PLoS computational biology2012; 8(6); e1002588; doi: 10.1371/journal.pcbi.1002588

Modeling within-host dynamics of influenza virus infection including immune responses.

Abstract: Influenza virus infection remains a public health problem worldwide. The mechanisms underlying viral control during an uncomplicated influenza virus infection are not fully understood. Here, we developed a mathematical model including both innate and adaptive immune responses to study the within-host dynamics of equine influenza virus infection in horses. By comparing modeling predictions with both interferon and viral kinetic data, we examined the relative roles of target cell availability, and innate and adaptive immune responses in controlling the virus. Our results show that the rapid and substantial viral decline (about 2 to 4 logs within 1 day) after the peak can be explained by the killing of infected cells mediated by interferon activated cells, such as natural killer cells, during the innate immune response. After the viral load declines to a lower level, the loss of interferon-induced antiviral effect and an increased availability of target cells due to loss of the antiviral state can explain the observed short phase of viral plateau in which the viral level remains unchanged or even experiences a minor second peak in some animals. An adaptive immune response is needed in our model to explain the eventual viral clearance. This study provides a quantitative understanding of the biological factors that can explain the viral and interferon kinetics during a typical influenza virus infection.
Publication Date: 2012-06-28 PubMed ID: 22761567PubMed Central: PMC3386161DOI: 10.1371/journal.pcbi.1002588Google Scholar: Lookup
The Equine Research Bank provides access to a large database of publicly available scientific literature. Inclusion in the Research Bank does not imply endorsement of study methods or findings by Mad Barn.
  • Journal Article
  • Research Support
  • N.I.H.
  • Extramural
  • Research Support
  • Non-U.S. Gov't
  • Research Support
  • U.S. Gov't
  • Non-P.H.S.

Summary

This research summary has been generated with artificial intelligence and may contain errors and omissions. Refer to the original study to confirm details provided. Submit correction.

This research article is about the development and application of a mathematical model to better understand the dynamics of an influenza virus infection within a host, with a focus on both innate and adaptive immune responses.

Development of the Mathematical Model

  • The researchers created a mathematical model to study how equine influenza virus infection works within horses, with a particular focus on both innate and adaptive immune responses.
  • This model is designed to help gain a deeper understanding of the mechanisms underlying how a host controls an uncomplicated influenza virus infection.

Utilization of the Mathematical Model

  • The model was compared with data from both interferon and viral kinetics to examine how several factors, including target cell availability and both kinds of immune responses, play a role in the control of the virus.
  • The results of the model show that the significant reduction of viral load observed (2 to 4 logs within a day) after its peak could be explained by infected cells being killed by interferon-activated cells, such as natural killer cells.
  • This phase corresponds to the role of the innate immune response, eradicating the infected cells quickly and effectively.

Understanding Different Phases of Infection

  • Once the viral load declines to a lower level, the post peak phase of infection is characterized by a loss of the antiviral effect induced by interferon and an increased availability of target cells resulting from the loss of the antiviral state.
  • This explains the brief phase in which viral level plateaus, remaining unchanged or even experiencing a secondary minor peak in some cases.

The Role of Adaptive Immune Response

  • The model further indicates that for eventual viral clearance to happen, an adaptive immune response is necessary.
  • This suggests that the body’s ability to create specific antibodies to the virus strain is crucial to completely get rid of the virus.

Conclusion

  • In conclusion, this study provides quantifiable insight into the complex interactions between the influenza virus, the host, and the host’s immune response.
  • It aids in the understanding of why and how certain phases of the disease progress as they do and reveals the very different roles of innate and adaptive immune responses play in combating a common influenza virus infection.

Cite This Article

APA
Pawelek KA, Huynh GT, Quinlivan M, Cullinane A, Rong L, Perelson AS. (2012). Modeling within-host dynamics of influenza virus infection including immune responses. PLoS Comput Biol, 8(6), e1002588. https://doi.org/10.1371/journal.pcbi.1002588

Publication

ISSN: 1553-7358
NlmUniqueID: 101238922
Country: United States
Language: English
Volume: 8
Issue: 6
Pages: e1002588
PII: e1002588

Researcher Affiliations

Pawelek, Kasia A
  • Department of Mathematics and Statistics, Oakland University, Rochester, Michigan, United States of America.
Huynh, Giao T
    Quinlivan, Michelle
      Cullinane, Ann
        Rong, Libin
          Perelson, Alan S

            MeSH Terms

            • Adaptive Immunity
            • Animals
            • Computational Biology
            • Computer Simulation
            • Horse Diseases / immunology
            • Horse Diseases / virology
            • Horses
            • Host-Pathogen Interactions / immunology
            • Humans
            • Immunity, Innate
            • Influenza A Virus, H3N8 Subtype / immunology
            • Influenza A Virus, H3N8 Subtype / pathogenicity
            • Influenza, Human / immunology
            • Influenza, Human / virology
            • Models, Immunological
            • Orthomyxoviridae Infections / immunology
            • Orthomyxoviridae Infections / veterinary
            • Orthomyxoviridae Infections / virology
            • Time Factors
            • Viral Load / immunology

            Grant Funding

            • R01 OD011095 / NIH HHS
            • P30 EB011339 / NIBIB NIH HHS
            • 8R01-OD011095-21 / NIH HHS
            • P30-EB011339 / NIBIB NIH HHS
            • HHSN272201000055C / NIAID NIH HHS

            Conflict of Interest Statement

            The authors have declared that no competing interests exist.

            References

            This article includes 67 references
            1. WHO. Fact Sheet No. 211. http://www.who.int/mediacentre/factsheets/fs211/en/. April 2009.
            2. Ronni T, Sareneva T, Pirhonen J, Julkunen I. Activation of IFN-alpha, IFN-gamma, MxA, and IFN regulatory factor 1 genes in influenza A virus-infected human peripheral blood mononuclear cells.. J Immunol 1995 Mar 15;154(6):2764-74.
              pubmed: 7876547
            3. Maines TR, Szretter KJ, Perrone L, Belser JA, Bright RA, Zeng H, Tumpey TM, Katz JM. Pathogenesis of emerging avian influenza viruses in mammals and the host innate immune response.. Immunol Rev 2008 Oct;225:68-84.
            4. Julkunen I, Sareneva T, Pirhonen J, Ronni T, Melu00e9n K, Matikainen S. Molecular pathogenesis of influenza A virus infection and virus-induced regulation of cytokine gene expression.. Cytokine Growth Factor Rev 2001 Jun-Sep;12(2-3):171-80.
              pubmed: 11325600doi: 10.1016/s1359-6101(00)00026-5google scholar: lookup
            5. Garcu00eda-Sastre A, Durbin RK, Zheng H, Palese P, Gertner R, Levy DE, Durbin JE. The role of interferon in influenza virus tissue tropism.. J Virol 1998 Nov;72(11):8550-8.
            6. Gazit R, Gruda R, Elboim M, Arnon TI, Katz G, Achdout H, Hanna J, Qimron U, Landau G, Greenbaum E, Zakay-Rones Z, Porgador A, Mandelboim O. Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1.. Nat Immunol 2006 May;7(5):517-23.
              pubmed: 16565719doi: 10.1038/ni1322google scholar: lookup
            7. Arnon TI, Achdout H, Lieberman N, Gazit R, Gonen-Gross T, Katz G, Bar-Ilan A, Bloushtain N, Lev M, Joseph A, Kedar E, Porgador A, Mandelboim O. The mechanisms controlling the recognition of tumor- and virus-infected cells by NKp46.. Blood 2004 Jan 15;103(2):664-72.
              pubmed: 14504081doi: 10.1182/blood-2003-05-1716google scholar: lookup
            8. Draghi M, Pashine A, Sanjanwala B, Gendzekhadze K, Cantoni C, Cosman D, Moretta A, Valiante NM, Parham P. NKp46 and NKG2D recognition of infected dendritic cells is necessary for NK cell activation in the human response to influenza infection.. J Immunol 2007 Mar 1;178(5):2688-98.
              pubmed: 17312110doi: 10.4049/jimmunol.178.5.2688google scholar: lookup
            9. Mandelboim O, Lieberman N, Lev M, Paul L, Arnon TI, Bushkin Y, Davis DM, Strominger JL, Yewdell JW, Porgador A. Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells.. Nature 2001 Feb 22;409(6823):1055-60.
              pubmed: 11234016doi: 10.1038/35059110google scholar: lookup
            10. Arnon TI, Lev M, Katz G, Chernobrov Y, Porgador A, Mandelboim O. Recognition of viral hemagglutinins by NKp44 but not by NKp30.. Eur J Immunol 2001 Sep;31(9):2680-9.
            11. Murphy K. 2012. 888 Janeway's Immunobiology: Garland Science.
            12. Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses.. Clin Microbiol Rev 2009 Apr;22(2):240-73, Table of Contents.
              pmc: PMC2668232pubmed: 19366914doi: 10.1128/CMR.00046-08google scholar: lookup
            13. Miao H, Hollenbaugh JA, Zand MS, Holden-Wiltse J, Mosmann TR, Perelson AS, Wu H, Topham DJ. Quantifying the early immune response and adaptive immune response kinetics in mice infected with influenza A virus.. J Virol 2010 Jul;84(13):6687-98.
              pmc: PMC2903284pubmed: 20410284doi: 10.1128/JVI.00266-10google scholar: lookup
            14. Kuiken T, Rimmelzwaan G, van Riel D, van Amerongen G, Baars M, Fouchier R, Osterhaus A. Avian H5N1 influenza in cats.. Science 2004 Oct 8;306(5694):241.
              pubmed: 15345779doi: 10.1126/science.1102287google scholar: lookup
            15. Zitzow LA, Rowe T, Morken T, Shieh WJ, Zaki S, Katz JM. Pathogenesis of avian influenza A (H5N1) viruses in ferrets.. J Virol 2002 May;76(9):4420-9.
            16. Quinlivan M, Nelly M, Prendergast M, Breathnach C, Horohov D, Arkins S, Chiang YW, Chu HJ, Ng T, Cullinane A. Pro-inflammatory and antiviral cytokine expression in vaccinated and unvaccinated horses exposed to equine influenza virus.. Vaccine 2007 Oct 10;25(41):7056-64.
              pubmed: 17825959doi: 10.1016/j.vaccine.2007.07.059google scholar: lookup
            17. Rimmelzwaan GF, Kuiken T, van Amerongen G, Bestebroer TM, Fouchier RA, Osterhaus AD. Pathogenesis of influenza A (H5N1) virus infection in a primate model.. J Virol 2001 Jul;75(14):6687-91.
            18. Getto P, Kimmel M, Marciniak-Czochra A. Modelling and analysis of dynamics of viral infection of cells and of interferon resistance. J Math Anal Appl. 2008;344:821u2013850.
            19. Saenz RA, Quinlivan M, Elton D, Macrae S, Blunden AS, Mumford JA, Daly JM, Digard P, Cullinane A, Grenfell BT, McCauley JW, Wood JL, Gog JR. Dynamics of influenza virus infection and pathology.. J Virol 2010 Apr;84(8):3974-83.
              pmc: PMC2849502pubmed: 20130053doi: 10.1128/JVI.02078-09google scholar: lookup
            20. Baccam P, Beauchemin C, Macken CA, Hayden FG, Perelson AS. Kinetics of influenza A virus infection in humans.. J Virol 2006 Aug;80(15):7590-9.
              pmc: PMC1563736pubmed: 16840338doi: 10.1128/JVI.01623-05google scholar: lookup
            21. Handel A, Longini IM Jr, Antia R. Towards a quantitative understanding of the within-host dynamics of influenza A infections.. J R Soc Interface 2010 Jan 6;7(42):35-47.
              pmc: PMC2839376pubmed: 19474085doi: 10.1098/rsif.2009.0067google scholar: lookup
            22. Handel A, Longini IM Jr, Antia R. Neuraminidase inhibitor resistance in influenza: assessing the danger of its generation and spread.. PLoS Comput Biol 2007 Dec;3(12):e240.
            23. Smith AM, Adler FR, Perelson AS. An accurate two-phase approximate solution to an acute viral infection model.. J Math Biol 2010 May;60(5):711-26.
              pmc: PMC2841722pubmed: 19633852doi: 10.1007/s00285-009-0281-8google scholar: lookup
            24. Hancioglu B, Swigon D, Clermont G. A dynamical model of human immune response to influenza A virus infection.. J Theor Biol 2007 May 7;246(1):70-86.
              pubmed: 17266989doi: 10.1016/j.jtbi.2006.12.015google scholar: lookup
            25. Bocharov GA, Romanyukha AA. Mathematical model of antiviral immune response. III. Influenza A virus infection.. J Theor Biol 1994 Apr 21;167(4):323-60.
              pubmed: 7516024doi: 10.1006/jtbi.1994.1074google scholar: lookup
            26. Beauchemin CA, McSharry JJ, Drusano GL, Nguyen JT, Went GT, Ribeiro RM, Perelson AS. Modeling amantadine treatment of influenza A virus in vitro.. J Theor Biol 2008 Sep 21;254(2):439-51.
              pmc: PMC2663526pubmed: 18653201doi: 10.1016/j.jtbi.2008.05.031google scholar: lookup
            27. Lee HY, Topham DJ, Park SY, Hollenbaugh J, Treanor J, Mosmann TR, Jin X, Ward BM, Miao H, Holden-Wiltse J, Perelson AS, Zand M, Wu H. Simulation and prediction of the adaptive immune response to influenza A virus infection.. J Virol 2009 Jul;83(14):7151-65.
              pmc: PMC2704765pubmed: 19439465doi: 10.1128/JVI.00098-09google scholar: lookup
            28. Canini L, Carrat F. Population modeling of influenza A/H1N1 virus kinetics and symptom dynamics.. J Virol 2011 Mar;85(6):2764-70.
              pmc: PMC3067928pubmed: 21191031doi: 10.1128/JVI.01318-10google scholar: lookup
            29. Smith AM, Perelson AS. Influenza A virus infection kinetics: quantitative data and models.. Wiley Interdiscip Rev Syst Biol Med 2011 Jul-Aug;3(4):429-45.
              pmc: PMC3256983pubmed: 21197654doi: 10.1002/wsbm.129google scholar: lookup
            30. Smith AM, Ribeiro RM. Modeling the viral dynamics of influenza A virus infection.. Crit Rev Immunol 2010;30(3):291-8.
            31. Beauchemin CA, Handel A. A review of mathematical models of influenza A infections within a host or cell culture: lessons learned and challenges ahead.. BMC Public Health 2011 Feb 25;11 Suppl 1(Suppl 1):S7.
              pmc: PMC3317582pubmed: 21356136doi: 10.1186/1471-2458-11-S1-S7google scholar: lookup
            32. Garcu00eda-Sastre A. Antiviral response in pandemic influenza viruses.. Emerg Infect Dis 2006 Jan;12(1):44-7.
              pmc: PMC3291409pubmed: 16494716doi: 10.3201/eid1201.051186google scholar: lookup
            33. Herold S, Steinmueller M, von Wulffen W, Cakarova L, Pinto R, Pleschka S, Mack M, Kuziel WA, Corazza N, Brunner T, Seeger W, Lohmeyer J. Lung epithelial apoptosis in influenza virus pneumonia: the role of macrophage-expressed TNF-related apoptosis-inducing ligand.. J Exp Med 2008 Dec 22;205(13):3065-77.
              pmc: PMC2605231pubmed: 19064696doi: 10.1084/jem.20080201google scholar: lookup
            34. Cheung CY, Poon LL, Lau AS, Luk W, Lau YL, Shortridge KF, Gordon S, Guan Y, Peiris JS. Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease?. Lancet 2002 Dec 7;360(9348):1831-7.
              pubmed: 12480361doi: 10.1016/s0140-6736(02)11772-7google scholar: lookup
            35. Balachandran S, Roberts PC, Kipperman T, Bhalla KN, Compans RW, Archer DR, Barber GN. Alpha/beta interferons potentiate virus-induced apoptosis through activation of the FADD/Caspase-8 death signaling pathway.. J Virol 2000 Feb;74(3):1513-23.
            36. Mu00f6hler L, Flockerzi D, Sann H, Reichl U. Mathematical model of influenza A virus production in large-scale microcarrier culture.. Biotechnol Bioeng 2005 Apr 5;90(1):46-58.
              pubmed: 15736163doi: 10.1002/bit.20363google scholar: lookup
            37. Julkunen I, Melu00e9n K, Nyqvist M, Pirhonen J, Sareneva T, Matikainen S. Inflammatory responses in influenza A virus infection.. Vaccine 2000 Dec 8;19 Suppl 1:S32-7.
              pubmed: 11163460doi: 10.1016/s0264-410x(00)00275-9google scholar: lookup
            38. Dahari H, Major M, Zhang X, Mihalik K, Rice CM, Perelson AS, Feinstone SM, Neumann AU. Mathematical modeling of primary hepatitis C infection: noncytolytic clearance and early blockage of virion production.. Gastroenterology 2005 Apr;128(4):1056-66.
              pubmed: 15825086doi: 10.1053/j.gastro.2005.01.049google scholar: lookup
            39. Stone KC, Mercer RR, Gehr P, Stockstill B, Crapo JD. Allometric relationships of cell numbers and size in the mammalian lung.. Am J Respir Cell Mol Biol 1992 Feb;6(2):235-43.
              pubmed: 1540387doi: 10.1165/ajrcmb/6.2.235google scholar: lookup
            40. Suzuki Y, Ito T, Suzuki T, Holland RE Jr, Chambers TM, Kiso M, Ishida H, Kawaoka Y. Sialic acid species as a determinant of the host range of influenza A viruses.. J Virol 2000 Dec;74(24):11825-31.
            41. Thiu00e9baut R, Guedj J, Jacqmin-Gadda H, Chu00eane G, Trimoulet P, Neau D, Commenges D. Estimation of dynamical model parameters taking into account undetectable marker values.. BMC Med Res Methodol 2006 Aug 1;6:38.
              pmc: PMC1559636pubmed: 16879756doi: 10.1186/1471-2288-6-38google scholar: lookup
            42. Helsel D. Much ado about next to nothing: incorporating nondetects in science.. Ann Occup Hyg 2010 Apr;54(3):257-62.
              pubmed: 20032004doi: 10.1093/annhyg/mep092google scholar: lookup
            43. Mumford JA, Hannant D, Jessett DM. Experimental infection of ponies with equine influenza (H3N8) viruses by intranasal inoculation or exposure to aerosols.. Equine Vet J 1990 Mar;22(2):93-8.
            44. Murphy BR, Chanock RM, Clements ML, Anthony WC, Sear AJ, Cisneros LA, Rennels MB, Miller EH, Black RE, Levine MM, Betts RF, Douglas RG Jr, Maassab HF, Cox NJ, Kendal AP. Evaluation of A/Alaska/6/77 (H3N2) cold-adapted recombinant viruses derived from A/Ann Arbor/6/60 cold-adapted donor virus in adult seronegative volunteers.. Infect Immun 1981 May;32(2):693-7.
              pmc: PMC351503pubmed: 7251144doi: 10.1128/iai.32.2.693-697.1981google scholar: lookup
            45. Murphy BR, Rennels MB, Douglas RG Jr, Betts RF, Couch RB, Cate TR Jr, Chanock RM, Kendal AP, Maassab HF, Suwanagool S, Sotman SB, Cisneros LA, Anthony WC, Nalin DR, Levine MM. Evaluation of influenza A/Hong Kong/123/77 (H1N1) ts-1A2 and cold-adapted recombinant viruses in seronegative adult volunteers.. Infect Immun 1980 Aug;29(2):348-55.
              pmc: PMC551124pubmed: 7216417doi: 10.1128/iai.29.2.348-355.1980google scholar: lookup
            46. Jao RL, Wheelock EF, Jackson GG. Production of interferon in volunteers infected with Asian influenza.. J Infect Dis 1970 Apr;121(4):419-26.
              pubmed: 5441118doi: 10.1093/infdis/121.4.419google scholar: lookup
            47. Nguyen KB, Salazar-Mather TP, Dalod MY, Van Deusen JB, Wei XQ, Liew FY, Caligiuri MA, Durbin JE, Biron CA. Coordinated and distinct roles for IFN-alpha beta, IL-12, and IL-15 regulation of NK cell responses to viral infection.. J Immunol 2002 Oct 15;169(8):4279-87.
              pubmed: 12370359doi: 10.4049/jimmunol.169.8.4279google scholar: lookup
            48. Garcu00eda-Sastre A, Biron CA. Type 1 interferons and the virus-host relationship: a lesson in du00e9tente .. Science 2006 May 12;312(5775):879-82.
              pubmed: 16690858doi: 10.1126/science.1125676google scholar: lookup
            49. Lee CK, Rao DT, Gertner R, Gimeno R, Frey AB, Levy DE. Distinct requirements for IFNs and STAT1 in NK cell function.. J Immunol 2000 Oct 1;165(7):3571-7.
              pubmed: 11034357doi: 10.4049/jimmunol.165.7.3571google scholar: lookup
            50. Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP. Natural killer cells in antiviral defense: function and regulation by innate cytokines.. Annu Rev Immunol 1999;17:189-220.
            51. Nogusa S, Ritz BW, Kassim SH, Jennings SR, Gardner EM. Characterization of age-related changes in natural killer cells during primary influenza infection in mice.. Mech Ageing Dev 2008 Apr;129(4):223-30.
              pubmed: 18304606doi: 10.1016/j.mad.2008.01.003google scholar: lookup
            52. Stein-Streilein J, Guffee J. In vivo treatment of mice and hamsters with antibodies to asialo GM1 increases morbidity and mortality to pulmonary influenza infection.. J Immunol 1986 Feb 15;136(4):1435-41.
              pubmed: 3944461
            53. Stein-Streilein J, Guffee J, Fan W. Locally and systemically derived natural killer cells participate in defense against intranasally inoculated influenza virus.. Reg Immunol 1988 Sep-Oct;1(2):100-5.
              pubmed: 3275212
            54. Denney L, Aitken C, Li CK, Wilson-Davies E, Kok WL, Clelland C, Rooney K, Young D, Dong T, McMichael AJ, Carman WF, Ho LP. Reduction of natural killer but not effector CD8 T lymphocytes in three consecutive cases of severe/lethal H1N1/09 influenza A virus infection.. PLoS One 2010 May 18;5(5):e10675.
            55. Jost S, Quillay H, Reardon J, Peterson E, Simmons RP, Parry BA, Bryant NN, Binder WD, Altfeld M. Changes in cytokine levels and NK cell activation associated with influenza.. PLoS One 2011;6(9):e25060.
            56. Leung KN, Ada GL. Induction of natural killer cells during murine influenza virus infection.. Immunobiology 1981;160(3-4):352-66.
              pubmed: 7327615doi: 10.1016/s0171-2985(81)80061-7google scholar: lookup
            57. Liu B, Mori I, Hossain MJ, Dong L, Takeda K, Kimura Y. Interleukin-18 improves the early defence system against influenza virus infection by augmenting natural killer cell-mediated cytotoxicity.. J Gen Virol 2004 Feb;85(Pt 2):423-428.
              pubmed: 14769900doi: 10.1099/vir.0.19596-0google scholar: lookup
            58. Monteiro JM, Harvey C, Trinchieri G. Role of interleukin-12 in primary influenza virus infection.. J Virol 1998 Jun;72(6):4825-31.
            59. Sareneva T, Matikainen S, Kurimoto M, Julkunen I. Influenza A virus-induced IFN-alpha/beta and IL-18 synergistically enhance IFN-gamma gene expression in human T cells.. J Immunol 1998 Jun 15;160(12):6032-8.
              pubmed: 9637519
            60. Cella M, Salio M, Sakakibara Y, Langen H, Julkunen I, Lanzavecchia A. Maturation, activation, and protection of dendritic cells induced by double-stranded RNA.. J Exp Med 1999 Mar 1;189(5):821-9.
              pmc: PMC2192946pubmed: 10049946doi: 10.1084/jem.189.5.821google scholar: lookup
            61. Verdijk RM, Mutis T, Esendam B, Kamp J, Melief CJ, Brand A, Goulmy E. Polyriboinosinic polyribocytidylic acid (poly(I:C)) induces stable maturation of functionally active human dendritic cells.. J Immunol 1999 Jul 1;163(1):57-61.
              pubmed: 10384099
            62. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA.. Science 2004 Mar 5;303(5663):1529-31.
              pubmed: 14976261doi: 10.1126/science.1093616google scholar: lookup
            63. Moltedo B, Lu00f3pez CB, Pazos M, Becker MI, Hermesh T, Moran TM. Cutting edge: stealth influenza virus replication precedes the initiation of adaptive immunity.. J Immunol 2009 Sep 15;183(6):3569-73.
              pubmed: 19717515doi: 10.4049/jimmunol.0900091google scholar: lookup
            64. Fernandez-Sesma A, Marukian S, Ebersole BJ, Kaminski D, Park MS, Yuen T, Sealfon SC, Garcu00eda-Sastre A, Moran TM. Influenza virus evades innate and adaptive immunity via the NS1 protein.. J Virol 2006 Jul;80(13):6295-304.
              pmc: PMC1488970pubmed: 16775317doi: 10.1128/JVI.02381-05google scholar: lookup
            65. Kochs G, Garcu00eda-Sastre A, Martu00ednez-Sobrido L. Multiple anti-interferon actions of the influenza A virus NS1 protein.. J Virol 2007 Jul;81(13):7011-21.
              pmc: PMC1933316pubmed: 17442719doi: 10.1128/JVI.02581-06google scholar: lookup
            66. Mulder JHJ. Influenza. Groningen: Wolters-Noordhoff; 1972. 1972
            67. Taubenberger JK, Morens DM. The pathology of influenza virus infections.. Annu Rev Pathol 2008;3:499-522.

            Citations

            This article has been cited 124 times.
            1. Farrell A, Phan T, Brooke CB, Koelle K, Ke R. Semi-infectious particles contribute substantially to influenza virus within-host dynamics when infection is dominated by spatial structure.. Virus Evol 2023;9(1):vead020.
              doi: 10.1093/ve/vead020pubmed: 37538918google scholar: lookup
            2. Perelson AS, Ribeiro RM, Phan T. An explanation for SARS-CoV-2 rebound after Paxlovid treatment.. medRxiv 2023 Jun 1;.
              doi: 10.1101/2023.05.30.23290747pubmed: 37398088google scholar: lookup
            3. Blanco-Rodru00edguez R, Ordou00f1ez-Jimu00e9nez F, Almocera AES, Chinney-Herrera G, Hernandez-Vargas E. Topological data analysis of antibody dynamics of severe and non-severe patients with COVID-19.. Math Biosci 2023 Jul;361:109011.
              doi: 10.1016/j.mbs.2023.109011pubmed: 37149125google scholar: lookup
            4. Rao R, Musante CJ, Allen R. A quantitative systems pharmacology model of the pathophysiology and treatment of COVID-19 predicts optimal timing of pharmacological interventions.. NPJ Syst Biol Appl 2023 Apr 14;9(1):13.
              doi: 10.1038/s41540-023-00269-6pubmed: 37059734google scholar: lookup
            5. Vodovotz Y. Towards systems immunology of critical illness at scale: from single cell 'omics to digital twins.. Trends Immunol 2023 May;44(5):345-355.
              doi: 10.1016/j.it.2023.03.004pubmed: 36967340google scholar: lookup
            6. Korosec CS, Betti MI, Dick DW, Ooi HK, Moyles IR, Wahl LM, Heffernan JM. Multiple cohort study of hospitalized SARS-CoV-2 in-host infection dynamics: Parameter estimates, identifiability, sensitivity and the eclipse phase profile.. J Theor Biol 2023 May 7;564:111449.
              doi: 10.1016/j.jtbi.2023.111449pubmed: 36894132google scholar: lookup
            7. Gazeau S, Deng X, Ooi HK, Mostefai F, Hussin J, Heffernan J, Jenner AL, Craig M. The race to understand immunopathology in COVID-19: Perspectives on the impact of quantitative approaches to understand within-host interactions.. Immunoinformatics (Amst) 2023 Mar;9:100021.
              doi: 10.1016/j.immuno.2023.100021pubmed: 36643886google scholar: lookup
            8. Puhach O, Meyer B, Eckerle I. SARS-CoV-2 viral load and shedding kinetics.. Nat Rev Microbiol 2023 Mar;21(3):147-161.
              doi: 10.1038/s41579-022-00822-wpubmed: 36460930google scholar: lookup
            9. Sandoni A, Schaffrath Rosario A, Michel J, Kuttig T, Wurm J, Damerow S, Iwanowski H, Finkel B, Schrick L, Buchholz U, Haas W, Varnaccia G, Kubisch U, Jordan S, Schienkiewitz A, Nitsche A, Loss J. SARS-CoV-2 viral clearance and viral load kinetics in young children (1-6 years) compared to adults: Results of a longitudinal study in Germany.. Front Pediatr 2022;10:989456.
              doi: 10.3389/fped.2022.989456pubmed: 36452353google scholar: lookup
            10. Jhutty SS, Boehme JD, Jeron A, Volckmar J, Schultz K, Schreiber J, Schughart K, Zhou K, Steinheimer J, Stu00f6cker H, Stegemann-Koniszewski S, Bruder D, Hernandez-Vargas EA. Predicting Influenza A Virus Infection in the Lung from Hematological Data with Machine Learning.. mSystems 2022 Dec 20;7(6):e0045922.
              doi: 10.1128/msystems.00459-22pubmed: 36346236google scholar: lookup
            11. Alamil M, Thu00e9baud G, Berthier K, Soubeyrand S. Characterizing viral within-host diversity in fast and non-equilibrium demo-genetic dynamics.. Front Microbiol 2022;13:983938.
              doi: 10.3389/fmicb.2022.983938pubmed: 36274731google scholar: lookup
            12. Boldova AE, Korobkin JD, Nechipurenko YD, Sveshnikova AN. Theoretical Explanation for the Rarity of Antibody-Dependent Enhancement of Infection (ADE) in COVID-19.. Int J Mol Sci 2022 Sep 26;23(19).
              doi: 10.3390/ijms231911364pubmed: 36232664google scholar: lookup
            13. Aristotelous AC, Chen A, Forest MG. A hybrid discrete-continuum model of immune responses to SARS-CoV-2 infection in the lung alveolar region, with a focus on interferon induced innate response.. J Theor Biol 2022 Dec 21;555:111293.
              doi: 10.1016/j.jtbi.2022.111293pubmed: 36208668google scholar: lookup
            14. Sanche S, Cassidy T, Chu P, Perelson AS, Ribeiro RM, Ke R. A simple model of COVID-19 explains disease severity and the effect of treatments.. Sci Rep 2022 Aug 20;12(1):14210.
              doi: 10.1038/s41598-022-18244-2pubmed: 35988008google scholar: lookup
            15. Darquenne C, Borojeni AAT, Colebank MJ, Forest MG, Madas BG, Tawhai M, Jiang Y. Aerosol Transport Modeling: The Key Link Between Lung Infections of Individuals and Populations.. Front Physiol 2022;13:923945.
              doi: 10.3389/fphys.2022.923945pubmed: 35795643google scholar: lookup
            16. Chatterjee B, Singh Sandhu H, Dixit NM. Modeling recapitulates the heterogeneous outcomes of SARS-CoV-2 infection and quantifies the differences in the innate immune and CD8 T-cell responses between patients experiencing mild and severe symptoms.. PLoS Pathog 2022 Jun;18(6):e1010630.
              doi: 10.1371/journal.ppat.1010630pubmed: 35759522google scholar: lookup
            17. Goyal A, Duke ER, Cardozo-Ojeda EF, Schiffer JT. Modeling explains prolonged SARS-CoV-2 nasal shedding relative to lung shedding in remdesivir-treated rhesus macaques.. iScience 2022 Jun 17;25(6):104448.
              doi: 10.1016/j.isci.2022.104448pubmed: 35634576google scholar: lookup
            18. Ackerman EE, Weaver JJA, Shoemaker JE. Mathematical Modeling Finds Disparate Interferon Production Rates Drive Strain-Specific Immunodynamics during Deadly Influenza Infection.. Viruses 2022 Apr 27;14(5).
              doi: 10.3390/v14050906pubmed: 35632648google scholar: lookup
            19. Bull JJ, Antia R. Which 'imperfect vaccines' encourage the evolution of higher virulence?. Evol Med Public Health 2022;10(1):202-213.
              doi: 10.1093/emph/eoac015pubmed: 35539897google scholar: lookup
            20. Ke R, Martinez PP, Smith RL, Gibson LL, Mirza A, Conte M, Gallagher N, Luo CH, Jarrett J, Zhou R, Conte A, Liu T, Farjo M, Walden KKO, Rendon G, Fields CJ, Wang L, Fredrickson R, Edmonson DC, Baughman ME, Chiu KK, Choi H, Scardina KR, Bradley S, Gloss SL, Reinhart C, Yedetore J, Quicksall J, Owens AN, Broach J, Barton B, Lazar P, Heetderks WJ, Robinson ML, Mostafa HH, Manabe YC, Pekosz A, McManus DD, Brooke CB. Daily longitudinal sampling of SARS-CoV-2 infection reveals substantial heterogeneity in infectiousness.. Nat Microbiol 2022 May;7(5):640-652.
              doi: 10.1038/s41564-022-01105-zpubmed: 35484231google scholar: lookup
            21. Chen A, Wessler T, Daftari K, Hinton K, Boucher RC, Pickles R, Freeman R, Lai SK, Forest MG. Modeling insights into SARS-CoV-2 respiratory tract infections prior to immune protection.. Biophys J 2022 May 3;121(9):1619-1631.
              doi: 10.1016/j.bpj.2022.04.003pubmed: 35378080google scholar: lookup
            22. Zhang L, Li R, Song G, Scholes GD, She ZS. Impairment of T cells' antiviral and anti-inflammation immunities may be critical to death from COVID-19.. R Soc Open Sci 2021 Dec;8(12):211606.
              doi: 10.1098/rsos.211606pubmed: 34950497google scholar: lookup
            23. Ke R, Zitzmann C, Ho DD, Ribeiro RM, Perelson AS. In vivo kinetics of SARS-CoV-2 infection and its relationship with a person's infectiousness.. Proc Natl Acad Sci U S A 2021 Dec 7;118(49).
              doi: 10.1073/pnas.2111477118pubmed: 34857628google scholar: lookup
            24. Aponte-Serrano JO, Weaver JJA, Sego TJ, Glazier JA, Shoemaker JE. Multicellular spatial model of RNA virus replication and interferon responses reveals factors controlling plaque growth dynamics.. PLoS Comput Biol 2021 Oct;17(10):e1008874.
              doi: 10.1371/journal.pcbi.1008874pubmed: 34695114google scholar: lookup
            25. Sohail A, Tunc S, Nutini A, Arif R. Furin and the adaptive mutation of SARS-COV2: a computational framework.. Model Earth Syst Environ 2022;8(2):2827-2836.
              doi: 10.1007/s40808-021-01260-ypubmed: 34466655google scholar: lookup
            26. Vaidya NK, Bloomquist A, Perelson AS. Modeling Within-Host Dynamics of SARS-CoV-2 Infection: A Case Study in Ferrets.. Viruses 2021 Aug 18;13(8).
              doi: 10.3390/v13081635pubmed: 34452499google scholar: lookup
            27. Fatehi F, Bingham RJ, Dykeman EC, Stockley PG, Twarock R. Comparing antiviral strategies against COVID-19 via multiscale within-host modelling.. R Soc Open Sci 2021 Aug;8(8):210082.
              doi: 10.1098/rsos.210082pubmed: 34430042google scholar: lookup
            28. Ke R, Zitzmann C, Ho DD, Ribeiro RM, Perelson AS. In vivo kinetics of SARS-CoV-2 infection and its relationship with a person's infectiousness.. medRxiv 2021 Jun 30;.
              doi: 10.1101/2021.06.26.21259581pubmed: 34230935google scholar: lookup
            29. Li K, Cao P, McCaw JM. Modelling the Effect of MUC1 on Influenza Virus Infection Kinetics and Macrophage Dynamics.. Viruses 2021 May 7;13(5).
              doi: 10.3390/v13050850pubmed: 34066999google scholar: lookup
            30. Xie XT, Yitbarek A, Astill J, Singh S, Khan SU, Sharif S, Poljak Z, Greer AL. Within-host model of respiratory virus shedding and antibody response to H9N2 avian influenza virus vaccination and infection in chickens.. Infect Dis Model 2021;6:490-502.
              doi: 10.1016/j.idm.2021.02.005pubmed: 33778216google scholar: lookup
            31. Gonu00e7alves A, Maisonnasse P, Donati F, Albert M, Behillil S, Contreras V, Naninck T, Marlin R, Solas C, Pizzorno A, Lemaitre J, Kahlaoui N, Terrier O, Ho Tsong Fang R, Enouf V, Dereuddre-Bosquet N, Brisebarre A, Touret F, Chapon C, Hoen B, Lina B, Rosa Calatrava M, de Lamballerie X, Mentru00e9 F, Le Grand R, van der Werf S, Guedj J. SARS-CoV-2 viral dynamics in non-human primates.. PLoS Comput Biol 2021 Mar;17(3):e1008785.
              doi: 10.1371/journal.pcbi.1008785pubmed: 33730053google scholar: lookup
            32. Czuppon P, Du00e9barre F, Gonu00e7alves A, Tenaillon O, Perelson AS, Guedj J, Blanquart F. Success of prophylactic antiviral therapy for SARS-CoV-2: Predicted critical efficacies and impact of different drug-specific mechanisms of action.. PLoS Comput Biol 2021 Mar;17(3):e1008752.
              doi: 10.1371/journal.pcbi.1008752pubmed: 33647008google scholar: lookup
            33. Michael Lavigne G, Russell H, Sherry B, Ke R. Autocrine and paracrine interferon signalling as 'ring vaccination' and 'contact tracing' strategies to suppress virus infection in a host.. Proc Biol Sci 2021 Feb 24;288(1945):20203002.
              doi: 10.1098/rspb.2020.3002pubmed: 33622135google scholar: lookup
            34. Goyal A, Reeves DB, Cardozo-Ojeda EF, Schiffer JT, Mayer BT. Viral load and contact heterogeneity predict SARS-CoV-2 transmission and super-spreading events.. Elife 2021 Feb 23;10.
              doi: 10.7554/eLife.63537pubmed: 33620317google scholar: lookup
            35. Maisonnasse P, Aldon Y, Marc A, Marlin R, Dereuddre-Bosquet N, Kuzmina NA, Freyn AW, Snitselaar JL, Gonu00e7alves A, Caniels TG, Burger JA, Poniman M, Chesnais V, Diry S, Iershov A, Ronk AJ, Jangra S, Rathnasinghe R, Brouwer P, Bijl T, van Schooten J, Brinkkemper M, Liu H, Yuan M, Mire CE, van Breemen MJ, Contreras V, Naninck T, Lemau00eetre J, Kahlaoui N, Relouzat F, Chapon C, Ho Tsong Fang R, McDanal C, Osei-Twum M, St-Amant N, Gagnon L, Montefiori DC, Wilson IA, Ginoux E, de Bree GJ, Garcu00eda-Sastre A, Schotsaert M, Coughlan L, Bukreyev A, van der Werf S, Guedj J, Sanders RW, van Gils MJ, Le Grand R. COVA1-18 neutralizing antibody protects against SARS-CoV-2 in three preclinical models.. Res Sq 2021 Feb 15;.
              doi: 10.21203/rs.3.rs-235272/v1pubmed: 33619476google scholar: lookup
            36. Best K, Barouch DH, Guedj J, Ribeiro RM, Perelson AS. Zika virus dynamics: Effects of inoculum dose, the innate immune response and viral interference.. PLoS Comput Biol 2021 Jan;17(1):e1008564.
              doi: 10.1371/journal.pcbi.1008564pubmed: 33471814google scholar: lookup
            37. Perelson AS, Ke R. Mechanistic Modeling of SARS-CoV-2 and Other Infectious Diseases and the Effects of Therapeutics.. Clin Pharmacol Ther 2021 Apr;109(4):829-840.
              doi: 10.1002/cpt.2160pubmed: 33410134google scholar: lookup
            38. Peter S, Dittrich P, Ibrahim B. Structure and Hierarchy of SARS-CoV-2 Infection Dynamics Models Revealed by Reaction Network Analysis.. Viruses 2020 Dec 23;13(1).
              doi: 10.3390/v13010014pubmed: 33374824google scholar: lookup
            39. Metcalf CJE, Grenfell BT, Graham AL. Disentangling the dynamical underpinnings of differences in SARS-CoV-2 pathology using within-host ecological models.. PLoS Pathog 2020 Dec;16(12):e1009105.
              doi: 10.1371/journal.ppat.1009105pubmed: 33306746google scholar: lookup
            40. Dai W, Rao R, Sher A, Tania N, Musante CJ, Allen R. A Prototype QSP Model of the Immune Response to SARS-CoV-2 for Community Development.. CPT Pharmacometrics Syst Pharmacol 2021 Jan;10(1):18-29.
              doi: 10.1002/psp4.12574pubmed: 33217169google scholar: lookup
            41. Jaiswal S, Kumar M, Mandeep, Sunita, Singh Y, Shukla P. Systems Biology Approaches for Therapeutics Development Against COVID-19.. Front Cell Infect Microbiol 2020;10:560240.
              doi: 10.3389/fcimb.2020.560240pubmed: 33194800google scholar: lookup
            42. Morris DH, Petrova VN, Rossine FW, Parker E, Grenfell BT, Neher RA, Levin SA, Russell CA. Asynchrony between virus diversity and antibody selection limits influenza virus evolution.. Elife 2020 Nov 11;9.
              doi: 10.7554/eLife.62105pubmed: 33174838google scholar: lookup
            43. Goyal A, Cardozo-Ojeda EF, Schiffer JT. Potency and timing of antiviral therapy as determinants of duration of SARS-CoV-2 shedding and intensity of inflammatory response.. Sci Adv 2020 Nov;6(47).
              doi: 10.1126/sciadv.abc7112pubmed: 33097472google scholar: lookup
            44. Goyal A, Reeves DB, Cardozo-Ojeda EF, Schiffer JT, Mayer BT. Wrong person, place and time: viral load and contact network structure predict SARS-CoV-2 transmission and super-spreading events.. medRxiv 2020 Sep 28;.
              doi: 10.1101/2020.08.07.20169920pubmed: 33024978google scholar: lookup
            45. Hernandez-Vargas EA, Velasco-Hernandez JX. In-host Mathematical Modelling of COVID-19 in Humans.. Annu Rev Control 2020;50:448-456.
            46. Wang S, Pan Y, Wang Q, Miao H, Brown AN, Rong L. Modeling the viral dynamics of SARS-CoV-2 infection.. Math Biosci 2020 Oct;328:108438.
              doi: 10.1016/j.mbs.2020.108438pubmed: 32771304google scholar: lookup
            47. Canini L, Holzer B, Morgan S, Dinie Hemmink J, Clark B, Woolhouse MEJ, Tchilian E, Charleston B. Timelines of infection and transmission dynamics of H1N1pdm09 in swine.. PLoS Pathog 2020 Jul;16(7):e1008628.
              doi: 10.1371/journal.ppat.1008628pubmed: 32706830google scholar: lookup
            48. Gonu00e7alves A, Bertrand J, Ke R, Comets E, de Lamballerie X, Malvy D, Pizzorno A, Terrier O, Rosa Calatrava M, Mentru00e9 F, Smith P, Perelson AS, Guedj J. Timing of Antiviral Treatment Initiation is Critical to Reduce SARS-CoV-2 Viral Load.. CPT Pharmacometrics Syst Pharmacol 2020 Sep;9(9):509-514.
              doi: 10.1002/psp4.12543pubmed: 32558354google scholar: lookup
            49. Nicholson LB, Blyuss KB, Fatehi F. Quantifying the Role of Stochasticity in the Development of Autoimmune Disease.. Cells 2020 Apr 2;9(4).
              doi: 10.3390/cells9040860pubmed: 32252308google scholar: lookup
            50. Madelain V, Mentru00e9 F, Baize S, Anglaret X, Laouu00e9nan C, Oestereich L, Nguyen THT, Malvy D, Piorkowski G, Graw F, Gu00fcnther S, Raoul H, de Lamballerie X, Guedj J. Modeling Favipiravir Antiviral Efficacy Against Emerging Viruses: From Animal Studies to Clinical Trials.. CPT Pharmacometrics Syst Pharmacol 2020 May;9(5):258-271.
              doi: 10.1002/psp4.12510pubmed: 32198838google scholar: lookup
            51. Gonu00e7alves A, Mentru00e9 F, Lemenuel-Diot A, Guedj J. Model Averaging in Viral Dynamic Models.. AAPS J 2020 Feb 13;22(2):48.
              doi: 10.1208/s12248-020-0426-7pubmed: 32060662google scholar: lookup
            52. Brook CE, Boots M, Chandran K, Dobson AP, Drosten C, Graham AL, Grenfell BT, Mu00fcller MA, Ng M, Wang LF, van Leeuwen A. Accelerated viral dynamics in bat cell lines, with implications for zoonotic emergence.. Elife 2020 Feb 3;9.
              doi: 10.7554/eLife.48401pubmed: 32011232google scholar: lookup
            53. Haghnegahdar A, Zhao J, Feng Y. Lung Aerosol Dynamics of Airborne Influenza A Virus-Laden Droplets and the Resultant Immune System Responses: An In Silico Study.. J Aerosol Sci 2019 Aug;134:34-55.
            54. Wethington D, Harder O, Uppulury K, Stewart WCL, Chen P, King T, Reynolds SD, Perelson AS, Peeples ME, Niewiesk S, Das J. Mathematical modelling identifies the role of adaptive immunity as a key controller of respiratory syncytial virus in cotton rats.. J R Soc Interface 2019 Nov 29;16(160):20190389.
              doi: 10.1098/rsif.2019.0389pubmed: 31771450google scholar: lookup
            55. Sharma-Chawla N, Stegemann-Koniszewski S, Christen H, Boehme JD, Kershaw O, Schreiber J, Guzmu00e1n CA, Bruder D, Hernandez-Vargas EA. In vivo Neutralization of Pro-inflammatory Cytokines During Secondary Streptococcus pneumoniae Infection Post Influenza A Virus Infection.. Front Immunol 2019;10:1864.
              doi: 10.3389/fimmu.2019.01864pubmed: 31474978google scholar: lookup
            56. Baral S, Antia R, Dixit NM. A dynamical motif comprising the interactions between antigens and CD8 T cells may underlie the outcomes of viral infections.. Proc Natl Acad Sci U S A 2019 Aug 27;116(35):17393-17398.
              doi: 10.1073/pnas.1902178116pubmed: 31413198google scholar: lookup
            57. Huang Y, Dai H, Ke R. Principles of Effective and Robust Innate Immune Response to Viral Infections: A Multiplex Network Analysis.. Front Immunol 2019;10:1736.
              doi: 10.3389/fimmu.2019.01736pubmed: 31396233google scholar: lookup
            58. Bull JJ, Nuismer SL, Antia R. Recombinant vector vaccine evolution.. PLoS Comput Biol 2019 Jul;15(7):e1006857.
              doi: 10.1371/journal.pcbi.1006857pubmed: 31323032google scholar: lookup
            59. Koelle K, Farrell AP, Brooke CB, Ke R. Within-host infectious disease models accommodating cellular coinfection, with an application to influenza.. Virus Evol 2019 Jul;5(2):vez018.
              doi: 10.1093/ve/vez018pubmed: 31304043google scholar: lookup
            60. Moses ME, Cannon JL, Gordon DM, Forrest S. Distributed Adaptive Search in T Cells: Lessons From Ants.. Front Immunol 2019;10:1357.
              doi: 10.3389/fimmu.2019.01357pubmed: 31263465google scholar: lookup
            61. Peter S, Hu00f6lzer M, Lamkiewicz K, di Fenizio PS, Al Hwaeer H, Marz M, Schuster S, Dittrich P, Ibrahim B. Structure and Hierarchy of Influenza Virus Models Revealed by Reaction Network Analysis.. Viruses 2019 May 16;11(5).
              doi: 10.3390/v11050449pubmed: 31100972google scholar: lookup
            62. Zhao L, Abbasi AB, Illingworth CJR. Mutational load causes stochastic evolutionary outcomes in acute RNA viral infection.. Virus Evol 2019 Jan;5(1):vez008.
              doi: 10.1093/ve/vez008pubmed: 31024738google scholar: lookup
            63. Reinharz V, Churkin A, Dahari H, Barash D. A Robust and Efficient Numerical Method for RNA-Mediated Viral Dynamics.. Front Appl Math Stat 2017 Oct;3.
              doi: 10.3389/fams.2017.00020pubmed: 30854378google scholar: lookup
            64. Saad-Roy CM, McDermott AB, Grenfell BT. Dynamic Perspectives on the Search for a Universal Influenza Vaccine.. J Infect Dis 2019 Apr 8;219(Suppl_1):S46-S56.
              doi: 10.1093/infdis/jiz044pubmed: 30715467google scholar: lookup
            65. Go N, Touzeau S, Islam Z, Belloc C, Doeschl-Wilson A. How to prevent viremia rebound? Evidence from a PRRSv data-supported model of immune response.. BMC Syst Biol 2019 Jan 29;13(1):15.
              doi: 10.1186/s12918-018-0666-7pubmed: 30696429google scholar: lookup
            66. Yan AWC, Zaloumis SG, Simpson JA, McCaw JM. Sequential infection experiments for quantifying innate and adaptive immunity during influenza infection.. PLoS Comput Biol 2019 Jan;15(1):e1006568.
              doi: 10.1371/journal.pcbi.1006568pubmed: 30653522google scholar: lookup
            67. Morris SE, Yates AJ, de Swart RL, de Vries RD, Mina MJ, Nelson AN, Lin WW, Kouyos RD, Griffin DE, Grenfell BT. Modeling the measles paradox reveals the importance of cellular immunity in regulating viral clearance.. PLoS Pathog 2018 Dec;14(12):e1007493.
              doi: 10.1371/journal.ppat.1007493pubmed: 30592772google scholar: lookup
            68. Gallagher ME, Brooke CB, Ke R, Koelle K. Causes and Consequences of Spatial Within-Host Viral Spread.. Viruses 2018 Nov 13;10(11).
              doi: 10.3390/v10110627pubmed: 30428545google scholar: lookup
            69. Madelain V, Baize S, Jacquot F, Reynard S, Fizet A, Barron S, Solas C, Lacarelle B, Carbonnelle C, Mentru00e9 F, Raoul H, de Lamballerie X, Guedj J. Ebola viral dynamics in nonhuman primates provides insights into virus immuno-pathogenesis and antiviral strategies.. Nat Commun 2018 Oct 1;9(1):4013.
              doi: 10.1038/s41467-018-06215-zpubmed: 30275474google scholar: lookup
            70. Handel A, Li Y, McKay B, Pawelek KA, Zarnitsyna V, Antia R. Exploring the impact of inoculum dose on host immunity and morbidity to inform model-based vaccine design.. PLoS Comput Biol 2018 Oct;14(10):e1006505.
              doi: 10.1371/journal.pcbi.1006505pubmed: 30273336google scholar: lookup
            71. Leviyang S, Griva I. Investigating Functional Roles for Positive Feedback and Cellular Heterogeneity in the Type I Interferon Response to Viral Infection.. Viruses 2018 Sep 21;10(10).
              doi: 10.3390/v10100517pubmed: 30241427google scholar: lookup
            72. Best K, Perelson AS. Mathematical modeling of within-host Zika virus dynamics.. Immunol Rev 2018 Sep;285(1):81-96.
              doi: 10.1111/imr.12687pubmed: 30129207google scholar: lookup
            73. Smith AM. Host-pathogen kinetics during influenza infection and coinfection: insights from predictive modeling.. Immunol Rev 2018 Sep;285(1):97-112.
              doi: 10.1111/imr.12692pubmed: 30129197google scholar: lookup
            74. Zitzmann C, Kaderali L. Mathematical Analysis of Viral Replication Dynamics and Antiviral Treatment Strategies: From Basic Models to Age-Based Multi-Scale Modeling.. Front Microbiol 2018;9:1546.
              doi: 10.3389/fmicb.2018.01546pubmed: 30050523google scholar: lookup
            75. Smith AP, Moquin DJ, Bernhauerova V, Smith AM. Influenza Virus Infection Model With Density Dependence Supports Biphasic Viral Decay.. Front Microbiol 2018;9:1554.
              doi: 10.3389/fmicb.2018.01554pubmed: 30042759google scholar: lookup
            76. Ciupe SM, Heffernan JM. In-host modeling.. Infect Dis Model 2017 May;2(2):188-202.
              doi: 10.1016/j.idm.2017.04.002pubmed: 29928736google scholar: lookup
            77. Perera SD, Perera SSN. Simulation Model for Dynamics of Dengue with Innate and Humoral Immune Responses.. Comput Math Methods Med 2018;2018:8798057.
              doi: 10.1155/2018/8798057pubmed: 29849749google scholar: lookup
            78. Hauck NC, Kirpach J, Kiefer C, Farinelle S, Maucourant S, Morris SA, Rosenberg W, He FQ, Muller CP, Lu IN. Applying Unique Molecular Identifiers in Next Generation Sequencing Reveals a Constrained Viral Quasispecies Evolution under Cross-Reactive Antibody Pressure Targeting Long Alpha Helix of Hemagglutinin.. Viruses 2018 Mar 25;10(4).
              doi: 10.3390/v10040148pubmed: 29587397google scholar: lookup
            79. Reinharz V, Dahari H, Barash D. Numerical schemes for solving and optimizing multiscale models with age of hepatitis C virus dynamics.. Math Biosci 2018 Jun;300:1-13.
              doi: 10.1016/j.mbs.2018.03.011pubmed: 29550297google scholar: lookup
            80. Goyal A, Ribeiro RM, Perelson AS. The Role of Infected Cell Proliferation in the Clearance of Acute HBV Infection in Humans.. Viruses 2017 Nov 18;9(11).
              doi: 10.3390/v9110350pubmed: 29156567google scholar: lookup
            81. Moore J, Ahmed H, Jia J, Akondy R, Ahmed R, Antia R. What Controls the Acute Viral Infection Following Yellow Fever Vaccination?. Bull Math Biol 2018 Jan;80(1):46-63.
              doi: 10.1007/s11538-017-0365-3pubmed: 29110131google scholar: lookup
            82. Pawelek KA, Salmeron C, Del Valle S. Connecting within and between-hosts dynamics in the influenza infection-staged epidemiological models with behavior change.. J Coupled Syst Multiscale Dyn 2015 Sep;3(3):233-243.
              doi: 10.1166/jcsmd.2015.1082pubmed: 29075652google scholar: lookup
            83. Cao P, McCaw JM. The Mechanisms for Within-Host Influenza Virus Control Affect Model-Based Assessment and Prediction of Antiviral Treatment.. Viruses 2017 Jul 26;9(8).
              doi: 10.3390/v9080197pubmed: 28933757google scholar: lookup
            84. Dobrovolny HM, Beauchemin CAA. Modelling the emergence of influenza drug resistance: The roles of surface proteins, the immune response and antiviral mechanisms.. PLoS One 2017;12(7):e0180582.
              doi: 10.1371/journal.pone.0180582pubmed: 28700622google scholar: lookup
            85. Aid M, Abbink P, Larocca RA, Boyd M, Nityanandam R, Nanayakkara O, Martinot AJ, Moseley ET, Blass E, Borducchi EN, Chandrashekar A, Brinkman AL, Molloy K, Jetton D, Tartaglia LJ, Liu J, Best K, Perelson AS, De La Barrera RA, Lewis MG, Barouch DH. Zika Virus Persistence in the Central Nervous System and Lymph Nodes of Rhesus Monkeys.. Cell 2017 May 4;169(4):610-620.e14.
              doi: 10.1016/j.cell.2017.04.008pubmed: 28457610google scholar: lookup
            86. Cao P, Wang Z, Yan AW, McVernon J, Xu J, Heffernan JM, Kedzierska K, McCaw JM. On the Role of CD8(+) T Cells in Determining Recovery Time from Influenza Virus Infection.. Front Immunol 2016;7:611.
              doi: 10.3389/fimmu.2016.00611pubmed: 28066421google scholar: lookup
            87. Nguyen VK, Klawonn F, Mikolajczyk R, Hernandez-Vargas EA. Analysis of Practical Identifiability of a Viral Infection Model.. PLoS One 2016;11(12):e0167568.
              doi: 10.1371/journal.pone.0167568pubmed: 28036339google scholar: lookup
            88. Canini L, Woolhouse ME, Maines TR, Carrat F. Heterogeneous shedding of influenza by human subjects and its implications for epidemiology and control.. Sci Rep 2016 Dec 14;6:38749.
              doi: 10.1038/srep38749pubmed: 27966651google scholar: lookup
            89. Duvigneau S, Sharma-Chawla N, Boianelli A, Stegemann-Koniszewski S, Nguyen VK, Bruder D, Hernandez-Vargas EA. Hierarchical effects of pro-inflammatory cytokines on the post-influenza susceptibility to pneumococcal coinfection.. Sci Rep 2016 Nov 22;6:37045.
              doi: 10.1038/srep37045pubmed: 27872472google scholar: lookup
            90. Peck KM, Chan CH, Tanaka MM. Connecting within-host dynamics to the rate of viral molecular evolution.. Virus Evol 2015;1(1):vev013.
              doi: 10.1093/ve/vev013pubmed: 27774285google scholar: lookup
            91. Boianelli A, Sharma-Chawla N, Bruder D, Hernandez-Vargas EA. Oseltamivir PK/PD Modeling and Simulation to Evaluate Treatment Strategies against Influenza-Pneumococcus Coinfection.. Front Cell Infect Microbiol 2016;6:60.
              doi: 10.3389/fcimb.2016.00060pubmed: 27379214google scholar: lookup
            92. Zarnitsyna VI, Lavine J, Ellebedy A, Ahmed R, Antia R. Multi-epitope Models Explain How Pre-existing Antibodies Affect the Generation of Broadly Protective Responses to Influenza.. PLoS Pathog 2016 Jun;12(6):e1005692.
              doi: 10.1371/journal.ppat.1005692pubmed: 27336297google scholar: lookup
            93. Hadjichrysanthou C, Cauu00ebt E, Lawrence E, Vegvari C, de Wolf F, Anderson RM. Understanding the within-host dynamics of influenza A virus: from theory to clinical implications.. J R Soc Interface 2016 Jun;13(119).
              doi: 10.1098/rsif.2016.0289pubmed: 27278364google scholar: lookup
            94. Zarnitsyna VI, Handel A, McMaster SR, Hayward SL, Kohlmeier JE, Antia R. Mathematical Model Reveals the Role of Memory CD8 T Cell Populations in Recall Responses to Influenza.. Front Immunol 2016;7:165.
              doi: 10.3389/fimmu.2016.00165pubmed: 27242779google scholar: lookup
            95. Banerjee S, Guedj J, Ribeiro RM, Moses M, Perelson AS. Estimating biologically relevant parameters under uncertainty for experimental within-host murine West Nile virus infection.. J R Soc Interface 2016 Apr;13(117).
              doi: 10.1098/rsif.2016.0130pubmed: 27075003google scholar: lookup
            96. Browne EP, Letham B, Rudin C. A Computational Model of Inhibition of HIV-1 by Interferon-Alpha.. PLoS One 2016;11(3):e0152316.
              doi: 10.1371/journal.pone.0152316pubmed: 27010978google scholar: lookup
            97. Levin D, Forrest S, Banerjee S, Clay C, Cannon J, Moses M, Koster F. A spatial model of the efficiency of T cell search in the influenza-infected lung.. J Theor Biol 2016 Jun 7;398:52-63.
              doi: 10.1016/j.jtbi.2016.02.022pubmed: 26920246google scholar: lookup
            98. Pawelek KA, Dor D Jr, Salmeron C, Handel A. Within-Host Models of High and Low Pathogenic Influenza Virus Infections: The Role of Macrophages.. PLoS One 2016;11(2):e0150568.
              doi: 10.1371/journal.pone.0150568pubmed: 26918620google scholar: lookup
            99. Yan AW, Cao P, McCaw JM. On the extinction probability in models of within-host infection: the role of latency and immunity.. J Math Biol 2016 Oct;73(4):787-813.
              doi: 10.1007/s00285-015-0961-5pubmed: 26748917google scholar: lookup
            100. Schmid B, Rinas M, Ruggieri A, Acosta EG, Bartenschlager M, Reuter A, Fischl W, Harder N, Bergeest JP, Flossdorf M, Rohr K, Hu00f6fer T, Bartenschlager R. Live Cell Analysis and Mathematical Modeling Identify Determinants of Attenuation of Dengue Virus 2'-O-Methylation Mutant.. PLoS Pathog 2015 Dec;11(12):e1005345.
              doi: 10.1371/journal.ppat.1005345pubmed: 26720415google scholar: lookup
            101. Boianelli A, Nguyen VK, Ebensen T, Schulze K, Wilk E, Sharma N, Stegemann-Koniszewski S, Bruder D, Toapanta FR, Guzmu00e1n CA, Meyer-Hermann M, Hernandez-Vargas EA. Modeling Influenza Virus Infection: A Roadmap for Influenza Research.. Viruses 2015 Oct 12;7(10):5274-304.
              doi: 10.3390/v7102875pubmed: 26473911google scholar: lookup
            102. Cao P, Yan AW, Heffernan JM, Petrie S, Moss RG, Carolan LA, Guarnaccia TA, Kelso A, Barr IG, McVernon J, Laurie KL, McCaw JM. Innate Immunity and the Inter-exposure Interval Determine the Dynamics of Secondary Influenza Virus Infection and Explain Observed Viral Hierarchies.. PLoS Comput Biol 2015 Aug;11(8):e1004334.
              doi: 10.1371/journal.pcbi.1004334pubmed: 26284917google scholar: lookup
            103. Perelson AS, Guedj J. Modelling hepatitis C therapy--predicting effects of treatment.. Nat Rev Gastroenterol Hepatol 2015 Aug;12(8):437-45.
              doi: 10.1038/nrgastro.2015.97pubmed: 26122475google scholar: lookup
            104. Nguyen VK, Binder SC, Boianelli A, Meyer-Hermann M, Hernandez-Vargas EA. Ebola virus infection modeling and identifiability problems.. Front Microbiol 2015;6:257.
              doi: 10.3389/fmicb.2015.00257pubmed: 25914675google scholar: lookup
            105. Price I, Mochan-Keef ED, Swigon D, Ermentrout GB, Lukens S, Toapanta FR, Ross TM, Clermont G. The inflammatory response to influenza A virus (H1N1): An experimental and mathematical study.. J Theor Biol 2015 Jun 7;374:83-93.
              doi: 10.1016/j.jtbi.2015.03.017pubmed: 25843213google scholar: lookup
            106. Ben-Shachar R, Koelle K. Minimal within-host dengue models highlight the specific roles of the immune response in primary and secondary dengue infections.. J R Soc Interface 2015 Feb 6;12(103).
              doi: 10.1098/rsif.2014.0886pubmed: 25519990google scholar: lookup
            107. Pawelek KA, Niehaus P, Salmeron C, Hager EJ, Hunt GJ. Modeling dynamics of culex pipiens complex populations and assessing abatement strategies for West Nile Virus.. PLoS One 2014;9(9):e108452.
              doi: 10.1371/journal.pone.0108452pubmed: 25268229google scholar: lookup
            108. Li Z, Zhou H, Lu Y, Colatsky T. A Critical Role for Immune System Response in Mediating Anti-influenza Drug Synergies Assessed by Mechanistic Modeling.. CPT Pharmacometrics Syst Pharmacol 2014 Sep 10;3(9):e135.
              doi: 10.1038/psp.2014.32pubmed: 25207611google scholar: lookup
            109. Illingworth CJ, Fischer A, Mustonen V. Identifying selection in the within-host evolution of influenza using viral sequence data.. PLoS Comput Biol 2014 Jul;10(7):e1003755.
              doi: 10.1371/journal.pcbi.1003755pubmed: 25080215google scholar: lookup
            110. Smith AM, McCullers JA. Secondary bacterial infections in influenza virus infection pathogenesis.. Curr Top Microbiol Immunol 2014;385:327-56.
              doi: 10.1007/82_2014_394pubmed: 25027822google scholar: lookup
            111. Canini L, Perelson AS. Viral kinetic modeling: state of the art.. J Pharmacokinet Pharmacodyn 2014 Oct;41(5):431-43.
              doi: 10.1007/s10928-014-9363-3pubmed: 24961742google scholar: lookup
            112. Hernandez-Vargas EA, Wilk E, Canini L, Toapanta FR, Binder SC, Uvarovskii A, Ross TM, Guzmu00e1n CA, Perelson AS, Meyer-Hermann M. Effects of aging on influenza virus infection dynamics.. J Virol 2014 Apr;88(8):4123-31.
              doi: 10.1128/JVI.03644-13pubmed: 24478442google scholar: lookup
            113. Islam ZU, Bishop SC, Savill NJ, Rowland RR, Lunney JK, Trible B, Doeschl-Wilson AB. Quantitative analysis of porcine reproductive and respiratory syndrome (PRRS) viremia profiles from experimental infection: a statistical modelling approach.. PLoS One 2013;8(12):e83567.
              doi: 10.1371/journal.pone.0083567pubmed: 24358295google scholar: lookup
            114. Heldt FS, Frensing T, Pflugmacher A, Gru00f6pler R, Peschel B, Reichl U. Multiscale modeling of influenza A virus infection supports the development of direct-acting antivirals.. PLoS Comput Biol 2013;9(11):e1003372.
              doi: 10.1371/journal.pcbi.1003372pubmed: 24278009google scholar: lookup
            115. Woo HJ, Reifman J. Quantitative modeling of virus evolutionary dynamics and adaptation in serial passages using empirically inferred fitness landscapes.. J Virol 2014 Jan;88(2):1039-50.
              doi: 10.1128/JVI.02958-13pubmed: 24198414google scholar: lookup
            116. Jin S, Zou X. Construction of the influenza A virus infection-induced cell-specific inflammatory regulatory network based on mutual information and optimization.. BMC Syst Biol 2013 Oct 20;7:105.
              doi: 10.1186/1752-0509-7-105pubmed: 24138989google scholar: lookup
            117. Petrie SM, Guarnaccia T, Laurie KL, Hurt AC, McVernon J, McCaw JM. Reducing uncertainty in within-host parameter estimates of influenza infection by measuring both infectious and total viral load.. PLoS One 2013;8(5):e64098.
              doi: 10.1371/journal.pone.0064098pubmed: 23691157google scholar: lookup
            118. Daly JM, Newton JR, Wood JL, Park AW. What can mathematical models bring to the control of equine influenza?. Equine Vet J 2013 Nov;45(6):784-8.
              doi: 10.1111/evj.12104pubmed: 23679041google scholar: lookup
            119. Murillo LN, Murillo MS, Perelson AS. Towards multiscale modeling of influenza infection.. J Theor Biol 2013 Sep 7;332:267-90.
              doi: 10.1016/j.jtbi.2013.03.024pubmed: 23608630google scholar: lookup
            120. Handel A, Brown J, Stallknecht D, Rohani P. A multi-scale analysis of influenza A virus fitness trade-offs due to temperature-dependent virus persistence.. PLoS Comput Biol 2013;9(3):e1002989.
              doi: 10.1371/journal.pcbi.1002989pubmed: 23555223google scholar: lookup
            121. Dobrovolny HM, Reddy MB, Kamal MA, Rayner CR, Beauchemin CA. Assessing mathematical models of influenza infections using features of the immune response.. PLoS One 2013;8(2):e57088.
              doi: 10.1371/journal.pone.0057088pubmed: 23468916google scholar: lookup
            122. Arazi A, Pendergraft WF 3rd, Ribeiro RM, Perelson AS, Hacohen N. Human systems immunology: hypothesis-based modeling and unbiased data-driven approaches.. Semin Immunol 2013 Oct 31;25(3):193-200.
              doi: 10.1016/j.smim.2012.11.003pubmed: 23375135google scholar: lookup
            123. Zhang J, Lipton HL, Perelson AS, Dahari H. Modeling the acute and chronic phases of Theiler murine encephalomyelitis virus infection.. J Virol 2013 Apr;87(7):4052-9.
              doi: 10.1128/JVI.03395-12pubmed: 23365440google scholar: lookup
            124. Roberts KL, Shelton H, Stilwell P, Barclay WS. Transmission of a 2009 H1N1 pandemic influenza virus occurs before fever is detected, in the ferret model.. PLoS One 2012;7(8):e43303.
              doi: 10.1371/journal.pone.0043303pubmed: 22952661google scholar: lookup