123935pubmed: 26792341google scholar: lookup
        21. Butcher MT, Bertram JE, Syme DA, Hermanson JW, Chase PB. Frequency dependence of power and its implications for contractile function of muscle fibers from the digital flexors of horses.. Physiol Rep 2014 Oct 1;2(10).
          doi: 10.14814/phy2.12174pubmed: 25293602google scholar: lookup
        22. Dakin SG, Dudhia J, Smith RK. Resolving an inflammatory concept: the importance of inflammation and resolution in tendinopathy.. Vet Immunol Immunopathol 2014 Apr 15;158(3-4):121-7.
          doi: 10.1016/j.vetimm.2014.01.007pubmed: 24556326google scholar: lookup
        23. Dakin SG, Smith RK, Heinegu00e5rd D, u00d6nnerfjord P, Khabut A, Dudhia J. Proteomic analysis of tendon extracellular matrix reveals disease stage-specific fragmentation and differential cleavage of COMP (cartilage oligomeric matrix protein).. J Biol Chem 2014 Feb 21;289(8):4919-27.
          doi: 10.1074/jbc.M113.511972pubmed: 24398684google scholar: lookup
        24. Smith RK, Werling NJ, Dakin SG, Alam R, Goodship AE, Dudhia J. Beneficial effects of autologous bone marrow-derived mesenchymal stem cells in naturally occurring tendinopathy.. PLoS One 2013;8(9):e75697.
          doi: 10.1371/journal.pone.0075697pubmed: 24086616google scholar: lookup
        25. Gu00fcnther M, Ru00f6hrle O, Haeufle DF, Schmitt S. Spreading out muscle mass within a Hill-type model: a computer simulation study.. Comput Math Methods Med 2012;2012:848630.
          doi: 10.1155/2012/848630pubmed: 23227110google scholar: lookup
        26. Dakin SG, Dudhia J, Werling NJ, Werling D, Abayasekara DR, Smith RK. Inflamm-aging and arachadonic acid metabolite differences with stage of tendon disease.. PLoS One 2012;7(11):e48978.
          doi: 10.1371/journal.pone.0048978pubmed: 23155437google scholar: lookup
        27. Olsen E, Andersen PH, Pfau T. Accuracy and precision of equine gait event detection during walking with limb and trunk mounted inertial sensors.. Sensors (Basel) 2012;12(6):8145-56.
          doi: 10.3390/s120608145pubmed: 22969392google scholar: lookup
        28. Self ZT, Spence AJ, Wilson AM. Speed and incline during thoroughbred horse racing: racehorse speed supports a metabolic power constraint to incline running but not to decline running.. J Appl Physiol (1985) 2012 Aug 15;113(4):602-7.
        29. Dakin SG, Werling D, Hibbert A, Abayasekara DR, Young NJ, Smith RK, Dudhia J. Macrophage sub-populations and the lipoxin A4 receptor implicate active inflammation during equine tendon repair.. PLoS One 2012;7(2):e32333.
          doi: 10.1371/journal.pone.0032333pubmed: 22384219google scholar: lookup
        30. Leftwich MC, Tytell ED, Cohen AH, Smits AJ. Wake structures behind a swimming robotic lamprey with a passively flexible tail.. J Exp Biol 2012 Feb 1;215(Pt 3):416-25.
          doi: 10.1242/jeb.061440pubmed: 22246250google scholar: lookup
        31. Baxter JR, Novack TA, Van Werkhoven H, Pennell DR, Piazza SJ. Ankle joint mechanics and foot proportions differ between human sprinters and non-sprinters.. Proc Biol Sci 2012 May 22;279(1735):2018-24.
          doi: 10.1098/rspb.2011.2358pubmed: 22189400google scholar: lookup
        32. Tytell ED, Holmes P, Cohen AH. Spikes alone do not behavior make: why neuroscience needs biomechanics.. Curr Opin Neurobiol 2011 Oct;21(5):816-22.
          doi: 10.1016/j.conb.2011.05.017pubmed: 21683575google scholar: lookup
        33. Daley MA, Biewener AA. Leg muscles that mediate stability: mechanics and control of two distal extensor muscles during obstacle negotiation in the guinea fowl.. Philos Trans R Soc Lond B Biol Sci 2011 May 27;366(1570):1580-91.
          doi: 10.1098/rstb.2010.0338pubmed: 21502128google scholar: lookup
        34. Wilson A, Lichtwark G. The anatomical arrangement of muscle and tendon enhances limb versatility and locomotor performance.. Philos Trans R Soc Lond B Biol Sci 2011 May 27;366(1570):1540-53.
          doi: 10.1098/rstb.2010.0361pubmed: 21502125google scholar: lookup
        35. Hudson PE, Corr SA, Payne-Davis RC, Clancy SN, Lane E, Wilson AM. Functional anatomy of the cheetah (Acinonyx jubatus) forelimb.. J Anat 2011 Apr;218(4):375-85.
        36. Tan H, Wilson AM. Grip and limb force limits to turning performance in competition horses.. Proc Biol Sci 2011 Jul 22;278(1715):2105-11.
          doi: 10.1098/rspb.2010.2395pubmed: 21147799google scholar: lookup
        37. McGuigan MP, Yoo E, Lee DV, Biewener AA. Dynamics of goat distal hind limb muscle-tendon function in response to locomotor grade.. J Exp Biol 2009 Jul;212(Pt 13):2092-104.
          doi: 10.1242/jeb.028076pubmed: 19525436google scholar: lookup
        38. Williams SB, Wilson AM, Daynes J, Peckham K, Payne RC. Functional anatomy and muscle moment arms of the thoracic limb of an elite sprinting athlete: the racing greyhound (Canis familiaris).. J Anat 2008 Oct;213(4):373-82.
        39. Williams SB, Wilson AM, Rhodes L, Andrews J, Payne RC. Functional anatomy and muscle moment arms of the pelvic limb of an elite sprinting athlete: the racing greyhound (Canis familiaris).. J Anat 2008 Oct;213(4):361-72.
        40. Birch HL. Tendon matrix composition and turnover in relation to functional requirements.. Int J Exp Pathol 2007 Aug;88(4):241-8.
        41. Clegg PD, Strassburg S, Smith RK. Cell phenotypic variation in normal and damaged tendons.. Int J Exp Pathol 2007 Aug;88(4):227-35.
        42. Lawson SE, Chateau H, Pourcelot P, Denoix JM, Crevier-Denoix N. Effect of toe and heel elevation on calculated tendon strains in the horse and the influence of the proximal interphalangeal joint.. J Anat 2007 May;210(5):583-91.
        43. Williams SB, Wilson AM, Payne RC. Functional specialisation of the thoracic limb of the hare (Lepus europeus).. J Anat 2007 Apr;210(4):491-505.
        44. Payne RC, Crompton RH, Isler K, Savage R, Vereecke EE, Gu00fcnther MM, Thorpe SK, D'Aou00fbt K. Morphological analysis of the hindlimb in apes and humans. II. Moment arms.. J Anat 2006 Jun;208(6):725-42.
        45. Payne RC, Crompton RH, Isler K, Savage R, Vereecke EE, Gu00fcnther MM, Thorpe SK, D'Aou00fbt K. Morphological analysis of the hindlimb in apes and humans. I. Muscle architecture.. J Anat 2006 Jun;208(6):709-24.
        46. Smith RK, Webbon PM. Harnessing the stem cell for the treatment of tendon injuries: heralding a new dawn?. Br J Sports Med 2005 Sep;39(9):582-4.
          doi: 10.1136/bjsm.2005.015834pubmed: 16118291google scholar: lookup
        47. Payne RC, Hutchinson JR, Robilliard JJ, Smith NC, Wilson AM. Functional specialisation of pelvic limb anatomy in horses (Equus caballus).. J Anat 2005 Jun;206(6):557-74.
        48. Payne RC, Veenman P, Wilson AM. The role of the extrinsic thoracic limb muscles in equine locomotion.. J Anat 2005 Feb;206(2):193-204.
        49. Payne RC, Veenman P, Wilson AM. The role of the extrinsic thoracic limb muscles in equine locomotion.. J Anat 2004 Dec;205(6):479-90.
        50. van den Bogert AJ. Exotendons for assistance of human locomotion.. Biomed Eng Online 2003 Oct 14;2:17.
          doi: 10.1186/1475-925X-2-17pubmed: 14613503google scholar: lookup
        51. Brown NA, Pandy MG, Kawcak CE, McIlwraith CW. Force- and moment-generating capacities of muscles in the distal forelimb of the horse.. J Anat 2003 Jul;203(1):101-13.